xref: /dpdk/doc/guides/sample_app_ug/link_status_intr.rst (revision 25d11a86c56d50947af33d0b79ede622809bd8b9)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4Link Status Interrupt Sample Application
5========================================
6
7The Link Status Interrupt sample application is a simple example of packet processing using
8the Data Plane Development Kit (DPDK) that
9demonstrates how network link status changes for a network port can be captured and
10used by a DPDK application.
11
12Overview
13--------
14
15The Link Status Interrupt sample application registers a user space callback for the link status interrupt of each port
16and performs L2 forwarding for each packet that is received on an RX_PORT.
17The following operations are performed:
18
19*   RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask
20
21*   The source MAC address is replaced by the TX_PORT MAC address
22
23*   The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID
24
25This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
26and the behavior of L2 forwarding each time the link status changes.
27
28Compiling the Application
29-------------------------
30
31To compile the sample application see :doc:`compiling`.
32
33The application is located in the ``link_status_interrupt`` sub-directory.
34
35Running the Application
36-----------------------
37
38The application requires a number of command line options:
39
40.. code-block:: console
41
42    ./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]
43
44where,
45
46*   -p PORTMASK: A hexadecimal bitmask of the ports to configure
47
48*   -q NQ: A number of queues (=ports) per lcore (default is 1)
49
50*   -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)
51
52To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports and 8 RX queues per lcore,
53issue the command:
54
55.. code-block:: console
56
57    $ ./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff
58
59Refer to the *DPDK Getting Started Guide* for general information on running applications
60and the Environment Abstraction Layer (EAL) options.
61
62Explanation
63-----------
64
65The following sections provide some explanation of the code.
66
67Command Line Arguments
68~~~~~~~~~~~~~~~~~~~~~~
69
70The Link Status Interrupt sample application takes specific parameters,
71in addition to Environment Abstraction Layer (EAL) arguments (see Section `Running the Application`_).
72
73Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
74See :ref:`l2_fwd_app_cmd_arguments` for more information.
75
76Mbuf Pool Initialization
77~~~~~~~~~~~~~~~~~~~~~~~~
78
79Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
80See :ref:`l2_fwd_app_mbuf_init` for more information.
81
82Driver Initialization
83~~~~~~~~~~~~~~~~~~~~~
84
85The main part of the code in the main() function relates to the initialization of the driver.
86To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
87*DPDK Programmer's Guide and the DPDK API Reference*.
88
89.. code-block:: c
90
91    if (rte_pci_probe() < 0)
92        rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
93
94    /*
95     * Each logical core is assigned a dedicated TX queue on each port.
96     */
97
98    RTE_ETH_FOREACH_DEV(portid) {
99        /* skip ports that are not enabled */
100
101        if ((lsi_enabled_port_mask & (1 << portid)) == 0)
102            continue;
103
104        /* save the destination port id */
105
106        if (nb_ports_in_mask % 2) {
107            lsi_dst_ports[portid] = portid_last;
108            lsi_dst_ports[portid_last] = portid;
109        }
110        else
111            portid_last = portid;
112
113        nb_ports_in_mask++;
114
115        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
116    }
117
118Observe that:
119
120*   rte_pci_probe()  parses the devices on the PCI bus and initializes recognized devices.
121
122The next step is to configure the RX and TX queues.
123For each port, there is only one RX queue (only one lcore is able to poll a given port).
124The number of TX queues depends on the number of available lcores.
125The rte_eth_dev_configure() function is used to configure the number of queues for a port:
126
127.. code-block:: c
128
129    ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
130    if (ret < 0)
131        rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);
132
133The global configuration is stored in a static structure:
134
135.. code-block:: c
136
137    static const struct rte_eth_conf port_conf = {
138        .rxmode = {
139            .split_hdr_size = 0,
140        },
141        .txmode = {},
142        .intr_conf = {
143            .lsc = 1, /**< link status interrupt feature enabled */
144        },
145    };
146
147Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel space
148and no user space interrupt event is received.
149The public interface rte_eth_link_get() accesses the NIC registers directly to update the link status.
150Configuring lsc to non-zero enables the generation of link status change interrupts in kernel space
151when a link status change is present and calls the user space callbacks registered by the application.
152The public interface rte_eth_link_get() just reads the link status in a global structure
153that would be updated in the interrupt host thread only.
154
155Interrupt Callback Registration
156~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
157
158The application can register one or more callbacks to a specific port and interrupt event.
159An example callback function that has been written as indicated below.
160
161.. code-block:: c
162
163    static void
164    lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param)
165    {
166        struct rte_eth_link link;
167
168        RTE_SET_USED(param);
169
170        printf("\n\nIn registered callback...\n");
171
172        printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");
173
174        rte_eth_link_get_nowait(port_id, &link);
175
176        if (link.link_status) {
177            printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,
178                  (link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));
179        } else
180            printf("Port %d Link Down\n\n", port_id);
181    }
182
183This function is called when a link status interrupt is present for the right port.
184The port_id indicates which port the interrupt applies to.
185The type parameter identifies the interrupt event type,
186which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future.
187The param parameter is the address of the parameter for the callback.
188This function should be implemented with care since it will be called in the interrupt host thread,
189which is different from the main thread of its caller.
190
191The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event on each port:
192
193.. code-block:: c
194
195    rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);
196
197This registration can be done only after calling the rte_eth_dev_configure() function and before calling any other function.
198If lsc is initialized with 0, the callback is never called since no interrupt event would ever be present.
199
200RX Queue Initialization
201~~~~~~~~~~~~~~~~~~~~~~~
202
203The application uses one lcore to poll one or several ports, depending on the -q option,
204which specifies the number of queues per lcore.
205
206For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
207If there are 16 ports on the target (and if the portmask argument is -p ffff),
208the application will need four lcores to poll all the ports.
209
210.. code-block:: c
211
212    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
213    if (ret < 0)
214        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);
215
216The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
217
218.. code-block:: c
219
220    struct lcore_queue_conf {
221        unsigned n_rx_port;
222        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
223        struct mbuf_table tx_mbufs[LSI_MAX_PORTS];
224    } rte_cache_aligned;
225
226    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
227
228The n_rx_port and rx_port_list[] fields are used in the main packet processing loop
229(see `Receive, Process and Transmit Packets`_).
230
231The global configuration for the RX queues is stored in a static structure:
232
233.. code-block:: c
234
235    static const struct rte_eth_rxconf rx_conf = {
236        .rx_thresh = {
237            .pthresh = RX_PTHRESH,
238            .hthresh = RX_HTHRESH,
239            .wthresh = RX_WTHRESH,
240        },
241    };
242
243TX Queue Initialization
244~~~~~~~~~~~~~~~~~~~~~~~
245
246Each lcore should be able to transmit on any port.
247For every port, a single TX queue is initialized.
248
249.. code-block:: c
250
251    /* init one TX queue logical core on each port */
252
253    fflush(stdout);
254
255    ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
256    if (ret < 0)
257        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);
258
259The global configuration for TX queues is stored in a static structure:
260
261.. code-block:: c
262
263    static const struct rte_eth_txconf tx_conf = {
264        .tx_thresh = {
265            .pthresh = TX_PTHRESH,
266            .hthresh = TX_HTHRESH,
267            .wthresh = TX_WTHRESH,
268        },
269        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
270    };
271
272Receive, Process and Transmit Packets
273~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
274
275In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
276This is done using the following code:
277
278.. code-block:: c
279
280    /*
281     *   Read packet from RX queues
282     */
283
284    for (i = 0; i < qconf->n_rx_port; i++) {
285        portid = qconf->rx_port_list[i];
286        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
287        port_statistics[portid].rx += nb_rx;
288
289        for (j = 0; j < nb_rx; j++) {
290            m = pkts_burst[j];
291            rte_prefetch0(rte_pktmbuf_mtod(m, void *));
292            lsi_simple_forward(m, portid);
293        }
294    }
295
296Packets are read in a burst of size MAX_PKT_BURST.
297The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
298
299Then, each mbuf in the table is processed by the lsi_simple_forward() function.
300The processing is very simple: processes the TX port from the RX port and then replaces the source and destination MAC addresses.
301
302.. note::
303
304    In the following code, the two lines for calculating the output port require some explanation.
305    If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1.
306    If portId is odd, the first line subtracts one and the second line does nothing.
307    Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.
308
309.. code-block:: c
310
311    static void
312    lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
313    {
314        struct ether_hdr *eth;
315        void *tmp;
316        unsigned dst_port = lsi_dst_ports[portid];
317
318        eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
319
320        /* 02:00:00:00:00:xx */
321
322        tmp = &eth->d_addr.addr_bytes[0];
323
324        *((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);
325
326        /* src addr */
327        ether_addr_copy(&lsi_ports_eth_addr[dst_port], &eth->s_addr);
328
329        lsi_send_packet(m, dst_port);
330    }
331
332Then, the packet is sent using the lsi_send_packet(m, dst_port) function.
333For this test application, the processing is exactly the same for all packets arriving on the same RX port.
334Therefore, it would have been possible to call the lsi_send_burst() function directly from the main loop
335to send all the received packets on the same TX port using
336the burst-oriented send function, which is more efficient.
337
338However, in real-life applications (such as, L3 routing),
339packet N is not necessarily forwarded on the same port as packet N-1.
340The application is implemented to illustrate that so the same approach can be reused in a more complex application.
341
342The lsi_send_packet() function stores the packet in a per-lcore and per-txport table.
343If the table is full, the whole packets table is transmitted using the lsi_send_burst() function:
344
345.. code-block:: c
346
347    /* Send the packet on an output interface */
348
349    static int
350    lsi_send_packet(struct rte_mbuf *m, uint16_t port)
351    {
352        unsigned lcore_id, len;
353        struct lcore_queue_conf *qconf;
354
355        lcore_id = rte_lcore_id();
356        qconf = &lcore_queue_conf[lcore_id];
357        len = qconf->tx_mbufs[port].len;
358        qconf->tx_mbufs[port].m_table[len] = m;
359        len++;
360
361        /* enough pkts to be sent */
362
363        if (unlikely(len == MAX_PKT_BURST)) {
364            lsi_send_burst(qconf, MAX_PKT_BURST, port);
365            len = 0;
366        }
367        qconf->tx_mbufs[port].len = len;
368
369        return 0;
370    }
371
372To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main loop.
373This technique introduces some latency when there are not many packets to send.
374However, it improves performance:
375
376.. code-block:: c
377
378    cur_tsc = rte_rdtsc();
379
380    /*
381     *    TX burst queue drain
382     */
383
384    diff_tsc = cur_tsc - prev_tsc;
385
386    if (unlikely(diff_tsc > drain_tsc)) {
387        /* this could be optimized (use queueid instead of * portid), but it is not called so often */
388
389        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
390            if (qconf->tx_mbufs[portid].len == 0)
391                continue;
392
393            lsi_send_burst(&lcore_queue_conf[lcore_id],
394            qconf->tx_mbufs[portid].len, (uint8_t) portid);
395            qconf->tx_mbufs[portid].len = 0;
396        }
397
398        /* if timer is enabled */
399
400        if (timer_period > 0) {
401            /* advance the timer */
402
403            timer_tsc += diff_tsc;
404
405            /* if timer has reached its timeout */
406
407            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
408                /* do this only on master core */
409
410                if (lcore_id == rte_get_master_lcore()) {
411                    print_stats();
412
413                    /* reset the timer */
414                    timer_tsc = 0;
415                }
416            }
417        }
418        prev_tsc = cur_tsc;
419   }
420