xref: /dpdk/doc/guides/sample_app_ug/l2_forward_real_virtual.rst (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4.. _l2_fwd_app_real_and_virtual:
5
6L2 Forwarding Sample Application (in Real and Virtualized Environments)
7=======================================================================
8
9The L2 Forwarding sample application is a simple example of packet processing using
10the Data Plane Development Kit (DPDK) which
11also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.
12
13.. note::
14
15    Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used,
16    however, in later DPDK versions these sample applications have been merged.
17
18Overview
19--------
20
21The L2 Forwarding sample application, which can operate in real and virtualized environments,
22performs L2 forwarding for each packet that is received on an RX_PORT.
23The destination port is the adjacent port from the enabled portmask, that is,
24if the first four ports are enabled (portmask 0xf),
25ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
26Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:
27
28*   The source MAC address is replaced by the TX_PORT MAC address
29
30*   The destination MAC address is replaced by  02:00:00:00:00:TX_PORT_ID
31
32This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`,
33or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`.
34
35.. _figure_l2_fwd_benchmark_setup:
36
37.. figure:: img/l2_fwd_benchmark_setup.*
38
39   Performance Benchmark Setup (Basic Environment)
40
41.. _figure_l2_fwd_virtenv_benchmark_setup:
42
43.. figure:: img/l2_fwd_virtenv_benchmark_setup.*
44
45   Performance Benchmark Setup (Virtualized Environment)
46
47This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`,
48when MAC addresses updating is disabled.
49
50.. _figure_l2_fwd_vm2vm:
51
52.. figure:: img/l2_fwd_vm2vm.*
53
54   Virtual Machine to Virtual Machine communication.
55
56The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.
57
58.. _l2_fwd_vf_setup:
59
60Virtual Function Setup Instructions
61~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62
63This application can use the virtual function available in the system and
64therefore can be used in a virtual machine without passing through
65the whole Network Device into a guest machine in a virtualized scenario.
66The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.
67
68For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:
69
70.. code-block:: console
71
72    modprobe ixgbe max_vfs=2,2
73
74This command enables two Virtual Functions on each of Physical Function of the NIC,
75with two physical ports in the PCI configuration space.
76It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
77and Virtual Function 1 and 3 would belong to Physical Function 1,
78in this case enabling a total of four Virtual Functions.
79
80Compiling the Application
81-------------------------
82
83To compile the sample application see :doc:`compiling`.
84
85The application is located in the ``l2fwd`` sub-directory.
86
87Running the Application
88-----------------------
89
90The application requires a number of command line options:
91
92.. code-block:: console
93
94    ./<build_dir>/examples/dpdk-l2fwd [EAL options] -- -p PORTMASK
95                                   [-q NQ]
96                                   --[no-]mac-updating
97                                   [--portmap="(port, port)[,(port, port)]"]
98
99where,
100
101*   p PORTMASK: A hexadecimal bitmask of the ports to configure
102
103*   q NQ: A number of queues (=ports) per lcore (default is 1)
104
105*   --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default)
106
107*   --portmap="(port,port)[,(port,port)]": Determines forwarding ports mapping.
108
109To run the application in linux environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address
110updating enabled, issue the command:
111
112.. code-block:: console
113
114    $ ./<build_dir>/examples/dpdk-l2fwd -l 0-3 -n 4 -- -q 8 -p ffff
115
116To run the application in linux environment with 4 lcores, 4 ports, 8 RX queues
117per lcore, to forward RX traffic of ports 0 & 1 on ports 2 & 3 respectively and
118vice versa, issue the command:
119
120.. code-block:: console
121
122    $ ./<build_dir>/examples/dpdk-l2fwd -l 0-3 -n 4 -- -q 8 -p f --portmap="(0,2)(1,3)"
123
124Refer to the *DPDK Getting Started Guide* for general information on running applications
125and the Environment Abstraction Layer (EAL) options.
126
127Explanation
128-----------
129
130The following sections provide some explanation of the code.
131
132.. _l2_fwd_app_cmd_arguments:
133
134Command Line Arguments
135~~~~~~~~~~~~~~~~~~~~~~
136
137The L2 Forwarding sample application takes specific parameters,
138in addition to Environment Abstraction Layer (EAL) arguments.
139The preferred way to parse parameters is to use the getopt() function,
140since it is part of a well-defined and portable library.
141
142The parsing of arguments is done in the l2fwd_parse_args() function.
143The method of argument parsing is not described here.
144Refer to the *glibc getopt(3)* man page for details.
145
146EAL arguments are parsed first, then application-specific arguments.
147This is done at the beginning of the main() function:
148
149.. code-block:: c
150
151    /* init EAL */
152
153    ret = rte_eal_init(argc, argv);
154    if (ret < 0)
155        rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
156
157    argc -= ret;
158    argv += ret;
159
160    /* parse application arguments (after the EAL ones) */
161
162    ret = l2fwd_parse_args(argc, argv);
163    if (ret < 0)
164        rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");
165
166.. _l2_fwd_app_mbuf_init:
167
168Mbuf Pool Initialization
169~~~~~~~~~~~~~~~~~~~~~~~~
170
171Once the arguments are parsed, the mbuf pool is created.
172The mbuf pool contains a set of mbuf objects that will be used by the driver
173and the application to store network packet data:
174
175.. code-block:: c
176
177    /* create the mbuf pool */
178
179    l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
180	MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
181	rte_socket_id());
182
183    if (l2fwd_pktmbuf_pool == NULL)
184        rte_panic("Cannot init mbuf pool\n");
185
186The rte_mempool is a generic structure used to handle pools of objects.
187In this case, it is necessary to create a pool that will be used by the driver.
188The number of allocated pkt mbufs is NB_MBUF, with a data room size of
189RTE_MBUF_DEFAULT_BUF_SIZE each.
190A per-lcore cache of 32 mbufs is kept.
191The memory is allocated in NUMA socket 0,
192but it is possible to extend this code to allocate one mbuf pool per socket.
193
194The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf
195initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init().
196An advanced application may want to use the mempool API to create the
197mbuf pool with more control.
198
199.. _l2_fwd_app_dvr_init:
200
201Driver Initialization
202~~~~~~~~~~~~~~~~~~~~~
203
204The main part of the code in the main() function relates to the initialization of the driver.
205To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
206in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*.
207
208.. code-block:: c
209
210    /* reset l2fwd_dst_ports */
211
212    for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
213        l2fwd_dst_ports[portid] = 0;
214
215    last_port = 0;
216
217    /*
218     * Each logical core is assigned a dedicated TX queue on each port.
219     */
220
221    RTE_ETH_FOREACH_DEV(portid) {
222        /* skip ports that are not enabled */
223
224        if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
225           continue;
226
227        if (nb_ports_in_mask % 2) {
228            l2fwd_dst_ports[portid] = last_port;
229            l2fwd_dst_ports[last_port] = portid;
230        }
231        else
232           last_port = portid;
233
234        nb_ports_in_mask++;
235
236        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
237    }
238
239The next step is to configure the RX and TX queues.
240For each port, there is only one RX queue (only one lcore is able to poll a given port).
241The number of TX queues depends on the number of available lcores.
242The rte_eth_dev_configure() function is used to configure the number of queues for a port:
243
244.. code-block:: c
245
246    ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
247    if (ret < 0)
248        rte_exit(EXIT_FAILURE, "Cannot configure device: "
249            "err=%d, port=%u\n",
250            ret, portid);
251
252.. _l2_fwd_app_rx_init:
253
254RX Queue Initialization
255~~~~~~~~~~~~~~~~~~~~~~~
256
257The application uses one lcore to poll one or several ports, depending on the -q option,
258which specifies the number of queues per lcore.
259
260For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
261If there are 16 ports on the target (and if the portmask argument is -p ffff ),
262the application will need four lcores to poll all the ports.
263
264.. code-block:: c
265
266    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
267    if (ret < 0)
268
269        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
270            "err=%d, port=%u\n",
271            ret, portid);
272
273The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
274
275.. code-block:: c
276
277    struct lcore_queue_conf {
278        unsigned n_rx_port;
279        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
280        struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
281    } rte_cache_aligned;
282
283    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
284
285The values n_rx_port and rx_port_list[] are used in the main packet processing loop
286(see :ref:`l2_fwd_app_rx_tx_packets`).
287
288.. _l2_fwd_app_tx_init:
289
290TX Queue Initialization
291~~~~~~~~~~~~~~~~~~~~~~~
292
293Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.
294
295.. code-block:: c
296
297    /* init one TX queue on each port */
298
299    fflush(stdout);
300
301    ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
302    if (ret < 0)
303        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);
304
305The global configuration for TX queues is stored in a static structure:
306
307.. code-block:: c
308
309    static const struct rte_eth_txconf tx_conf = {
310        .tx_thresh = {
311            .pthresh = TX_PTHRESH,
312            .hthresh = TX_HTHRESH,
313            .wthresh = TX_WTHRESH,
314        },
315        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
316    };
317
318.. _l2_fwd_app_rx_tx_packets:
319
320Receive, Process and Transmit Packets
321~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
322
323In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
324This is done using the following code:
325
326.. code-block:: c
327
328    /*
329     * Read packet from RX queues
330     */
331
332    for (i = 0; i < qconf->n_rx_port; i++) {
333        portid = qconf->rx_port_list[i];
334        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,  pkts_burst, MAX_PKT_BURST);
335
336        for (j = 0; j < nb_rx; j++) {
337            m = pkts_burst[j];
338            rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);
339        }
340    }
341
342Packets are read in a burst of size MAX_PKT_BURST.
343The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
344
345Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
346The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC
347addresses updating is enabled.
348
349.. note::
350
351    In the following code, one line for getting the output port requires some explanation.
352
353During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
354a destination port is assigned that is either the next or previous enabled port from the portmask.
355Naturally, the number of ports in the portmask must be even, otherwise, the application exits.
356
357.. code-block:: c
358
359    static void
360    l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
361    {
362        struct rte_ether_hdr *eth;
363        void *tmp;
364        unsigned dst_port;
365
366        dst_port = l2fwd_dst_ports[portid];
367
368        eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
369
370        /* 02:00:00:00:00:xx */
371
372        tmp = &eth->d_addr.addr_bytes[0];
373
374        *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);
375
376        /* src addr */
377
378        rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
379
380        l2fwd_send_packet(m, (uint8_t) dst_port);
381    }
382
383Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
384For this test application, the processing is exactly the same for all packets arriving on the same RX port.
385Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
386to send all the received packets on the same TX port,
387using the burst-oriented send function, which is more efficient.
388
389However, in real-life applications (such as, L3 routing),
390packet N is not necessarily forwarded on the same port as packet N-1.
391The application is implemented to illustrate that, so the same approach can be reused in a more complex application.
392
393The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
394If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:
395
396.. code-block:: c
397
398    /* Send the packet on an output interface */
399
400    static int
401    l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
402    {
403        unsigned lcore_id, len;
404        struct lcore_queue_conf *qconf;
405
406        lcore_id = rte_lcore_id();
407        qconf = &lcore_queue_conf[lcore_id];
408        len = qconf->tx_mbufs[port].len;
409        qconf->tx_mbufs[port].m_table[len] = m;
410        len++;
411
412        /* enough pkts to be sent */
413
414        if (unlikely(len == MAX_PKT_BURST)) {
415            l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
416            len = 0;
417        }
418
419        qconf->tx_mbufs[port].len = len; return 0;
420    }
421
422To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop.
423This technique introduces some latency when there are not many packets to send,
424however it improves performance:
425
426.. code-block:: c
427
428    cur_tsc = rte_rdtsc();
429
430    /*
431     *   TX burst queue drain
432     */
433
434    diff_tsc = cur_tsc - prev_tsc;
435
436    if (unlikely(diff_tsc > drain_tsc)) {
437        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
438            if (qconf->tx_mbufs[portid].len == 0)
439                continue;
440
441            l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);
442
443            qconf->tx_mbufs[portid].len = 0;
444        }
445
446        /* if timer is enabled */
447
448        if (timer_period > 0) {
449            /* advance the timer */
450
451            timer_tsc += diff_tsc;
452
453            /* if timer has reached its timeout */
454
455            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
456                /* do this only on main core */
457                if (lcore_id == rte_get_main_lcore()) {
458                    print_stats();
459
460                    /* reset the timer */
461                    timer_tsc = 0;
462                }
463            }
464        }
465
466        prev_tsc = cur_tsc;
467    }
468