xref: /dpdk/doc/guides/sample_app_ug/l3_forward.rst (revision 0857b942113874c69dc3db5df11a828ee3cc9b6b)
1..  BSD LICENSE
2    Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
3    All rights reserved.
4
5    Redistribution and use in source and binary forms, with or without
6    modification, are permitted provided that the following conditions
7    are met:
8
9    * Redistributions of source code must retain the above copyright
10    notice, this list of conditions and the following disclaimer.
11    * Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in
13    the documentation and/or other materials provided with the
14    distribution.
15    * Neither the name of Intel Corporation nor the names of its
16    contributors may be used to endorse or promote products derived
17    from this software without specific prior written permission.
18
19    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31L3 Forwarding Sample Application
32================================
33
34The L3 Forwarding application is a simple example of packet processing using the DPDK.
35The application performs L3 forwarding.
36
37Overview
38--------
39
40The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet forwarding.
41The initialization and run-time paths are very similar to those of the :doc:`l2_forward_real_virtual`.
42The main difference from the L2 Forwarding sample application is that the forwarding decision
43is made based on information read from the input packet.
44
45The lookup method is either hash-based or LPM-based and is selected at run time. When the selected lookup method is hash-based,
46a hash object is used to emulate the flow classification stage.
47The hash object is used in correlation with a flow table to map each input packet to its flow at runtime.
48
49The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read from the input packet:
50Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port.
51The ID of the output interface for the input packet is read from the identified flow table entry.
52The set of flows used by the application is statically configured and loaded into the hash at initialization time.
53When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage for IPv4 packets.
54The LPM object is used as the routing table to identify the next hop for each input packet at runtime.
55
56The LPM lookup key is represented by the Destination IP Address field read from the input packet.
57The ID of the output interface for the input packet is the next hop returned by the LPM lookup.
58The set of LPM rules used by the application is statically configured and loaded into the LPM object at initialization time.
59
60In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding supports IPv4 only.
61
62Compiling the Application
63-------------------------
64
65To compile the application:
66
67#.  Go to the sample application directory:
68
69    .. code-block:: console
70
71        export RTE_SDK=/path/to/rte_sdk
72        cd ${RTE_SDK}/examples/l3fwd
73
74#.  Set the target (a default target is used if not specified). For example:
75
76    .. code-block:: console
77
78        export RTE_TARGET=x86_64-native-linuxapp-gcc
79
80    See the *DPDK Getting Started Guide* for possible RTE_TARGET values.
81
82#.  Build the application:
83
84    .. code-block:: console
85
86        make
87
88Running the Application
89-----------------------
90
91The application has a number of command line options::
92
93    ./l3fwd [EAL options] -- -p PORTMASK
94                             [-P]
95                             [-E]
96                             [-L]
97                             --config(port,queue,lcore)[,(port,queue,lcore)]
98                             [--eth-dest=X,MM:MM:MM:MM:MM:MM]
99                             [--enable-jumbo [--max-pkt-len PKTLEN]]
100                             [--no-numa]
101                             [--hash-entry-num]
102                             [--ipv6]
103                             [--parse-ptype]
104
105Where,
106
107* ``-p PORTMASK:`` Hexadecimal bitmask of ports to configure
108
109* ``-P:`` Optional, sets all ports to promiscuous mode so that packets are accepted regardless of the packet's Ethernet MAC destination address.
110  Without this option, only packets with the Ethernet MAC destination address set to the Ethernet address of the port are accepted.
111
112* ``-E:`` Optional, enable exact match.
113
114* ``-L:`` Optional, enable longest prefix match.
115
116* ``--config (port,queue,lcore)[,(port,queue,lcore)]:`` Determines which queues from which ports are mapped to which cores.
117
118* ``--eth-dest=X,MM:MM:MM:MM:MM:MM:`` Optional, ethernet destination for port X.
119
120* ``--enable-jumbo:`` Optional, enables jumbo frames.
121
122* ``--max-pkt-len:`` Optional, under the premise of enabling jumbo, maximum packet length in decimal (64-9600).
123
124* ``--no-numa:`` Optional, disables numa awareness.
125
126* ``--hash-entry-num:`` Optional, specifies the hash entry number in hexadecimal to be setup.
127
128* ``--ipv6:`` Optional, set if running ipv6 packets.
129
130* ``--parse-ptype:`` Optional, set to use software to analyze packet type. Without this option, hardware will check the packet type.
131
132For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23 appear on socket 0,
133while cores 8-15 and 24-31 appear on socket 1.
134
135To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two cores, cores 1 and 2,
136(which are in the same socket too), use the following command:
137
138.. code-block:: console
139
140    ./build/l3fwd -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)"
141
142In this command:
143
144*   The -l option enables cores 1, 2
145
146*   The -p option enables ports 0 and 1
147
148*   The --config option enables one queue on each port and maps each (port,queue) pair to a specific core.
149    The following table shows the mapping in this example:
150
151+----------+-----------+-----------+-------------------------------------+
152| **Port** | **Queue** | **lcore** | **Description**                     |
153|          |           |           |                                     |
154+----------+-----------+-----------+-------------------------------------+
155| 0        | 0         | 1         | Map queue 0 from port 0 to lcore 1. |
156|          |           |           |                                     |
157+----------+-----------+-----------+-------------------------------------+
158| 1        | 0         | 2         | Map queue 0 from port 1 to lcore 2. |
159|          |           |           |                                     |
160+----------+-----------+-----------+-------------------------------------+
161
162Refer to the *DPDK Getting Started Guide* for general information on running applications and
163the Environment Abstraction Layer (EAL) options.
164
165.. _l3_fwd_explanation:
166
167Explanation
168-----------
169
170The following sections provide some explanation of the sample application code. As mentioned in the overview section,
171the initialization and run-time paths are very similar to those of the :doc:`l2_forward_real_virtual`.
172The following sections describe aspects that are specific to the L3 Forwarding sample application.
173
174Hash Initialization
175~~~~~~~~~~~~~~~~~~~
176
177The hash object is created and loaded with the pre-configured entries read from a global array,
178and then generate the expected 5-tuple as key to keep consistence with those of real flow
179for the convenience to execute hash performance test on 4M/8M/16M flows.
180
181.. note::
182
183    The Hash initialization will setup both ipv4 and ipv6 hash table,
184    and populate the either table depending on the value of variable ipv6.
185    To support the hash performance test with up to 8M single direction flows/16M bi-direction flows,
186    populate_ipv4_many_flow_into_table() function will populate the hash table with specified hash table entry number(default 4M).
187
188.. note::
189
190    Value of global variable ipv6 can be specified with --ipv6 in the command line.
191    Value of global variable hash_entry_number,
192    which is used to specify the total hash entry number for all used ports in hash performance test,
193    can be specified with --hash-entry-num VALUE in command line, being its default value 4.
194
195.. code-block:: c
196
197    #if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
198
199        static void
200        setup_hash(int socketid)
201        {
202            // ...
203
204            if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
205                if (ipv6 == 0) {
206                    /* populate the ipv4 hash */
207                    populate_ipv4_many_flow_into_table(ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);
208                } else {
209                    /* populate the ipv6 hash */
210                    populate_ipv6_many_flow_into_table( ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);
211                }
212            } else
213                if (ipv6 == 0) {
214                    /* populate the ipv4 hash */
215                    populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);
216                } else {
217                    /* populate the ipv6 hash */
218                    populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);
219                }
220            }
221        }
222    #endif
223
224LPM Initialization
225~~~~~~~~~~~~~~~~~~
226
227The LPM object is created and loaded with the pre-configured entries read from a global array.
228
229.. code-block:: c
230
231    #if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
232
233    static void
234    setup_lpm(int socketid)
235    {
236        unsigned i;
237        int ret;
238        char s[64];
239
240        /* create the LPM table */
241
242        snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
243
244        ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, IPV4_L3FWD_LPM_MAX_RULES, 0);
245
246        if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
247            rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
248                " on socket %d\n", socketid);
249
250        /* populate the LPM table */
251
252        for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
253            /* skip unused ports */
254
255            if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0)
256                continue;
257
258            ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip,
259           	                    ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);
260
261            if (ret < 0) {
262                rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
263                        "l3fwd LPM table on socket %d\n", i, socketid);
264            }
265
266            printf("LPM: Adding route 0x%08x / %d (%d)\n",
267                (unsigned)ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);
268        }
269    }
270    #endif
271
272Packet Forwarding for Hash-based Lookups
273~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
274
275For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
276or simple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() function for IPv6 packets.
277The l3fwd_simple_forward() function provides the basic functionality for both IPv4 and IPv6 packet forwarding
278for any number of burst packets received,
279and the packet forwarding decision (that is, the identification of the output interface for the packet)
280for hash-based lookups is done by the  get_ipv4_dst_port() or get_ipv6_dst_port() function.
281The get_ipv4_dst_port() function is shown below:
282
283.. code-block:: c
284
285    static inline uint8_t
286    get_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
287    {
288        int ret = 0;
289        union ipv4_5tuple_host key;
290
291        ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
292
293        m128i data = _mm_loadu_si128(( m128i*)(ipv4_hdr));
294
295        /* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
296
297        key.xmm = _mm_and_si128(data, mask0);
298
299        /* Find destination port */
300
301        ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
302
303        return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
304    }
305
306The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.
307
308The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for continuous 4 valid ipv4 and ipv6 packets,
309they leverage the multiple buffer optimization to boost the performance of forwarding packets with the exact match on hash table.
310The key code snippet of simple_ipv4_fwd_4pkts() is shown below:
311
312.. code-block:: c
313
314    static inline void
315    simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf)
316    {
317        // ...
318
319        data[0] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
320        data[1] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
321        data[2] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
322        data[3] = _mm_loadu_si128(( m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
323
324        key[0].xmm = _mm_and_si128(data[0], mask0);
325        key[1].xmm = _mm_and_si128(data[1], mask0);
326        key[2].xmm = _mm_and_si128(data[2], mask0);
327        key[3].xmm = _mm_and_si128(data[3], mask0);
328
329        const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
330
331        rte_hash_lookup_bulk(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);
332
333        dst_port[0] = (ret[0] < 0)? portid:ipv4_l3fwd_out_if[ret[0]];
334        dst_port[1] = (ret[1] < 0)? portid:ipv4_l3fwd_out_if[ret[1]];
335        dst_port[2] = (ret[2] < 0)? portid:ipv4_l3fwd_out_if[ret[2]];
336        dst_port[3] = (ret[3] < 0)? portid:ipv4_l3fwd_out_if[ret[3]];
337
338        // ...
339    }
340
341The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.
342
343Known issue: IP packets with extensions or IP packets which are not TCP/UDP cannot work well at this mode.
344
345Packet Forwarding for LPM-based Lookups
346~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
347
348For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function,
349but the packet forwarding decision (that is, the identification of the output interface for the packet)
350for LPM-based lookups is done by the get_ipv4_dst_port() function below:
351
352.. code-block:: c
353
354    static inline uint8_t
355    get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
356    {
357        uint8_t next_hop;
358
359        return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? next_hop : portid);
360    }
361