xref: /dpdk/doc/guides/sample_app_ug/l2_forward_real_virtual.rst (revision 8728ccf37615904cf23fb8763895b05c9a3c6b0c)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4.. _l2_fwd_app_real_and_virtual:
5
6L2 Forwarding Sample Application (in Real and Virtualized Environments)
7=======================================================================
8
9The L2 Forwarding sample application is a simple example of packet processing using
10the Data Plane Development Kit (DPDK) which
11also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.
12
13.. note::
14
15    Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used,
16    however, in later DPDK versions these sample applications have been merged.
17
18Overview
19--------
20
21The L2 Forwarding sample application, which can operate in real and virtualized environments,
22performs L2 forwarding for each packet that is received on an RX_PORT.
23The destination port is the adjacent port from the enabled portmask, that is,
24if the first four ports are enabled (portmask 0xf),
25ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
26Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:
27
28*   The source MAC address is replaced by the TX_PORT MAC address
29
30*   The destination MAC address is replaced by  02:00:00:00:00:TX_PORT_ID
31
32This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`,
33or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`.
34
35.. _figure_l2_fwd_benchmark_setup:
36
37.. figure:: img/l2_fwd_benchmark_setup.*
38
39   Performance Benchmark Setup (Basic Environment)
40
41.. _figure_l2_fwd_virtenv_benchmark_setup:
42
43.. figure:: img/l2_fwd_virtenv_benchmark_setup.*
44
45   Performance Benchmark Setup (Virtualized Environment)
46
47This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`,
48when MAC addresses updating is disabled.
49
50.. _figure_l2_fwd_vm2vm:
51
52.. figure:: img/l2_fwd_vm2vm.*
53
54   Virtual Machine to Virtual Machine communication.
55
56The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.
57
58.. _l2_fwd_vf_setup:
59
60Virtual Function Setup Instructions
61~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62
63This application can use the virtual function available in the system and
64therefore can be used in a virtual machine without passing through
65the whole Network Device into a guest machine in a virtualized scenario.
66The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.
67
68For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:
69
70.. code-block:: console
71
72    modprobe ixgbe max_vfs=2,2
73
74This command enables two Virtual Functions on each of Physical Function of the NIC,
75with two physical ports in the PCI configuration space.
76It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
77and Virtual Function 1 and 3 would belong to Physical Function 1,
78in this case enabling a total of four Virtual Functions.
79
80Compiling the Application
81-------------------------
82
83To compile the sample application see :doc:`compiling`.
84
85The application is located in the ``l2fwd`` sub-directory.
86
87Running the Application
88-----------------------
89
90The application requires a number of command line options:
91
92.. code-block:: console
93
94    ./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating
95
96where,
97
98*   p PORTMASK: A hexadecimal bitmask of the ports to configure
99
100*   q NQ: A number of queues (=ports) per lcore (default is 1)
101
102*   --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).
103
104To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address
105updating enabled, issue the command:
106
107.. code-block:: console
108
109    $ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff
110
111Refer to the *DPDK Getting Started Guide* for general information on running applications
112and the Environment Abstraction Layer (EAL) options.
113
114Explanation
115-----------
116
117The following sections provide some explanation of the code.
118
119.. _l2_fwd_app_cmd_arguments:
120
121Command Line Arguments
122~~~~~~~~~~~~~~~~~~~~~~
123
124The L2 Forwarding sample application takes specific parameters,
125in addition to Environment Abstraction Layer (EAL) arguments.
126The preferred way to parse parameters is to use the getopt() function,
127since it is part of a well-defined and portable library.
128
129The parsing of arguments is done in the l2fwd_parse_args() function.
130The method of argument parsing is not described here.
131Refer to the *glibc getopt(3)* man page for details.
132
133EAL arguments are parsed first, then application-specific arguments.
134This is done at the beginning of the main() function:
135
136.. code-block:: c
137
138    /* init EAL */
139
140    ret = rte_eal_init(argc, argv);
141    if (ret < 0)
142        rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
143
144    argc -= ret;
145    argv += ret;
146
147    /* parse application arguments (after the EAL ones) */
148
149    ret = l2fwd_parse_args(argc, argv);
150    if (ret < 0)
151        rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");
152
153.. _l2_fwd_app_mbuf_init:
154
155Mbuf Pool Initialization
156~~~~~~~~~~~~~~~~~~~~~~~~
157
158Once the arguments are parsed, the mbuf pool is created.
159The mbuf pool contains a set of mbuf objects that will be used by the driver
160and the application to store network packet data:
161
162.. code-block:: c
163
164    /* create the mbuf pool */
165
166    l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
167	MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
168	rte_socket_id());
169
170    if (l2fwd_pktmbuf_pool == NULL)
171        rte_panic("Cannot init mbuf pool\n");
172
173The rte_mempool is a generic structure used to handle pools of objects.
174In this case, it is necessary to create a pool that will be used by the driver.
175The number of allocated pkt mbufs is NB_MBUF, with a data room size of
176RTE_MBUF_DEFAULT_BUF_SIZE each.
177A per-lcore cache of 32 mbufs is kept.
178The memory is allocated in NUMA socket 0,
179but it is possible to extend this code to allocate one mbuf pool per socket.
180
181The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf
182initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init().
183An advanced application may want to use the mempool API to create the
184mbuf pool with more control.
185
186.. _l2_fwd_app_dvr_init:
187
188Driver Initialization
189~~~~~~~~~~~~~~~~~~~~~
190
191The main part of the code in the main() function relates to the initialization of the driver.
192To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
193in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*.
194
195.. code-block:: c
196
197    if (rte_pci_probe() < 0)
198        rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
199
200    nb_ports = rte_eth_dev_count();
201
202    if (nb_ports == 0)
203        rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");
204
205    /* reset l2fwd_dst_ports */
206
207    for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
208        l2fwd_dst_ports[portid] = 0;
209
210    last_port = 0;
211
212    /*
213     * Each logical core is assigned a dedicated TX queue on each port.
214     */
215
216    RTE_ETH_FOREACH_DEV(portid) {
217        /* skip ports that are not enabled */
218
219        if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
220           continue;
221
222        if (nb_ports_in_mask % 2) {
223            l2fwd_dst_ports[portid] = last_port;
224            l2fwd_dst_ports[last_port] = portid;
225        }
226        else
227           last_port = portid;
228
229        nb_ports_in_mask++;
230
231        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
232    }
233
234Observe that:
235
236*   rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver.
237
238*   rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices.
239
240The next step is to configure the RX and TX queues.
241For each port, there is only one RX queue (only one lcore is able to poll a given port).
242The number of TX queues depends on the number of available lcores.
243The rte_eth_dev_configure() function is used to configure the number of queues for a port:
244
245.. code-block:: c
246
247    ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
248    if (ret < 0)
249        rte_exit(EXIT_FAILURE, "Cannot configure device: "
250            "err=%d, port=%u\n",
251            ret, portid);
252
253The global configuration is stored in a static structure:
254
255.. code-block:: c
256
257    static const struct rte_eth_conf port_conf = {
258        .rxmode = {
259            .split_hdr_size = 0,
260            .header_split = 0,   /**< Header Split disabled */
261            .hw_ip_checksum = 0, /**< IP checksum offload disabled */
262            .hw_vlan_filter = 0, /**< VLAN filtering disabled */
263            .jumbo_frame = 0,    /**< Jumbo Frame Support disabled */
264            .hw_strip_crc= 0,    /**< CRC stripped by hardware */
265        },
266
267        .txmode = {
268            .mq_mode = ETH_DCB_NONE
269        },
270    };
271
272.. _l2_fwd_app_rx_init:
273
274RX Queue Initialization
275~~~~~~~~~~~~~~~~~~~~~~~
276
277The application uses one lcore to poll one or several ports, depending on the -q option,
278which specifies the number of queues per lcore.
279
280For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
281If there are 16 ports on the target (and if the portmask argument is -p ffff ),
282the application will need four lcores to poll all the ports.
283
284.. code-block:: c
285
286    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
287    if (ret < 0)
288
289        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
290            "err=%d, port=%u\n",
291            ret, portid);
292
293The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
294
295.. code-block:: c
296
297    struct lcore_queue_conf {
298        unsigned n_rx_port;
299        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
300        struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
301    } rte_cache_aligned;
302
303    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
304
305The values n_rx_port and rx_port_list[] are used in the main packet processing loop
306(see :ref:`l2_fwd_app_rx_tx_packets`).
307
308The global configuration for the RX queues is stored in a static structure:
309
310.. code-block:: c
311
312    static const struct rte_eth_rxconf rx_conf = {
313        .rx_thresh = {
314            .pthresh = RX_PTHRESH,
315            .hthresh = RX_HTHRESH,
316            .wthresh = RX_WTHRESH,
317        },
318    };
319
320.. _l2_fwd_app_tx_init:
321
322TX Queue Initialization
323~~~~~~~~~~~~~~~~~~~~~~~
324
325Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.
326
327.. code-block:: c
328
329    /* init one TX queue on each port */
330
331    fflush(stdout);
332
333    ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
334    if (ret < 0)
335        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);
336
337The global configuration for TX queues is stored in a static structure:
338
339.. code-block:: c
340
341    static const struct rte_eth_txconf tx_conf = {
342        .tx_thresh = {
343            .pthresh = TX_PTHRESH,
344            .hthresh = TX_HTHRESH,
345            .wthresh = TX_WTHRESH,
346        },
347        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
348    };
349
350.. _l2_fwd_app_rx_tx_packets:
351
352Receive, Process and Transmit Packets
353~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
354
355In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
356This is done using the following code:
357
358.. code-block:: c
359
360    /*
361     * Read packet from RX queues
362     */
363
364    for (i = 0; i < qconf->n_rx_port; i++) {
365        portid = qconf->rx_port_list[i];
366        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,  pkts_burst, MAX_PKT_BURST);
367
368        for (j = 0; j < nb_rx; j++) {
369            m = pkts_burst[j];
370            rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);
371        }
372    }
373
374Packets are read in a burst of size MAX_PKT_BURST.
375The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
376
377Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
378The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC
379addresses updating is enabled.
380
381.. note::
382
383    In the following code, one line for getting the output port requires some explanation.
384
385During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
386a destination port is assigned that is either the next or previous enabled port from the portmask.
387Naturally, the number of ports in the portmask must be even, otherwise, the application exits.
388
389.. code-block:: c
390
391    static void
392    l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
393    {
394        struct ether_hdr *eth;
395        void *tmp;
396        unsigned dst_port;
397
398        dst_port = l2fwd_dst_ports[portid];
399
400        eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
401
402        /* 02:00:00:00:00:xx */
403
404        tmp = &eth->d_addr.addr_bytes[0];
405
406        *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);
407
408        /* src addr */
409
410        ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
411
412        l2fwd_send_packet(m, (uint8_t) dst_port);
413    }
414
415Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
416For this test application, the processing is exactly the same for all packets arriving on the same RX port.
417Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
418to send all the received packets on the same TX port,
419using the burst-oriented send function, which is more efficient.
420
421However, in real-life applications (such as, L3 routing),
422packet N is not necessarily forwarded on the same port as packet N-1.
423The application is implemented to illustrate that, so the same approach can be reused in a more complex application.
424
425The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
426If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:
427
428.. code-block:: c
429
430    /* Send the packet on an output interface */
431
432    static int
433    l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
434    {
435        unsigned lcore_id, len;
436        struct lcore_queue_conf *qconf;
437
438        lcore_id = rte_lcore_id();
439        qconf = &lcore_queue_conf[lcore_id];
440        len = qconf->tx_mbufs[port].len;
441        qconf->tx_mbufs[port].m_table[len] = m;
442        len++;
443
444        /* enough pkts to be sent */
445
446        if (unlikely(len == MAX_PKT_BURST)) {
447            l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
448            len = 0;
449        }
450
451        qconf->tx_mbufs[port].len = len; return 0;
452    }
453
454To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop.
455This technique introduces some latency when there are not many packets to send,
456however it improves performance:
457
458.. code-block:: c
459
460    cur_tsc = rte_rdtsc();
461
462    /*
463     *   TX burst queue drain
464     */
465
466    diff_tsc = cur_tsc - prev_tsc;
467
468    if (unlikely(diff_tsc > drain_tsc)) {
469        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
470            if (qconf->tx_mbufs[portid].len == 0)
471                continue;
472
473            l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);
474
475            qconf->tx_mbufs[portid].len = 0;
476        }
477
478        /* if timer is enabled */
479
480        if (timer_period > 0) {
481            /* advance the timer */
482
483            timer_tsc += diff_tsc;
484
485            /* if timer has reached its timeout */
486
487            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
488                /* do this only on master core */
489
490                if (lcore_id == rte_get_master_lcore()) {
491                    print_stats();
492
493                    /* reset the timer */
494                    timer_tsc = 0;
495                }
496            }
497        }
498
499        prev_tsc = cur_tsc;
500    }
501