1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2010-2014 Intel Corporation. 3 4Link Status Interrupt Sample Application 5======================================== 6 7The Link Status Interrupt sample application is a simple example of packet processing using 8the Data Plane Development Kit (DPDK) that 9demonstrates how network link status changes for a network port can be captured and 10used by a DPDK application. 11 12Overview 13-------- 14 15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port 16and performs L2 forwarding for each packet that is received on an RX_PORT. 17The following operations are performed: 18 19* RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask 20 21* The source MAC address is replaced by the TX_PORT MAC address 22 23* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 24 25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks 26and the behavior of L2 forwarding each time the link status changes. 27 28Compiling the Application 29------------------------- 30 31To compile the sample application see :doc:`compiling`. 32 33The application is located in the ``link_status_interrupt`` sub-directory. 34 35Running the Application 36----------------------- 37 38The application requires a number of command line options: 39 40.. code-block:: console 41 42 ./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD] 43 44where, 45 46* -p PORTMASK: A hexadecimal bitmask of the ports to configure 47 48* -q NQ: A number of queues (=ports) per lcore (default is 1) 49 50* -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default) 51 52To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore, 53issue the command: 54 55.. code-block:: console 56 57 $ ./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff 58 59Refer to the *DPDK Getting Started Guide* for general information on running applications 60and the Environment Abstraction Layer (EAL) options. 61 62Explanation 63----------- 64 65The following sections provide some explanation of the code. 66 67Command Line Arguments 68~~~~~~~~~~~~~~~~~~~~~~ 69 70The Link Status Interrupt sample application takes specific parameters, 71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_). 72 73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application. 74See :ref:`l2_fwd_app_cmd_arguments` for more information. 75 76Mbuf Pool Initialization 77~~~~~~~~~~~~~~~~~~~~~~~~ 78 79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application. 80See :ref:`l2_fwd_app_mbuf_init` for more information. 81 82Driver Initialization 83~~~~~~~~~~~~~~~~~~~~~ 84 85The main part of the code in the main() function relates to the initialization of the driver. 86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the 87*DPDK Programmer's Guide and the DPDK API Reference*. 88 89.. code-block:: c 90 91 if (rte_pci_probe() < 0) 92 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 93 94 /* 95 * Each logical core is assigned a dedicated TX queue on each port. 96 */ 97 98 RTE_ETH_FOREACH_DEV(portid) { 99 /* skip ports that are not enabled */ 100 101 if ((lsi_enabled_port_mask & (1 << portid)) == 0) 102 continue; 103 104 /* save the destination port id */ 105 106 if (nb_ports_in_mask % 2) { 107 lsi_dst_ports[portid] = portid_last; 108 lsi_dst_ports[portid_last] = portid; 109 } 110 else 111 portid_last = portid; 112 113 nb_ports_in_mask++; 114 115 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 116 } 117 118Observe that: 119 120* rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices. 121 122The next step is to configure the RX and TX queues. 123For each port, there is only one RX queue (only one lcore is able to poll a given port). 124The number of TX queues depends on the number of available lcores. 125The rte_eth_dev_configure() function is used to configure the number of queues for a port: 126 127.. code-block:: c 128 129 ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf); 130 if (ret < 0) 131 rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid); 132 133The global configuration is stored in a static structure: 134 135.. code-block:: c 136 137 static const struct rte_eth_conf port_conf = { 138 .rxmode = { 139 .split_hdr_size = 0, 140 .offloads = DEV_RX_OFFLOAD_CRC_STRIP, 141 }, 142 .txmode = {}, 143 .intr_conf = { 144 .lsc = 1, /**< link status interrupt feature enabled */ 145 }, 146 }; 147 148Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space 149and no user space interrupt event is received. 150The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status. 151Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space 152when a link status change is present and calls the user space callbacks registered by the application. 153The public interface rte_eth_link_get() just reads the link status in a global structure 154that would be updated in the interrupt host thread only. 155 156Interrupt Callback Registration 157~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 158 159The application can register one or more callbacks to a specific port and interrupt event. 160An example callback function that has been written as indicated below. 161 162.. code-block:: c 163 164 static void 165 lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param) 166 { 167 struct rte_eth_link link; 168 169 RTE_SET_USED(param); 170 171 printf("\n\nIn registered callback...\n"); 172 173 printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event"); 174 175 rte_eth_link_get_nowait(port_id, &link); 176 177 if (link.link_status) { 178 printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed, 179 (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex")); 180 } else 181 printf("Port %d Link Down\n\n", port_id); 182 } 183 184This function is called when a link status interrupt is present for the right port. 185The port_id indicates which port the interrupt applies to. 186The type parameter identifies the interrupt event type, 187which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future. 188The param parameter is the address of the parameter for the callback. 189This function should be implemented with care since it will be called in the interrupt host thread, 190which is different from the main thread of its caller. 191 192The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port: 193 194.. code-block:: c 195 196 rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL); 197 198This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function. 199If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present. 200 201RX Queue Initialization 202~~~~~~~~~~~~~~~~~~~~~~~ 203 204The application uses one lcore to poll one or several ports, depending on the -q option, 205which specifies the number of queues per lcore. 206 207For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 208If there are 16 ports on the target (and if the portmask argument is -p ffff), 209the application will need four lcores to poll all the ports. 210 211.. code-block:: c 212 213 ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool); 214 if (ret < 0) 215 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid); 216 217The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 218 219.. code-block:: c 220 221 struct lcore_queue_conf { 222 unsigned n_rx_port; 223 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id; 224 struct mbuf_table tx_mbufs[LSI_MAX_PORTS]; 225 } rte_cache_aligned; 226 227 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 228 229The n_rx_port and rx_port_list[] fields are used in the main packet processing loop 230(see `Receive, Process and Transmit Packets`_). 231 232The global configuration for the RX queues is stored in a static structure: 233 234.. code-block:: c 235 236 static const struct rte_eth_rxconf rx_conf = { 237 .rx_thresh = { 238 .pthresh = RX_PTHRESH, 239 .hthresh = RX_HTHRESH, 240 .wthresh = RX_WTHRESH, 241 }, 242 }; 243 244TX Queue Initialization 245~~~~~~~~~~~~~~~~~~~~~~~ 246 247Each lcore should be able to transmit on any port. 248For every port, a single TX queue is initialized. 249 250.. code-block:: c 251 252 /* init one TX queue logical core on each port */ 253 254 fflush(stdout); 255 256 ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf); 257 if (ret < 0) 258 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid); 259 260The global configuration for TX queues is stored in a static structure: 261 262.. code-block:: c 263 264 static const struct rte_eth_txconf tx_conf = { 265 .tx_thresh = { 266 .pthresh = TX_PTHRESH, 267 .hthresh = TX_HTHRESH, 268 .wthresh = TX_WTHRESH, 269 }, 270 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */ 271 }; 272 273Receive, Process and Transmit Packets 274~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 275 276In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues. 277This is done using the following code: 278 279.. code-block:: c 280 281 /* 282 * Read packet from RX queues 283 */ 284 285 for (i = 0; i < qconf->n_rx_port; i++) { 286 portid = qconf->rx_port_list[i]; 287 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); 288 port_statistics[portid].rx += nb_rx; 289 290 for (j = 0; j < nb_rx; j++) { 291 m = pkts_burst[j]; 292 rte_prefetch0(rte_pktmbuf_mtod(m, void *)); 293 lsi_simple_forward(m, portid); 294 } 295 } 296 297Packets are read in a burst of size MAX_PKT_BURST. 298The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 299 300Then, each mbuf in the table is processed by the lsi_simple_forward() function. 301The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses. 302 303.. note:: 304 305 In the following code, the two lines for calculating the output port require some explanation. 306 If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1. 307 If portId is odd, the first line subtracts one and the second line does nothing. 308 Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on. 309 310.. code-block:: c 311 312 static void 313 lsi_simple_forward(struct rte_mbuf *m, unsigned portid) 314 { 315 struct ether_hdr *eth; 316 void *tmp; 317 unsigned dst_port = lsi_dst_ports[portid]; 318 319 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 320 321 /* 02:00:00:00:00:xx */ 322 323 tmp = ð->d_addr.addr_bytes[0]; 324 325 *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40); 326 327 /* src addr */ 328 ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr); 329 330 lsi_send_packet(m, dst_port); 331 } 332 333Then, the packet is sent using the lsi_send_packet(m, dst_port) function. 334For this test application, the processing is exactly the same for all packets arriving on the same RX port. 335Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop 336to send all the received packets on the same TX port using 337the burst-oriented send function, which is more efficient. 338 339However, in real-life applications (such as, L3 routing), 340packet N is not necessarily forwarded on the same port as packet N-1. 341The application is implemented to illustrate that so the same approach can be reused in a more complex application. 342 343The lsi_send_packet() function stores the packet in a per-lcore and per-txport table. 344If the table is full, the whole packets table is transmitted using the lsi_send_burst() function: 345 346.. code-block:: c 347 348 /* Send the packet on an output interface */ 349 350 static int 351 lsi_send_packet(struct rte_mbuf *m, uint16_t port) 352 { 353 unsigned lcore_id, len; 354 struct lcore_queue_conf *qconf; 355 356 lcore_id = rte_lcore_id(); 357 qconf = &lcore_queue_conf[lcore_id]; 358 len = qconf->tx_mbufs[port].len; 359 qconf->tx_mbufs[port].m_table[len] = m; 360 len++; 361 362 /* enough pkts to be sent */ 363 364 if (unlikely(len == MAX_PKT_BURST)) { 365 lsi_send_burst(qconf, MAX_PKT_BURST, port); 366 len = 0; 367 } 368 qconf->tx_mbufs[port].len = len; 369 370 return 0; 371 } 372 373To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop. 374This technique introduces some latency when there are not many packets to send. 375However, it improves performance: 376 377.. code-block:: c 378 379 cur_tsc = rte_rdtsc(); 380 381 /* 382 * TX burst queue drain 383 */ 384 385 diff_tsc = cur_tsc - prev_tsc; 386 387 if (unlikely(diff_tsc > drain_tsc)) { 388 /* this could be optimized (use queueid instead of * portid), but it is not called so often */ 389 390 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 391 if (qconf->tx_mbufs[portid].len == 0) 392 continue; 393 394 lsi_send_burst(&lcore_queue_conf[lcore_id], 395 qconf->tx_mbufs[portid].len, (uint8_t) portid); 396 qconf->tx_mbufs[portid].len = 0; 397 } 398 399 /* if timer is enabled */ 400 401 if (timer_period > 0) { 402 /* advance the timer */ 403 404 timer_tsc += diff_tsc; 405 406 /* if timer has reached its timeout */ 407 408 if (unlikely(timer_tsc >= (uint64_t) timer_period)) { 409 /* do this only on master core */ 410 411 if (lcore_id == rte_get_master_lcore()) { 412 print_stats(); 413 414 /* reset the timer */ 415 timer_tsc = 0; 416 } 417 } 418 } 419 prev_tsc = cur_tsc; 420 } 421