1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2010-2014 Intel Corporation. 3 4.. _l2_fwd_app_real_and_virtual: 5 6L2 Forwarding Sample Application (in Real and Virtualized Environments) 7======================================================================= 8 9The L2 Forwarding sample application is a simple example of packet processing using 10the Data Plane Development Kit (DPDK) which 11also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment. 12 13.. note:: 14 15 Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used, 16 however, in later DPDK versions these sample applications have been merged. 17 18Overview 19-------- 20 21The L2 Forwarding sample application, which can operate in real and virtualized environments, 22performs L2 forwarding for each packet that is received on an RX_PORT. 23The destination port is the adjacent port from the enabled portmask, that is, 24if the first four ports are enabled (portmask 0xf), 25ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other. 26Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows: 27 28* The source MAC address is replaced by the TX_PORT MAC address 29 30* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 31 32This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`, 33or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`. 34 35.. _figure_l2_fwd_benchmark_setup: 36 37.. figure:: img/l2_fwd_benchmark_setup.* 38 39 Performance Benchmark Setup (Basic Environment) 40 41.. _figure_l2_fwd_virtenv_benchmark_setup: 42 43.. figure:: img/l2_fwd_virtenv_benchmark_setup.* 44 45 Performance Benchmark Setup (Virtualized Environment) 46 47This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`, 48when MAC addresses updating is disabled. 49 50.. _figure_l2_fwd_vm2vm: 51 52.. figure:: img/l2_fwd_vm2vm.* 53 54 Virtual Machine to Virtual Machine communication. 55 56The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. 57 58.. _l2_fwd_vf_setup: 59 60Virtual Function Setup Instructions 61~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 62 63This application can use the virtual function available in the system and 64therefore can be used in a virtual machine without passing through 65the whole Network Device into a guest machine in a virtualized scenario. 66The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver. 67 68For example, in a Linux* host machine, it is possible to enable a virtual function using the following command: 69 70.. code-block:: console 71 72 modprobe ixgbe max_vfs=2,2 73 74This command enables two Virtual Functions on each of Physical Function of the NIC, 75with two physical ports in the PCI configuration space. 76It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0 77and Virtual Function 1 and 3 would belong to Physical Function 1, 78in this case enabling a total of four Virtual Functions. 79 80Compiling the Application 81------------------------- 82 83To compile the sample application see :doc:`compiling`. 84 85The application is located in the ``l2fwd`` sub-directory. 86 87Running the Application 88----------------------- 89 90The application requires a number of command line options: 91 92.. code-block:: console 93 94 ./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating 95 96where, 97 98* p PORTMASK: A hexadecimal bitmask of the ports to configure 99 100* q NQ: A number of queues (=ports) per lcore (default is 1) 101 102* --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default). 103 104To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address 105updating enabled, issue the command: 106 107.. code-block:: console 108 109 $ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff 110 111Refer to the *DPDK Getting Started Guide* for general information on running applications 112and the Environment Abstraction Layer (EAL) options. 113 114Explanation 115----------- 116 117The following sections provide some explanation of the code. 118 119.. _l2_fwd_app_cmd_arguments: 120 121Command Line Arguments 122~~~~~~~~~~~~~~~~~~~~~~ 123 124The L2 Forwarding sample application takes specific parameters, 125in addition to Environment Abstraction Layer (EAL) arguments. 126The preferred way to parse parameters is to use the getopt() function, 127since it is part of a well-defined and portable library. 128 129The parsing of arguments is done in the l2fwd_parse_args() function. 130The method of argument parsing is not described here. 131Refer to the *glibc getopt(3)* man page for details. 132 133EAL arguments are parsed first, then application-specific arguments. 134This is done at the beginning of the main() function: 135 136.. code-block:: c 137 138 /* init EAL */ 139 140 ret = rte_eal_init(argc, argv); 141 if (ret < 0) 142 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 143 144 argc -= ret; 145 argv += ret; 146 147 /* parse application arguments (after the EAL ones) */ 148 149 ret = l2fwd_parse_args(argc, argv); 150 if (ret < 0) 151 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n"); 152 153.. _l2_fwd_app_mbuf_init: 154 155Mbuf Pool Initialization 156~~~~~~~~~~~~~~~~~~~~~~~~ 157 158Once the arguments are parsed, the mbuf pool is created. 159The mbuf pool contains a set of mbuf objects that will be used by the driver 160and the application to store network packet data: 161 162.. code-block:: c 163 164 /* create the mbuf pool */ 165 166 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 167 MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, 168 rte_socket_id()); 169 170 if (l2fwd_pktmbuf_pool == NULL) 171 rte_panic("Cannot init mbuf pool\n"); 172 173The rte_mempool is a generic structure used to handle pools of objects. 174In this case, it is necessary to create a pool that will be used by the driver. 175The number of allocated pkt mbufs is NB_MBUF, with a data room size of 176RTE_MBUF_DEFAULT_BUF_SIZE each. 177A per-lcore cache of 32 mbufs is kept. 178The memory is allocated in NUMA socket 0, 179but it is possible to extend this code to allocate one mbuf pool per socket. 180 181The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf 182initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init(). 183An advanced application may want to use the mempool API to create the 184mbuf pool with more control. 185 186.. _l2_fwd_app_dvr_init: 187 188Driver Initialization 189~~~~~~~~~~~~~~~~~~~~~ 190 191The main part of the code in the main() function relates to the initialization of the driver. 192To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver 193in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*. 194 195.. code-block:: c 196 197 if (rte_pci_probe() < 0) 198 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 199 200 nb_ports = rte_eth_dev_count(); 201 202 if (nb_ports == 0) 203 rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n"); 204 205 /* reset l2fwd_dst_ports */ 206 207 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 208 l2fwd_dst_ports[portid] = 0; 209 210 last_port = 0; 211 212 /* 213 * Each logical core is assigned a dedicated TX queue on each port. 214 */ 215 216 RTE_ETH_FOREACH_DEV(portid) { 217 /* skip ports that are not enabled */ 218 219 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 220 continue; 221 222 if (nb_ports_in_mask % 2) { 223 l2fwd_dst_ports[portid] = last_port; 224 l2fwd_dst_ports[last_port] = portid; 225 } 226 else 227 last_port = portid; 228 229 nb_ports_in_mask++; 230 231 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 232 } 233 234Observe that: 235 236* rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver. 237 238* rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices. 239 240The next step is to configure the RX and TX queues. 241For each port, there is only one RX queue (only one lcore is able to poll a given port). 242The number of TX queues depends on the number of available lcores. 243The rte_eth_dev_configure() function is used to configure the number of queues for a port: 244 245.. code-block:: c 246 247 ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf); 248 if (ret < 0) 249 rte_exit(EXIT_FAILURE, "Cannot configure device: " 250 "err=%d, port=%u\n", 251 ret, portid); 252 253The global configuration is stored in a static structure: 254 255.. code-block:: c 256 257 static const struct rte_eth_conf port_conf = { 258 .rxmode = { 259 .split_hdr_size = 0, 260 .header_split = 0, /**< Header Split disabled */ 261 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 262 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 263 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 264 .hw_strip_crc= 0, /**< CRC stripped by hardware */ 265 }, 266 267 .txmode = { 268 .mq_mode = ETH_DCB_NONE 269 }, 270 }; 271 272.. _l2_fwd_app_rx_init: 273 274RX Queue Initialization 275~~~~~~~~~~~~~~~~~~~~~~~ 276 277The application uses one lcore to poll one or several ports, depending on the -q option, 278which specifies the number of queues per lcore. 279 280For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 281If there are 16 ports on the target (and if the portmask argument is -p ffff ), 282the application will need four lcores to poll all the ports. 283 284.. code-block:: c 285 286 ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool); 287 if (ret < 0) 288 289 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 290 "err=%d, port=%u\n", 291 ret, portid); 292 293The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 294 295.. code-block:: c 296 297 struct lcore_queue_conf { 298 unsigned n_rx_port; 299 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 300 struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS]; 301 } rte_cache_aligned; 302 303 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 304 305The values n_rx_port and rx_port_list[] are used in the main packet processing loop 306(see :ref:`l2_fwd_app_rx_tx_packets`). 307 308The global configuration for the RX queues is stored in a static structure: 309 310.. code-block:: c 311 312 static const struct rte_eth_rxconf rx_conf = { 313 .rx_thresh = { 314 .pthresh = RX_PTHRESH, 315 .hthresh = RX_HTHRESH, 316 .wthresh = RX_WTHRESH, 317 }, 318 }; 319 320.. _l2_fwd_app_tx_init: 321 322TX Queue Initialization 323~~~~~~~~~~~~~~~~~~~~~~~ 324 325Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized. 326 327.. code-block:: c 328 329 /* init one TX queue on each port */ 330 331 fflush(stdout); 332 333 ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf); 334 if (ret < 0) 335 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid); 336 337The global configuration for TX queues is stored in a static structure: 338 339.. code-block:: c 340 341 static const struct rte_eth_txconf tx_conf = { 342 .tx_thresh = { 343 .pthresh = TX_PTHRESH, 344 .hthresh = TX_HTHRESH, 345 .wthresh = TX_WTHRESH, 346 }, 347 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */ 348 }; 349 350.. _l2_fwd_app_rx_tx_packets: 351 352Receive, Process and Transmit Packets 353~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 354 355In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues. 356This is done using the following code: 357 358.. code-block:: c 359 360 /* 361 * Read packet from RX queues 362 */ 363 364 for (i = 0; i < qconf->n_rx_port; i++) { 365 portid = qconf->rx_port_list[i]; 366 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); 367 368 for (j = 0; j < nb_rx; j++) { 369 m = pkts_burst[j]; 370 rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid); 371 } 372 } 373 374Packets are read in a burst of size MAX_PKT_BURST. 375The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 376 377Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. 378The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC 379addresses updating is enabled. 380 381.. note:: 382 383 In the following code, one line for getting the output port requires some explanation. 384 385During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port, 386a destination port is assigned that is either the next or previous enabled port from the portmask. 387Naturally, the number of ports in the portmask must be even, otherwise, the application exits. 388 389.. code-block:: c 390 391 static void 392 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 393 { 394 struct ether_hdr *eth; 395 void *tmp; 396 unsigned dst_port; 397 398 dst_port = l2fwd_dst_ports[portid]; 399 400 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 401 402 /* 02:00:00:00:00:xx */ 403 404 tmp = ð->d_addr.addr_bytes[0]; 405 406 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40); 407 408 /* src addr */ 409 410 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 411 412 l2fwd_send_packet(m, (uint8_t) dst_port); 413 } 414 415Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. 416For this test application, the processing is exactly the same for all packets arriving on the same RX port. 417Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop 418to send all the received packets on the same TX port, 419using the burst-oriented send function, which is more efficient. 420 421However, in real-life applications (such as, L3 routing), 422packet N is not necessarily forwarded on the same port as packet N-1. 423The application is implemented to illustrate that, so the same approach can be reused in a more complex application. 424 425The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. 426If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function: 427 428.. code-block:: c 429 430 /* Send the packet on an output interface */ 431 432 static int 433 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) 434 { 435 unsigned lcore_id, len; 436 struct lcore_queue_conf *qconf; 437 438 lcore_id = rte_lcore_id(); 439 qconf = &lcore_queue_conf[lcore_id]; 440 len = qconf->tx_mbufs[port].len; 441 qconf->tx_mbufs[port].m_table[len] = m; 442 len++; 443 444 /* enough pkts to be sent */ 445 446 if (unlikely(len == MAX_PKT_BURST)) { 447 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 448 len = 0; 449 } 450 451 qconf->tx_mbufs[port].len = len; return 0; 452 } 453 454To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop. 455This technique introduces some latency when there are not many packets to send, 456however it improves performance: 457 458.. code-block:: c 459 460 cur_tsc = rte_rdtsc(); 461 462 /* 463 * TX burst queue drain 464 */ 465 466 diff_tsc = cur_tsc - prev_tsc; 467 468 if (unlikely(diff_tsc > drain_tsc)) { 469 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 470 if (qconf->tx_mbufs[portid].len == 0) 471 continue; 472 473 l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid); 474 475 qconf->tx_mbufs[portid].len = 0; 476 } 477 478 /* if timer is enabled */ 479 480 if (timer_period > 0) { 481 /* advance the timer */ 482 483 timer_tsc += diff_tsc; 484 485 /* if timer has reached its timeout */ 486 487 if (unlikely(timer_tsc >= (uint64_t) timer_period)) { 488 /* do this only on master core */ 489 490 if (lcore_id == rte_get_master_lcore()) { 491 print_stats(); 492 493 /* reset the timer */ 494 timer_tsc = 0; 495 } 496 } 497 } 498 499 prev_tsc = cur_tsc; 500 } 501