1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2010-2014 Intel Corporation. 3 4.. _l2_fwd_app_real_and_virtual: 5 6L2 Forwarding Sample Application (in Real and Virtualized Environments) 7======================================================================= 8 9The L2 Forwarding sample application is a simple example of packet processing using 10the Data Plane Development Kit (DPDK) which 11also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment. 12 13.. note:: 14 15 Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used, 16 however, in later DPDK versions these sample applications have been merged. 17 18Overview 19-------- 20 21The L2 Forwarding sample application, which can operate in real and virtualized environments, 22performs L2 forwarding for each packet that is received on an RX_PORT. 23The destination port is the adjacent port from the enabled portmask, that is, 24if the first four ports are enabled (portmask 0xf), 25ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other. 26Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows: 27 28* The source MAC address is replaced by the TX_PORT MAC address 29 30* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 31 32This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`, 33or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`. 34 35.. _figure_l2_fwd_benchmark_setup: 36 37.. figure:: img/l2_fwd_benchmark_setup.* 38 39 Performance Benchmark Setup (Basic Environment) 40 41.. _figure_l2_fwd_virtenv_benchmark_setup: 42 43.. figure:: img/l2_fwd_virtenv_benchmark_setup.* 44 45 Performance Benchmark Setup (Virtualized Environment) 46 47This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`, 48when MAC addresses updating is disabled. 49 50.. _figure_l2_fwd_vm2vm: 51 52.. figure:: img/l2_fwd_vm2vm.* 53 54 Virtual Machine to Virtual Machine communication. 55 56The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. 57 58.. _l2_fwd_vf_setup: 59 60Virtual Function Setup Instructions 61~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 62 63This application can use the virtual function available in the system and 64therefore can be used in a virtual machine without passing through 65the whole Network Device into a guest machine in a virtualized scenario. 66The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver. 67 68For example, in a Linux* host machine, it is possible to enable a virtual function using the following command: 69 70.. code-block:: console 71 72 modprobe ixgbe max_vfs=2,2 73 74This command enables two Virtual Functions on each of Physical Function of the NIC, 75with two physical ports in the PCI configuration space. 76It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0 77and Virtual Function 1 and 3 would belong to Physical Function 1, 78in this case enabling a total of four Virtual Functions. 79 80Compiling the Application 81------------------------- 82 83To compile the sample application see :doc:`compiling`. 84 85The application is located in the ``l2fwd`` sub-directory. 86 87Running the Application 88----------------------- 89 90The application requires a number of command line options: 91 92.. code-block:: console 93 94 ./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating 95 96where, 97 98* p PORTMASK: A hexadecimal bitmask of the ports to configure 99 100* q NQ: A number of queues (=ports) per lcore (default is 1) 101 102* --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default). 103 104To run the application in linux environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address 105updating enabled, issue the command: 106 107.. code-block:: console 108 109 $ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff 110 111Refer to the *DPDK Getting Started Guide* for general information on running applications 112and the Environment Abstraction Layer (EAL) options. 113 114Explanation 115----------- 116 117The following sections provide some explanation of the code. 118 119.. _l2_fwd_app_cmd_arguments: 120 121Command Line Arguments 122~~~~~~~~~~~~~~~~~~~~~~ 123 124The L2 Forwarding sample application takes specific parameters, 125in addition to Environment Abstraction Layer (EAL) arguments. 126The preferred way to parse parameters is to use the getopt() function, 127since it is part of a well-defined and portable library. 128 129The parsing of arguments is done in the l2fwd_parse_args() function. 130The method of argument parsing is not described here. 131Refer to the *glibc getopt(3)* man page for details. 132 133EAL arguments are parsed first, then application-specific arguments. 134This is done at the beginning of the main() function: 135 136.. code-block:: c 137 138 /* init EAL */ 139 140 ret = rte_eal_init(argc, argv); 141 if (ret < 0) 142 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 143 144 argc -= ret; 145 argv += ret; 146 147 /* parse application arguments (after the EAL ones) */ 148 149 ret = l2fwd_parse_args(argc, argv); 150 if (ret < 0) 151 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n"); 152 153.. _l2_fwd_app_mbuf_init: 154 155Mbuf Pool Initialization 156~~~~~~~~~~~~~~~~~~~~~~~~ 157 158Once the arguments are parsed, the mbuf pool is created. 159The mbuf pool contains a set of mbuf objects that will be used by the driver 160and the application to store network packet data: 161 162.. code-block:: c 163 164 /* create the mbuf pool */ 165 166 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 167 MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, 168 rte_socket_id()); 169 170 if (l2fwd_pktmbuf_pool == NULL) 171 rte_panic("Cannot init mbuf pool\n"); 172 173The rte_mempool is a generic structure used to handle pools of objects. 174In this case, it is necessary to create a pool that will be used by the driver. 175The number of allocated pkt mbufs is NB_MBUF, with a data room size of 176RTE_MBUF_DEFAULT_BUF_SIZE each. 177A per-lcore cache of 32 mbufs is kept. 178The memory is allocated in NUMA socket 0, 179but it is possible to extend this code to allocate one mbuf pool per socket. 180 181The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf 182initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init(). 183An advanced application may want to use the mempool API to create the 184mbuf pool with more control. 185 186.. _l2_fwd_app_dvr_init: 187 188Driver Initialization 189~~~~~~~~~~~~~~~~~~~~~ 190 191The main part of the code in the main() function relates to the initialization of the driver. 192To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver 193in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*. 194 195.. code-block:: c 196 197 /* reset l2fwd_dst_ports */ 198 199 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 200 l2fwd_dst_ports[portid] = 0; 201 202 last_port = 0; 203 204 /* 205 * Each logical core is assigned a dedicated TX queue on each port. 206 */ 207 208 RTE_ETH_FOREACH_DEV(portid) { 209 /* skip ports that are not enabled */ 210 211 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 212 continue; 213 214 if (nb_ports_in_mask % 2) { 215 l2fwd_dst_ports[portid] = last_port; 216 l2fwd_dst_ports[last_port] = portid; 217 } 218 else 219 last_port = portid; 220 221 nb_ports_in_mask++; 222 223 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 224 } 225 226The next step is to configure the RX and TX queues. 227For each port, there is only one RX queue (only one lcore is able to poll a given port). 228The number of TX queues depends on the number of available lcores. 229The rte_eth_dev_configure() function is used to configure the number of queues for a port: 230 231.. code-block:: c 232 233 ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf); 234 if (ret < 0) 235 rte_exit(EXIT_FAILURE, "Cannot configure device: " 236 "err=%d, port=%u\n", 237 ret, portid); 238 239.. _l2_fwd_app_rx_init: 240 241RX Queue Initialization 242~~~~~~~~~~~~~~~~~~~~~~~ 243 244The application uses one lcore to poll one or several ports, depending on the -q option, 245which specifies the number of queues per lcore. 246 247For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 248If there are 16 ports on the target (and if the portmask argument is -p ffff ), 249the application will need four lcores to poll all the ports. 250 251.. code-block:: c 252 253 ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool); 254 if (ret < 0) 255 256 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 257 "err=%d, port=%u\n", 258 ret, portid); 259 260The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 261 262.. code-block:: c 263 264 struct lcore_queue_conf { 265 unsigned n_rx_port; 266 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 267 struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS]; 268 } rte_cache_aligned; 269 270 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 271 272The values n_rx_port and rx_port_list[] are used in the main packet processing loop 273(see :ref:`l2_fwd_app_rx_tx_packets`). 274 275.. _l2_fwd_app_tx_init: 276 277TX Queue Initialization 278~~~~~~~~~~~~~~~~~~~~~~~ 279 280Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized. 281 282.. code-block:: c 283 284 /* init one TX queue on each port */ 285 286 fflush(stdout); 287 288 ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf); 289 if (ret < 0) 290 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid); 291 292The global configuration for TX queues is stored in a static structure: 293 294.. code-block:: c 295 296 static const struct rte_eth_txconf tx_conf = { 297 .tx_thresh = { 298 .pthresh = TX_PTHRESH, 299 .hthresh = TX_HTHRESH, 300 .wthresh = TX_WTHRESH, 301 }, 302 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */ 303 }; 304 305.. _l2_fwd_app_rx_tx_packets: 306 307Receive, Process and Transmit Packets 308~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 309 310In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues. 311This is done using the following code: 312 313.. code-block:: c 314 315 /* 316 * Read packet from RX queues 317 */ 318 319 for (i = 0; i < qconf->n_rx_port; i++) { 320 portid = qconf->rx_port_list[i]; 321 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); 322 323 for (j = 0; j < nb_rx; j++) { 324 m = pkts_burst[j]; 325 rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid); 326 } 327 } 328 329Packets are read in a burst of size MAX_PKT_BURST. 330The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 331 332Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. 333The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC 334addresses updating is enabled. 335 336.. note:: 337 338 In the following code, one line for getting the output port requires some explanation. 339 340During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port, 341a destination port is assigned that is either the next or previous enabled port from the portmask. 342Naturally, the number of ports in the portmask must be even, otherwise, the application exits. 343 344.. code-block:: c 345 346 static void 347 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 348 { 349 struct rte_ether_hdr *eth; 350 void *tmp; 351 unsigned dst_port; 352 353 dst_port = l2fwd_dst_ports[portid]; 354 355 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 356 357 /* 02:00:00:00:00:xx */ 358 359 tmp = ð->d_addr.addr_bytes[0]; 360 361 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40); 362 363 /* src addr */ 364 365 rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 366 367 l2fwd_send_packet(m, (uint8_t) dst_port); 368 } 369 370Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. 371For this test application, the processing is exactly the same for all packets arriving on the same RX port. 372Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop 373to send all the received packets on the same TX port, 374using the burst-oriented send function, which is more efficient. 375 376However, in real-life applications (such as, L3 routing), 377packet N is not necessarily forwarded on the same port as packet N-1. 378The application is implemented to illustrate that, so the same approach can be reused in a more complex application. 379 380The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. 381If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function: 382 383.. code-block:: c 384 385 /* Send the packet on an output interface */ 386 387 static int 388 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) 389 { 390 unsigned lcore_id, len; 391 struct lcore_queue_conf *qconf; 392 393 lcore_id = rte_lcore_id(); 394 qconf = &lcore_queue_conf[lcore_id]; 395 len = qconf->tx_mbufs[port].len; 396 qconf->tx_mbufs[port].m_table[len] = m; 397 len++; 398 399 /* enough pkts to be sent */ 400 401 if (unlikely(len == MAX_PKT_BURST)) { 402 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 403 len = 0; 404 } 405 406 qconf->tx_mbufs[port].len = len; return 0; 407 } 408 409To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop. 410This technique introduces some latency when there are not many packets to send, 411however it improves performance: 412 413.. code-block:: c 414 415 cur_tsc = rte_rdtsc(); 416 417 /* 418 * TX burst queue drain 419 */ 420 421 diff_tsc = cur_tsc - prev_tsc; 422 423 if (unlikely(diff_tsc > drain_tsc)) { 424 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 425 if (qconf->tx_mbufs[portid].len == 0) 426 continue; 427 428 l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid); 429 430 qconf->tx_mbufs[portid].len = 0; 431 } 432 433 /* if timer is enabled */ 434 435 if (timer_period > 0) { 436 /* advance the timer */ 437 438 timer_tsc += diff_tsc; 439 440 /* if timer has reached its timeout */ 441 442 if (unlikely(timer_tsc >= (uint64_t) timer_period)) { 443 /* do this only on master core */ 444 445 if (lcore_id == rte_get_master_lcore()) { 446 print_stats(); 447 448 /* reset the timer */ 449 timer_tsc = 0; 450 } 451 } 452 } 453 454 prev_tsc = cur_tsc; 455 } 456