xref: /dpdk/doc/guides/sample_app_ug/l2_forward_real_virtual.rst (revision 6491dbbecebb1e4f07fc970ef90b34119d8be2e3)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2010-2014 Intel Corporation.
3
4.. _l2_fwd_app_real_and_virtual:
5
6L2 Forwarding Sample Application (in Real and Virtualized Environments)
7=======================================================================
8
9The L2 Forwarding sample application is a simple example of packet processing using
10the Data Plane Development Kit (DPDK) which
11also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.
12
13.. note::
14
15    Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used,
16    however, in later DPDK versions these sample applications have been merged.
17
18Overview
19--------
20
21The L2 Forwarding sample application, which can operate in real and virtualized environments,
22performs L2 forwarding for each packet that is received on an RX_PORT.
23The destination port is the adjacent port from the enabled portmask, that is,
24if the first four ports are enabled (portmask 0xf),
25ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
26Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:
27
28*   The source MAC address is replaced by the TX_PORT MAC address
29
30*   The destination MAC address is replaced by  02:00:00:00:00:TX_PORT_ID
31
32This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`,
33or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`.
34
35.. _figure_l2_fwd_benchmark_setup:
36
37.. figure:: img/l2_fwd_benchmark_setup.*
38
39   Performance Benchmark Setup (Basic Environment)
40
41.. _figure_l2_fwd_virtenv_benchmark_setup:
42
43.. figure:: img/l2_fwd_virtenv_benchmark_setup.*
44
45   Performance Benchmark Setup (Virtualized Environment)
46
47This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`,
48when MAC addresses updating is disabled.
49
50.. _figure_l2_fwd_vm2vm:
51
52.. figure:: img/l2_fwd_vm2vm.*
53
54   Virtual Machine to Virtual Machine communication.
55
56The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.
57
58.. _l2_fwd_vf_setup:
59
60Virtual Function Setup Instructions
61~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
62
63This application can use the virtual function available in the system and
64therefore can be used in a virtual machine without passing through
65the whole Network Device into a guest machine in a virtualized scenario.
66The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.
67
68For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:
69
70.. code-block:: console
71
72    modprobe ixgbe max_vfs=2,2
73
74This command enables two Virtual Functions on each of Physical Function of the NIC,
75with two physical ports in the PCI configuration space.
76It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
77and Virtual Function 1 and 3 would belong to Physical Function 1,
78in this case enabling a total of four Virtual Functions.
79
80Compiling the Application
81-------------------------
82
83To compile the sample application see :doc:`compiling`.
84
85The application is located in the ``l2fwd`` sub-directory.
86
87Running the Application
88-----------------------
89
90The application requires a number of command line options:
91
92.. code-block:: console
93
94    ./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating
95
96where,
97
98*   p PORTMASK: A hexadecimal bitmask of the ports to configure
99
100*   q NQ: A number of queues (=ports) per lcore (default is 1)
101
102*   --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).
103
104To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address
105updating enabled, issue the command:
106
107.. code-block:: console
108
109    $ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff
110
111Refer to the *DPDK Getting Started Guide* for general information on running applications
112and the Environment Abstraction Layer (EAL) options.
113
114Explanation
115-----------
116
117The following sections provide some explanation of the code.
118
119.. _l2_fwd_app_cmd_arguments:
120
121Command Line Arguments
122~~~~~~~~~~~~~~~~~~~~~~
123
124The L2 Forwarding sample application takes specific parameters,
125in addition to Environment Abstraction Layer (EAL) arguments.
126The preferred way to parse parameters is to use the getopt() function,
127since it is part of a well-defined and portable library.
128
129The parsing of arguments is done in the l2fwd_parse_args() function.
130The method of argument parsing is not described here.
131Refer to the *glibc getopt(3)* man page for details.
132
133EAL arguments are parsed first, then application-specific arguments.
134This is done at the beginning of the main() function:
135
136.. code-block:: c
137
138    /* init EAL */
139
140    ret = rte_eal_init(argc, argv);
141    if (ret < 0)
142        rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
143
144    argc -= ret;
145    argv += ret;
146
147    /* parse application arguments (after the EAL ones) */
148
149    ret = l2fwd_parse_args(argc, argv);
150    if (ret < 0)
151        rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");
152
153.. _l2_fwd_app_mbuf_init:
154
155Mbuf Pool Initialization
156~~~~~~~~~~~~~~~~~~~~~~~~
157
158Once the arguments are parsed, the mbuf pool is created.
159The mbuf pool contains a set of mbuf objects that will be used by the driver
160and the application to store network packet data:
161
162.. code-block:: c
163
164    /* create the mbuf pool */
165
166    l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
167	MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
168	rte_socket_id());
169
170    if (l2fwd_pktmbuf_pool == NULL)
171        rte_panic("Cannot init mbuf pool\n");
172
173The rte_mempool is a generic structure used to handle pools of objects.
174In this case, it is necessary to create a pool that will be used by the driver.
175The number of allocated pkt mbufs is NB_MBUF, with a data room size of
176RTE_MBUF_DEFAULT_BUF_SIZE each.
177A per-lcore cache of 32 mbufs is kept.
178The memory is allocated in NUMA socket 0,
179but it is possible to extend this code to allocate one mbuf pool per socket.
180
181The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf
182initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init().
183An advanced application may want to use the mempool API to create the
184mbuf pool with more control.
185
186.. _l2_fwd_app_dvr_init:
187
188Driver Initialization
189~~~~~~~~~~~~~~~~~~~~~
190
191The main part of the code in the main() function relates to the initialization of the driver.
192To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
193in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*.
194
195.. code-block:: c
196
197    if (rte_pci_probe() < 0)
198        rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
199
200    /* reset l2fwd_dst_ports */
201
202    for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
203        l2fwd_dst_ports[portid] = 0;
204
205    last_port = 0;
206
207    /*
208     * Each logical core is assigned a dedicated TX queue on each port.
209     */
210
211    RTE_ETH_FOREACH_DEV(portid) {
212        /* skip ports that are not enabled */
213
214        if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
215           continue;
216
217        if (nb_ports_in_mask % 2) {
218            l2fwd_dst_ports[portid] = last_port;
219            l2fwd_dst_ports[last_port] = portid;
220        }
221        else
222           last_port = portid;
223
224        nb_ports_in_mask++;
225
226        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
227    }
228
229Observe that:
230
231*   rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver.
232
233*   rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices.
234
235The next step is to configure the RX and TX queues.
236For each port, there is only one RX queue (only one lcore is able to poll a given port).
237The number of TX queues depends on the number of available lcores.
238The rte_eth_dev_configure() function is used to configure the number of queues for a port:
239
240.. code-block:: c
241
242    ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
243    if (ret < 0)
244        rte_exit(EXIT_FAILURE, "Cannot configure device: "
245            "err=%d, port=%u\n",
246            ret, portid);
247
248The global configuration is stored in a static structure:
249
250.. code-block:: c
251
252    static const struct rte_eth_conf port_conf = {
253        .rxmode = {
254            .split_hdr_size = 0,
255            .header_split = 0,   /**< Header Split disabled */
256            .hw_ip_checksum = 0, /**< IP checksum offload disabled */
257            .hw_vlan_filter = 0, /**< VLAN filtering disabled */
258            .jumbo_frame = 0,    /**< Jumbo Frame Support disabled */
259            .hw_strip_crc= 0,    /**< CRC stripped by hardware */
260        },
261
262        .txmode = {
263            .mq_mode = ETH_DCB_NONE
264        },
265    };
266
267.. _l2_fwd_app_rx_init:
268
269RX Queue Initialization
270~~~~~~~~~~~~~~~~~~~~~~~
271
272The application uses one lcore to poll one or several ports, depending on the -q option,
273which specifies the number of queues per lcore.
274
275For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
276If there are 16 ports on the target (and if the portmask argument is -p ffff ),
277the application will need four lcores to poll all the ports.
278
279.. code-block:: c
280
281    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
282    if (ret < 0)
283
284        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
285            "err=%d, port=%u\n",
286            ret, portid);
287
288The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
289
290.. code-block:: c
291
292    struct lcore_queue_conf {
293        unsigned n_rx_port;
294        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
295        struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
296    } rte_cache_aligned;
297
298    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
299
300The values n_rx_port and rx_port_list[] are used in the main packet processing loop
301(see :ref:`l2_fwd_app_rx_tx_packets`).
302
303The global configuration for the RX queues is stored in a static structure:
304
305.. code-block:: c
306
307    static const struct rte_eth_rxconf rx_conf = {
308        .rx_thresh = {
309            .pthresh = RX_PTHRESH,
310            .hthresh = RX_HTHRESH,
311            .wthresh = RX_WTHRESH,
312        },
313    };
314
315.. _l2_fwd_app_tx_init:
316
317TX Queue Initialization
318~~~~~~~~~~~~~~~~~~~~~~~
319
320Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.
321
322.. code-block:: c
323
324    /* init one TX queue on each port */
325
326    fflush(stdout);
327
328    ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
329    if (ret < 0)
330        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);
331
332The global configuration for TX queues is stored in a static structure:
333
334.. code-block:: c
335
336    static const struct rte_eth_txconf tx_conf = {
337        .tx_thresh = {
338            .pthresh = TX_PTHRESH,
339            .hthresh = TX_HTHRESH,
340            .wthresh = TX_WTHRESH,
341        },
342        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
343    };
344
345.. _l2_fwd_app_rx_tx_packets:
346
347Receive, Process and Transmit Packets
348~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
349
350In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
351This is done using the following code:
352
353.. code-block:: c
354
355    /*
356     * Read packet from RX queues
357     */
358
359    for (i = 0; i < qconf->n_rx_port; i++) {
360        portid = qconf->rx_port_list[i];
361        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,  pkts_burst, MAX_PKT_BURST);
362
363        for (j = 0; j < nb_rx; j++) {
364            m = pkts_burst[j];
365            rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);
366        }
367    }
368
369Packets are read in a burst of size MAX_PKT_BURST.
370The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
371
372Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
373The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC
374addresses updating is enabled.
375
376.. note::
377
378    In the following code, one line for getting the output port requires some explanation.
379
380During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
381a destination port is assigned that is either the next or previous enabled port from the portmask.
382Naturally, the number of ports in the portmask must be even, otherwise, the application exits.
383
384.. code-block:: c
385
386    static void
387    l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
388    {
389        struct ether_hdr *eth;
390        void *tmp;
391        unsigned dst_port;
392
393        dst_port = l2fwd_dst_ports[portid];
394
395        eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
396
397        /* 02:00:00:00:00:xx */
398
399        tmp = &eth->d_addr.addr_bytes[0];
400
401        *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);
402
403        /* src addr */
404
405        ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
406
407        l2fwd_send_packet(m, (uint8_t) dst_port);
408    }
409
410Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
411For this test application, the processing is exactly the same for all packets arriving on the same RX port.
412Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
413to send all the received packets on the same TX port,
414using the burst-oriented send function, which is more efficient.
415
416However, in real-life applications (such as, L3 routing),
417packet N is not necessarily forwarded on the same port as packet N-1.
418The application is implemented to illustrate that, so the same approach can be reused in a more complex application.
419
420The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
421If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:
422
423.. code-block:: c
424
425    /* Send the packet on an output interface */
426
427    static int
428    l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
429    {
430        unsigned lcore_id, len;
431        struct lcore_queue_conf *qconf;
432
433        lcore_id = rte_lcore_id();
434        qconf = &lcore_queue_conf[lcore_id];
435        len = qconf->tx_mbufs[port].len;
436        qconf->tx_mbufs[port].m_table[len] = m;
437        len++;
438
439        /* enough pkts to be sent */
440
441        if (unlikely(len == MAX_PKT_BURST)) {
442            l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
443            len = 0;
444        }
445
446        qconf->tx_mbufs[port].len = len; return 0;
447    }
448
449To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop.
450This technique introduces some latency when there are not many packets to send,
451however it improves performance:
452
453.. code-block:: c
454
455    cur_tsc = rte_rdtsc();
456
457    /*
458     *   TX burst queue drain
459     */
460
461    diff_tsc = cur_tsc - prev_tsc;
462
463    if (unlikely(diff_tsc > drain_tsc)) {
464        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
465            if (qconf->tx_mbufs[portid].len == 0)
466                continue;
467
468            l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);
469
470            qconf->tx_mbufs[portid].len = 0;
471        }
472
473        /* if timer is enabled */
474
475        if (timer_period > 0) {
476            /* advance the timer */
477
478            timer_tsc += diff_tsc;
479
480            /* if timer has reached its timeout */
481
482            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
483                /* do this only on master core */
484
485                if (lcore_id == rte_get_master_lcore()) {
486                    print_stats();
487
488                    /* reset the timer */
489                    timer_tsc = 0;
490                }
491            }
492        }
493
494        prev_tsc = cur_tsc;
495    }
496