xref: /dpdk/doc/guides/sample_app_ug/link_status_intr.rst (revision 2808423a9ce42a748aed77a4b487be27d2b6acfa)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4Link Status Interrupt Sample Application
5========================================
6
7The Link Status Interrupt sample application is a simple example of packet processing using
8the Data Plane Development Kit (DPDK) that
9demonstrates how network link status changes for a network port can be captured and
10used by a DPDK application.
11
12Overview
13--------
14
15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port
16and performs L2 forwarding for each packet that is received on an RX_PORT.
17The following operations are performed:
18
19*   RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask
20
21*   The source MAC address is replaced by the TX_PORT MAC address
22
23*   The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID
24
25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
26and the behavior of L2 forwarding each time the link status changes.
27
28Compiling the Application
29-------------------------
30
31To compile the sample application see :doc:`compiling`.
32
33The application is located in the ``link_status_interrupt`` sub-directory.
34
35Running the Application
36-----------------------
37
38The application requires a number of command line options:
39
40.. code-block:: console
41
42    ./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]
43
44where,
45
46*   -p PORTMASK: A hexadecimal bitmask of the ports to configure
47
48*   -q NQ: A number of queues (=ports) per lcore (default is 1)
49
50*   -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)
51
52To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore,
53issue the command:
54
55.. code-block:: console
56
57    $ ./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff
58
59Refer to the *DPDK Getting Started Guide* for general information on running applications
60and the Environment Abstraction Layer (EAL) options.
61
62Explanation
63-----------
64
65The following sections provide some explanation of the code.
66
67Command Line Arguments
68~~~~~~~~~~~~~~~~~~~~~~
69
70The Link Status Interrupt sample application takes specific parameters,
71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_).
72
73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
74See :ref:`l2_fwd_app_cmd_arguments` for more information.
75
76Mbuf Pool Initialization
77~~~~~~~~~~~~~~~~~~~~~~~~
78
79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
80See :ref:`l2_fwd_app_mbuf_init` for more information.
81
82Driver Initialization
83~~~~~~~~~~~~~~~~~~~~~
84
85The main part of the code in the main() function relates to the initialization of the driver.
86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
87*DPDK Programmer's Guide and the DPDK API Reference*.
88
89.. code-block:: c
90
91    if (rte_pci_probe() < 0)
92        rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
93
94    /*
95     * Each logical core is assigned a dedicated TX queue on each port.
96     */
97
98    RTE_ETH_FOREACH_DEV(portid) {
99        /* skip ports that are not enabled */
100
101        if ((lsi_enabled_port_mask & (1 << portid)) == 0)
102            continue;
103
104        /* save the destination port id */
105
106        if (nb_ports_in_mask % 2) {
107            lsi_dst_ports[portid] = portid_last;
108            lsi_dst_ports[portid_last] = portid;
109        }
110        else
111            portid_last = portid;
112
113        nb_ports_in_mask++;
114
115        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
116    }
117
118Observe that:
119
120*   rte_pci_probe()  parses the devices on the PCI bus and initializes recognized devices.
121
122The next step is to configure the RX and TX queues.
123For each port, there is only one RX queue (only one lcore is able to poll a given port).
124The number of TX queues depends on the number of available lcores.
125The rte_eth_dev_configure() function is used to configure the number of queues for a port:
126
127.. code-block:: c
128
129    ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
130    if (ret < 0)
131        rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);
132
133The global configuration is stored in a static structure:
134
135.. code-block:: c
136
137    static const struct rte_eth_conf port_conf = {
138        .rxmode = {
139            .split_hdr_size = 0,
140            .offloads = DEV_RX_OFFLOAD_CRC_STRIP,
141        },
142        .txmode = {},
143        .intr_conf = {
144            .lsc = 1, /**< link status interrupt feature enabled */
145        },
146    };
147
148Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space
149and no user space interrupt event is received.
150The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status.
151Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space
152when a link status change is present and calls the user space callbacks registered by the application.
153The public interface rte_eth_link_get() just reads the link status in a global structure
154that would be updated in the interrupt host thread only.
155
156Interrupt Callback Registration
157~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
158
159The application can register one or more callbacks to a specific port and interrupt event.
160An example callback function that has been written as indicated below.
161
162.. code-block:: c
163
164    static void
165    lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param)
166    {
167        struct rte_eth_link link;
168
169        RTE_SET_USED(param);
170
171        printf("\n\nIn registered callback...\n");
172
173        printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");
174
175        rte_eth_link_get_nowait(port_id, &link);
176
177        if (link.link_status) {
178            printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,
179                  (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));
180        } else
181            printf("Port %d Link Down\n\n", port_id);
182    }
183
184This function is called when a link status interrupt is present for the right port.
185The port_id indicates which port the interrupt applies to.
186The type parameter identifies the interrupt event type,
187which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future.
188The param parameter is the address of the parameter for the callback.
189This function should be implemented with care since it will be called in the interrupt host thread,
190which is different from the main thread of its caller.
191
192The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port:
193
194.. code-block:: c
195
196    rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);
197
198This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function.
199If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present.
200
201RX Queue Initialization
202~~~~~~~~~~~~~~~~~~~~~~~
203
204The application uses one lcore to poll one or several ports, depending on the -q option,
205which specifies the number of queues per lcore.
206
207For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
208If there are 16 ports on the target (and if the portmask argument is -p ffff),
209the application will need four lcores to poll all the ports.
210
211.. code-block:: c
212
213    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
214    if (ret < 0)
215        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);
216
217The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
218
219.. code-block:: c
220
221    struct lcore_queue_conf {
222        unsigned n_rx_port;
223        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
224        struct mbuf_table tx_mbufs[LSI_MAX_PORTS];
225    } rte_cache_aligned;
226
227    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
228
229The n_rx_port and rx_port_list[] fields are used in the main packet processing loop
230(see `Receive, Process and Transmit Packets`_).
231
232The global configuration for the RX queues is stored in a static structure:
233
234.. code-block:: c
235
236    static const struct rte_eth_rxconf rx_conf = {
237        .rx_thresh = {
238            .pthresh = RX_PTHRESH,
239            .hthresh = RX_HTHRESH,
240            .wthresh = RX_WTHRESH,
241        },
242    };
243
244TX Queue Initialization
245~~~~~~~~~~~~~~~~~~~~~~~
246
247Each lcore should be able to transmit on any port.
248For every port, a single TX queue is initialized.
249
250.. code-block:: c
251
252    /* init one TX queue logical core on each port */
253
254    fflush(stdout);
255
256    ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
257    if (ret < 0)
258        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);
259
260The global configuration for TX queues is stored in a static structure:
261
262.. code-block:: c
263
264    static const struct rte_eth_txconf tx_conf = {
265        .tx_thresh = {
266            .pthresh = TX_PTHRESH,
267            .hthresh = TX_HTHRESH,
268            .wthresh = TX_WTHRESH,
269        },
270        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
271    };
272
273Receive, Process and Transmit Packets
274~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
275
276In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
277This is done using the following code:
278
279.. code-block:: c
280
281    /*
282     *   Read packet from RX queues
283     */
284
285    for (i = 0; i < qconf->n_rx_port; i++) {
286        portid = qconf->rx_port_list[i];
287        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
288        port_statistics[portid].rx += nb_rx;
289
290        for (j = 0; j < nb_rx; j++) {
291            m = pkts_burst[j];
292            rte_prefetch0(rte_pktmbuf_mtod(m, void *));
293            lsi_simple_forward(m, portid);
294        }
295    }
296
297Packets are read in a burst of size MAX_PKT_BURST.
298The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
299
300Then, each mbuf in the table is processed by the lsi_simple_forward() function.
301The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses.
302
303.. note::
304
305    In the following code, the two lines for calculating the output port require some explanation.
306    If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1.
307    If portId is odd, the first line subtracts one and the second line does nothing.
308    Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.
309
310.. code-block:: c
311
312    static void
313    lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
314    {
315        struct ether_hdr *eth;
316        void *tmp;
317        unsigned dst_port = lsi_dst_ports[portid];
318
319        eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
320
321        /* 02:00:00:00:00:xx */
322
323        tmp = &eth->d_addr.addr_bytes[0];
324
325        *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);
326
327        /* src addr */
328        ether_addr_copy(&lsi_ports_eth_addr[dst_port], &eth->s_addr);
329
330        lsi_send_packet(m, dst_port);
331    }
332
333Then, the packet is sent using the lsi_send_packet(m, dst_port) function.
334For this test application, the processing is exactly the same for all packets arriving on the same RX port.
335Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop
336to send all the received packets on the same TX port using
337the burst-oriented send function, which is more efficient.
338
339However, in real-life applications (such as, L3 routing),
340packet N is not necessarily forwarded on the same port as packet N-1.
341The application is implemented to illustrate that so the same approach can be reused in a more complex application.
342
343The lsi_send_packet() function stores the packet in a per-lcore and per-txport table.
344If the table is full, the whole packets table is transmitted using the lsi_send_burst() function:
345
346.. code-block:: c
347
348    /* Send the packet on an output interface */
349
350    static int
351    lsi_send_packet(struct rte_mbuf *m, uint16_t port)
352    {
353        unsigned lcore_id, len;
354        struct lcore_queue_conf *qconf;
355
356        lcore_id = rte_lcore_id();
357        qconf = &lcore_queue_conf[lcore_id];
358        len = qconf->tx_mbufs[port].len;
359        qconf->tx_mbufs[port].m_table[len] = m;
360        len++;
361
362        /* enough pkts to be sent */
363
364        if (unlikely(len == MAX_PKT_BURST)) {
365            lsi_send_burst(qconf, MAX_PKT_BURST, port);
366            len = 0;
367        }
368        qconf->tx_mbufs[port].len = len;
369
370        return 0;
371    }
372
373To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop.
374This technique introduces some latency when there are not many packets to send.
375However, it improves performance:
376
377.. code-block:: c
378
379    cur_tsc = rte_rdtsc();
380
381    /*
382     *    TX burst queue drain
383     */
384
385    diff_tsc = cur_tsc - prev_tsc;
386
387    if (unlikely(diff_tsc > drain_tsc)) {
388        /* this could be optimized (use queueid instead of * portid), but it is not called so often */
389
390        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
391            if (qconf->tx_mbufs[portid].len == 0)
392                continue;
393
394            lsi_send_burst(&lcore_queue_conf[lcore_id],
395            qconf->tx_mbufs[portid].len, (uint8_t) portid);
396            qconf->tx_mbufs[portid].len = 0;
397        }
398
399        /* if timer is enabled */
400
401        if (timer_period > 0) {
402            /* advance the timer */
403
404            timer_tsc += diff_tsc;
405
406            /* if timer has reached its timeout */
407
408            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
409                /* do this only on master core */
410
411                if (lcore_id == rte_get_master_lcore()) {
412                    print_stats();
413
414                    /* reset the timer */
415                    timer_tsc = 0;
416                }
417            }
418        }
419        prev_tsc = cur_tsc;
420   }
421