xref: /dpdk/doc/guides/sample_app_ug/l2_forward_real_virtual.rst (revision e11bdd37745229bf26b557305c07d118c3dbaad7)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4.. _l2_fwd_app_real_and_virtual:
5
6L2 Forwarding Sample Application (in Real and Virtualized Environments)
7=======================================================================
8
9The L2 Forwarding sample application is a simple example of packet processing using
10the Data Plane Development Kit (DPDK) which
11also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.
12
13.. note::
14
15    Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used,
16    however, in later DPDK versions these sample applications have been merged.
17
18Overview
19--------
20
21The L2 Forwarding sample application, which can operate in real and virtualized environments,
22performs L2 forwarding for each packet that is received on an RX_PORT.
23The destination port is the adjacent port from the enabled portmask, that is,
24if the first four ports are enabled (portmask 0xf),
25ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
26Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:
27
28*   The source MAC address is replaced by the TX_PORT MAC address
29
30*   The destination MAC address is replaced by  02:00:00:00:00:TX_PORT_ID
31
32This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`,
33or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`.
34
35.. _figure_l2_fwd_benchmark_setup:
36
37.. figure:: img/l2_fwd_benchmark_setup.*
38
39   Performance Benchmark Setup (Basic Environment)
40
41.. _figure_l2_fwd_virtenv_benchmark_setup:
42
43.. figure:: img/l2_fwd_virtenv_benchmark_setup.*
44
45   Performance Benchmark Setup (Virtualized Environment)
46
47This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`,
48when MAC addresses updating is disabled.
49
50.. _figure_l2_fwd_vm2vm:
51
52.. figure:: img/l2_fwd_vm2vm.*
53
54   Virtual Machine to Virtual Machine communication.
55
56The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.
57
58.. _l2_fwd_vf_setup:
59
60Virtual Function Setup Instructions
61~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62
63This application can use the virtual function available in the system and
64therefore can be used in a virtual machine without passing through
65the whole Network Device into a guest machine in a virtualized scenario.
66The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.
67
68For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:
69
70.. code-block:: console
71
72    modprobe ixgbe max_vfs=2,2
73
74This command enables two Virtual Functions on each of Physical Function of the NIC,
75with two physical ports in the PCI configuration space.
76It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
77and Virtual Function 1 and 3 would belong to Physical Function 1,
78in this case enabling a total of four Virtual Functions.
79
80Compiling the Application
81-------------------------
82
83To compile the sample application see :doc:`compiling`.
84
85The application is located in the ``l2fwd`` sub-directory.
86
87Running the Application
88-----------------------
89
90The application requires a number of command line options:
91
92.. code-block:: console
93
94    ./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating
95
96where,
97
98*   p PORTMASK: A hexadecimal bitmask of the ports to configure
99
100*   q NQ: A number of queues (=ports) per lcore (default is 1)
101
102*   --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).
103
104To run the application in linux environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address
105updating enabled, issue the command:
106
107.. code-block:: console
108
109    $ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff
110
111Refer to the *DPDK Getting Started Guide* for general information on running applications
112and the Environment Abstraction Layer (EAL) options.
113
114Explanation
115-----------
116
117The following sections provide some explanation of the code.
118
119.. _l2_fwd_app_cmd_arguments:
120
121Command Line Arguments
122~~~~~~~~~~~~~~~~~~~~~~
123
124The L2 Forwarding sample application takes specific parameters,
125in addition to Environment Abstraction Layer (EAL) arguments.
126The preferred way to parse parameters is to use the getopt() function,
127since it is part of a well-defined and portable library.
128
129The parsing of arguments is done in the l2fwd_parse_args() function.
130The method of argument parsing is not described here.
131Refer to the *glibc getopt(3)* man page for details.
132
133EAL arguments are parsed first, then application-specific arguments.
134This is done at the beginning of the main() function:
135
136.. code-block:: c
137
138    /* init EAL */
139
140    ret = rte_eal_init(argc, argv);
141    if (ret < 0)
142        rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
143
144    argc -= ret;
145    argv += ret;
146
147    /* parse application arguments (after the EAL ones) */
148
149    ret = l2fwd_parse_args(argc, argv);
150    if (ret < 0)
151        rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");
152
153.. _l2_fwd_app_mbuf_init:
154
155Mbuf Pool Initialization
156~~~~~~~~~~~~~~~~~~~~~~~~
157
158Once the arguments are parsed, the mbuf pool is created.
159The mbuf pool contains a set of mbuf objects that will be used by the driver
160and the application to store network packet data:
161
162.. code-block:: c
163
164    /* create the mbuf pool */
165
166    l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
167	MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
168	rte_socket_id());
169
170    if (l2fwd_pktmbuf_pool == NULL)
171        rte_panic("Cannot init mbuf pool\n");
172
173The rte_mempool is a generic structure used to handle pools of objects.
174In this case, it is necessary to create a pool that will be used by the driver.
175The number of allocated pkt mbufs is NB_MBUF, with a data room size of
176RTE_MBUF_DEFAULT_BUF_SIZE each.
177A per-lcore cache of 32 mbufs is kept.
178The memory is allocated in NUMA socket 0,
179but it is possible to extend this code to allocate one mbuf pool per socket.
180
181The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf
182initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init().
183An advanced application may want to use the mempool API to create the
184mbuf pool with more control.
185
186.. _l2_fwd_app_dvr_init:
187
188Driver Initialization
189~~~~~~~~~~~~~~~~~~~~~
190
191The main part of the code in the main() function relates to the initialization of the driver.
192To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
193in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*.
194
195.. code-block:: c
196
197    /* reset l2fwd_dst_ports */
198
199    for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
200        l2fwd_dst_ports[portid] = 0;
201
202    last_port = 0;
203
204    /*
205     * Each logical core is assigned a dedicated TX queue on each port.
206     */
207
208    RTE_ETH_FOREACH_DEV(portid) {
209        /* skip ports that are not enabled */
210
211        if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
212           continue;
213
214        if (nb_ports_in_mask % 2) {
215            l2fwd_dst_ports[portid] = last_port;
216            l2fwd_dst_ports[last_port] = portid;
217        }
218        else
219           last_port = portid;
220
221        nb_ports_in_mask++;
222
223        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
224    }
225
226The next step is to configure the RX and TX queues.
227For each port, there is only one RX queue (only one lcore is able to poll a given port).
228The number of TX queues depends on the number of available lcores.
229The rte_eth_dev_configure() function is used to configure the number of queues for a port:
230
231.. code-block:: c
232
233    ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
234    if (ret < 0)
235        rte_exit(EXIT_FAILURE, "Cannot configure device: "
236            "err=%d, port=%u\n",
237            ret, portid);
238
239.. _l2_fwd_app_rx_init:
240
241RX Queue Initialization
242~~~~~~~~~~~~~~~~~~~~~~~
243
244The application uses one lcore to poll one or several ports, depending on the -q option,
245which specifies the number of queues per lcore.
246
247For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
248If there are 16 ports on the target (and if the portmask argument is -p ffff ),
249the application will need four lcores to poll all the ports.
250
251.. code-block:: c
252
253    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
254    if (ret < 0)
255
256        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
257            "err=%d, port=%u\n",
258            ret, portid);
259
260The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
261
262.. code-block:: c
263
264    struct lcore_queue_conf {
265        unsigned n_rx_port;
266        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
267        struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
268    } rte_cache_aligned;
269
270    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
271
272The values n_rx_port and rx_port_list[] are used in the main packet processing loop
273(see :ref:`l2_fwd_app_rx_tx_packets`).
274
275.. _l2_fwd_app_tx_init:
276
277TX Queue Initialization
278~~~~~~~~~~~~~~~~~~~~~~~
279
280Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.
281
282.. code-block:: c
283
284    /* init one TX queue on each port */
285
286    fflush(stdout);
287
288    ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
289    if (ret < 0)
290        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);
291
292The global configuration for TX queues is stored in a static structure:
293
294.. code-block:: c
295
296    static const struct rte_eth_txconf tx_conf = {
297        .tx_thresh = {
298            .pthresh = TX_PTHRESH,
299            .hthresh = TX_HTHRESH,
300            .wthresh = TX_WTHRESH,
301        },
302        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
303    };
304
305.. _l2_fwd_app_rx_tx_packets:
306
307Receive, Process and Transmit Packets
308~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
309
310In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
311This is done using the following code:
312
313.. code-block:: c
314
315    /*
316     * Read packet from RX queues
317     */
318
319    for (i = 0; i < qconf->n_rx_port; i++) {
320        portid = qconf->rx_port_list[i];
321        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,  pkts_burst, MAX_PKT_BURST);
322
323        for (j = 0; j < nb_rx; j++) {
324            m = pkts_burst[j];
325            rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);
326        }
327    }
328
329Packets are read in a burst of size MAX_PKT_BURST.
330The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
331
332Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
333The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC
334addresses updating is enabled.
335
336.. note::
337
338    In the following code, one line for getting the output port requires some explanation.
339
340During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
341a destination port is assigned that is either the next or previous enabled port from the portmask.
342Naturally, the number of ports in the portmask must be even, otherwise, the application exits.
343
344.. code-block:: c
345
346    static void
347    l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
348    {
349        struct rte_ether_hdr *eth;
350        void *tmp;
351        unsigned dst_port;
352
353        dst_port = l2fwd_dst_ports[portid];
354
355        eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
356
357        /* 02:00:00:00:00:xx */
358
359        tmp = &eth->d_addr.addr_bytes[0];
360
361        *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);
362
363        /* src addr */
364
365        rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
366
367        l2fwd_send_packet(m, (uint8_t) dst_port);
368    }
369
370Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
371For this test application, the processing is exactly the same for all packets arriving on the same RX port.
372Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
373to send all the received packets on the same TX port,
374using the burst-oriented send function, which is more efficient.
375
376However, in real-life applications (such as, L3 routing),
377packet N is not necessarily forwarded on the same port as packet N-1.
378The application is implemented to illustrate that, so the same approach can be reused in a more complex application.
379
380The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
381If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:
382
383.. code-block:: c
384
385    /* Send the packet on an output interface */
386
387    static int
388    l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
389    {
390        unsigned lcore_id, len;
391        struct lcore_queue_conf *qconf;
392
393        lcore_id = rte_lcore_id();
394        qconf = &lcore_queue_conf[lcore_id];
395        len = qconf->tx_mbufs[port].len;
396        qconf->tx_mbufs[port].m_table[len] = m;
397        len++;
398
399        /* enough pkts to be sent */
400
401        if (unlikely(len == MAX_PKT_BURST)) {
402            l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
403            len = 0;
404        }
405
406        qconf->tx_mbufs[port].len = len; return 0;
407    }
408
409To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop.
410This technique introduces some latency when there are not many packets to send,
411however it improves performance:
412
413.. code-block:: c
414
415    cur_tsc = rte_rdtsc();
416
417    /*
418     *   TX burst queue drain
419     */
420
421    diff_tsc = cur_tsc - prev_tsc;
422
423    if (unlikely(diff_tsc > drain_tsc)) {
424        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
425            if (qconf->tx_mbufs[portid].len == 0)
426                continue;
427
428            l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);
429
430            qconf->tx_mbufs[portid].len = 0;
431        }
432
433        /* if timer is enabled */
434
435        if (timer_period > 0) {
436            /* advance the timer */
437
438            timer_tsc += diff_tsc;
439
440            /* if timer has reached its timeout */
441
442            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
443                /* do this only on master core */
444
445                if (lcore_id == rte_get_master_lcore()) {
446                    print_stats();
447
448                    /* reset the timer */
449                    timer_tsc = 0;
450                }
451            }
452        }
453
454        prev_tsc = cur_tsc;
455    }
456