1.. BSD LICENSE 2 Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 3 All rights reserved. 4 5 Redistribution and use in source and binary forms, with or without 6 modification, are permitted provided that the following conditions 7 are met: 8 9 * Redistributions of source code must retain the above copyright 10 notice, this list of conditions and the following disclaimer. 11 * Redistributions in binary form must reproduce the above copyright 12 notice, this list of conditions and the following disclaimer in 13 the documentation and/or other materials provided with the 14 distribution. 15 * Neither the name of Intel Corporation nor the names of its 16 contributors may be used to endorse or promote products derived 17 from this software without specific prior written permission. 18 19 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31.. _l2_fwd_app_real_and_virtual: 32 33L2 Forwarding Sample Application (in Real and Virtualized Environments) 34======================================================================= 35 36The L2 Forwarding sample application is a simple example of packet processing using 37the Data Plane Development Kit (DPDK) which 38also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment. 39 40.. note:: 41 42 Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used, 43 however, in later DPDK versions these sample applications have been merged. 44 45Overview 46-------- 47 48The L2 Forwarding sample application, which can operate in real and virtualized environments, 49performs L2 forwarding for each packet that is received on an RX_PORT. 50The destination port is the adjacent port from the enabled portmask, that is, 51if the first four ports are enabled (portmask 0xf), 52ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other. 53Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows: 54 55* The source MAC address is replaced by the TX_PORT MAC address 56 57* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 58 59This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`, 60or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`. 61 62.. _figure_l2_fwd_benchmark_setup: 63 64.. figure:: img/l2_fwd_benchmark_setup.* 65 66 Performance Benchmark Setup (Basic Environment) 67 68.. _figure_l2_fwd_virtenv_benchmark_setup: 69 70.. figure:: img/l2_fwd_virtenv_benchmark_setup.* 71 72 Performance Benchmark Setup (Virtualized Environment) 73 74This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`, 75when MAC addresses updating is disabled. 76 77.. _figure_l2_fwd_vm2vm: 78 79.. figure:: img/l2_fwd_vm2vm.* 80 81 Virtual Machine to Virtual Machine communication. 82 83The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. 84 85.. _l2_fwd_vf_setup: 86 87Virtual Function Setup Instructions 88~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 89 90This application can use the virtual function available in the system and 91therefore can be used in a virtual machine without passing through 92the whole Network Device into a guest machine in a virtualized scenario. 93The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver. 94 95For example, in a Linux* host machine, it is possible to enable a virtual function using the following command: 96 97.. code-block:: console 98 99 modprobe ixgbe max_vfs=2,2 100 101This command enables two Virtual Functions on each of Physical Function of the NIC, 102with two physical ports in the PCI configuration space. 103It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0 104and Virtual Function 1 and 3 would belong to Physical Function 1, 105in this case enabling a total of four Virtual Functions. 106 107Compiling the Application 108------------------------- 109 110#. Go to the example directory: 111 112 .. code-block:: console 113 114 export RTE_SDK=/path/to/rte_sdk 115 cd ${RTE_SDK}/examples/l2fwd 116 117#. Set the target (a default target is used if not specified). For example: 118 119 .. code-block:: console 120 121 export RTE_TARGET=x86_64-native-linuxapp-gcc 122 123 *See the DPDK Getting Started Guide* for possible RTE_TARGET values. 124 125#. Build the application: 126 127 .. code-block:: console 128 129 make 130 131Running the Application 132----------------------- 133 134The application requires a number of command line options: 135 136.. code-block:: console 137 138 ./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating 139 140where, 141 142* p PORTMASK: A hexadecimal bitmask of the ports to configure 143 144* q NQ: A number of queues (=ports) per lcore (default is 1) 145 146* --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default). 147 148To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address 149updating enabled, issue the command: 150 151.. code-block:: console 152 153 $ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff 154 155Refer to the *DPDK Getting Started Guide* for general information on running applications 156and the Environment Abstraction Layer (EAL) options. 157 158Explanation 159----------- 160 161The following sections provide some explanation of the code. 162 163.. _l2_fwd_app_cmd_arguments: 164 165Command Line Arguments 166~~~~~~~~~~~~~~~~~~~~~~ 167 168The L2 Forwarding sample application takes specific parameters, 169in addition to Environment Abstraction Layer (EAL) arguments. 170The preferred way to parse parameters is to use the getopt() function, 171since it is part of a well-defined and portable library. 172 173The parsing of arguments is done in the l2fwd_parse_args() function. 174The method of argument parsing is not described here. 175Refer to the *glibc getopt(3)* man page for details. 176 177EAL arguments are parsed first, then application-specific arguments. 178This is done at the beginning of the main() function: 179 180.. code-block:: c 181 182 /* init EAL */ 183 184 ret = rte_eal_init(argc, argv); 185 if (ret < 0) 186 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 187 188 argc -= ret; 189 argv += ret; 190 191 /* parse application arguments (after the EAL ones) */ 192 193 ret = l2fwd_parse_args(argc, argv); 194 if (ret < 0) 195 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n"); 196 197.. _l2_fwd_app_mbuf_init: 198 199Mbuf Pool Initialization 200~~~~~~~~~~~~~~~~~~~~~~~~ 201 202Once the arguments are parsed, the mbuf pool is created. 203The mbuf pool contains a set of mbuf objects that will be used by the driver 204and the application to store network packet data: 205 206.. code-block:: c 207 208 /* create the mbuf pool */ 209 210 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 211 MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, 212 rte_socket_id()); 213 214 if (l2fwd_pktmbuf_pool == NULL) 215 rte_panic("Cannot init mbuf pool\n"); 216 217The rte_mempool is a generic structure used to handle pools of objects. 218In this case, it is necessary to create a pool that will be used by the driver. 219The number of allocated pkt mbufs is NB_MBUF, with a data room size of 220RTE_MBUF_DEFAULT_BUF_SIZE each. 221A per-lcore cache of 32 mbufs is kept. 222The memory is allocated in NUMA socket 0, 223but it is possible to extend this code to allocate one mbuf pool per socket. 224 225The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf 226initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init(). 227An advanced application may want to use the mempool API to create the 228mbuf pool with more control. 229 230.. _l2_fwd_app_dvr_init: 231 232Driver Initialization 233~~~~~~~~~~~~~~~~~~~~~ 234 235The main part of the code in the main() function relates to the initialization of the driver. 236To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver 237in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*. 238 239.. code-block:: c 240 241 if (rte_eal_pci_probe() < 0) 242 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 243 244 nb_ports = rte_eth_dev_count(); 245 246 if (nb_ports == 0) 247 rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n"); 248 249 /* reset l2fwd_dst_ports */ 250 251 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 252 l2fwd_dst_ports[portid] = 0; 253 254 last_port = 0; 255 256 /* 257 * Each logical core is assigned a dedicated TX queue on each port. 258 */ 259 260 for (portid = 0; portid < nb_ports; portid++) { 261 /* skip ports that are not enabled */ 262 263 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 264 continue; 265 266 if (nb_ports_in_mask % 2) { 267 l2fwd_dst_ports[portid] = last_port; 268 l2fwd_dst_ports[last_port] = portid; 269 } 270 else 271 last_port = portid; 272 273 nb_ports_in_mask++; 274 275 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 276 } 277 278Observe that: 279 280* rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver. 281 282* rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices. 283 284The next step is to configure the RX and TX queues. 285For each port, there is only one RX queue (only one lcore is able to poll a given port). 286The number of TX queues depends on the number of available lcores. 287The rte_eth_dev_configure() function is used to configure the number of queues for a port: 288 289.. code-block:: c 290 291 ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf); 292 if (ret < 0) 293 rte_exit(EXIT_FAILURE, "Cannot configure device: " 294 "err=%d, port=%u\n", 295 ret, portid); 296 297The global configuration is stored in a static structure: 298 299.. code-block:: c 300 301 static const struct rte_eth_conf port_conf = { 302 .rxmode = { 303 .split_hdr_size = 0, 304 .header_split = 0, /**< Header Split disabled */ 305 .hw_ip_checksum = 0, /**< IP checksum offload disabled */ 306 .hw_vlan_filter = 0, /**< VLAN filtering disabled */ 307 .jumbo_frame = 0, /**< Jumbo Frame Support disabled */ 308 .hw_strip_crc= 0, /**< CRC stripped by hardware */ 309 }, 310 311 .txmode = { 312 .mq_mode = ETH_DCB_NONE 313 }, 314 }; 315 316.. _l2_fwd_app_rx_init: 317 318RX Queue Initialization 319~~~~~~~~~~~~~~~~~~~~~~~ 320 321The application uses one lcore to poll one or several ports, depending on the -q option, 322which specifies the number of queues per lcore. 323 324For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 325If there are 16 ports on the target (and if the portmask argument is -p ffff ), 326the application will need four lcores to poll all the ports. 327 328.. code-block:: c 329 330 ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool); 331 if (ret < 0) 332 333 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 334 "err=%d, port=%u\n", 335 ret, portid); 336 337The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 338 339.. code-block:: c 340 341 struct lcore_queue_conf { 342 unsigned n_rx_port; 343 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 344 struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS]; 345 } rte_cache_aligned; 346 347 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 348 349The values n_rx_port and rx_port_list[] are used in the main packet processing loop 350(see :ref:`l2_fwd_app_rx_tx_packets`). 351 352The global configuration for the RX queues is stored in a static structure: 353 354.. code-block:: c 355 356 static const struct rte_eth_rxconf rx_conf = { 357 .rx_thresh = { 358 .pthresh = RX_PTHRESH, 359 .hthresh = RX_HTHRESH, 360 .wthresh = RX_WTHRESH, 361 }, 362 }; 363 364.. _l2_fwd_app_tx_init: 365 366TX Queue Initialization 367~~~~~~~~~~~~~~~~~~~~~~~ 368 369Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized. 370 371.. code-block:: c 372 373 /* init one TX queue on each port */ 374 375 fflush(stdout); 376 377 ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf); 378 if (ret < 0) 379 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid); 380 381The global configuration for TX queues is stored in a static structure: 382 383.. code-block:: c 384 385 static const struct rte_eth_txconf tx_conf = { 386 .tx_thresh = { 387 .pthresh = TX_PTHRESH, 388 .hthresh = TX_HTHRESH, 389 .wthresh = TX_WTHRESH, 390 }, 391 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */ 392 }; 393 394.. _l2_fwd_app_rx_tx_packets: 395 396Receive, Process and Transmit Packets 397~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 398 399In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues. 400This is done using the following code: 401 402.. code-block:: c 403 404 /* 405 * Read packet from RX queues 406 */ 407 408 for (i = 0; i < qconf->n_rx_port; i++) { 409 portid = qconf->rx_port_list[i]; 410 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); 411 412 for (j = 0; j < nb_rx; j++) { 413 m = pkts_burst[j]; 414 rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid); 415 } 416 } 417 418Packets are read in a burst of size MAX_PKT_BURST. 419The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 420 421Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. 422The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC 423addresses updating is enabled. 424 425.. note:: 426 427 In the following code, one line for getting the output port requires some explanation. 428 429During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port, 430a destination port is assigned that is either the next or previous enabled port from the portmask. 431Naturally, the number of ports in the portmask must be even, otherwise, the application exits. 432 433.. code-block:: c 434 435 static void 436 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 437 { 438 struct ether_hdr *eth; 439 void *tmp; 440 unsigned dst_port; 441 442 dst_port = l2fwd_dst_ports[portid]; 443 444 eth = rte_pktmbuf_mtod(m, struct ether_hdr *); 445 446 /* 02:00:00:00:00:xx */ 447 448 tmp = ð->d_addr.addr_bytes[0]; 449 450 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40); 451 452 /* src addr */ 453 454 ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 455 456 l2fwd_send_packet(m, (uint8_t) dst_port); 457 } 458 459Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. 460For this test application, the processing is exactly the same for all packets arriving on the same RX port. 461Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop 462to send all the received packets on the same TX port, 463using the burst-oriented send function, which is more efficient. 464 465However, in real-life applications (such as, L3 routing), 466packet N is not necessarily forwarded on the same port as packet N-1. 467The application is implemented to illustrate that, so the same approach can be reused in a more complex application. 468 469The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. 470If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function: 471 472.. code-block:: c 473 474 /* Send the packet on an output interface */ 475 476 static int 477 l2fwd_send_packet(struct rte_mbuf *m, uint8_t port) 478 { 479 unsigned lcore_id, len; 480 struct lcore_queue_conf *qconf; 481 482 lcore_id = rte_lcore_id(); 483 qconf = &lcore_queue_conf[lcore_id]; 484 len = qconf->tx_mbufs[port].len; 485 qconf->tx_mbufs[port].m_table[len] = m; 486 len++; 487 488 /* enough pkts to be sent */ 489 490 if (unlikely(len == MAX_PKT_BURST)) { 491 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 492 len = 0; 493 } 494 495 qconf->tx_mbufs[port].len = len; return 0; 496 } 497 498To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop. 499This technique introduces some latency when there are not many packets to send, 500however it improves performance: 501 502.. code-block:: c 503 504 cur_tsc = rte_rdtsc(); 505 506 /* 507 * TX burst queue drain 508 */ 509 510 diff_tsc = cur_tsc - prev_tsc; 511 512 if (unlikely(diff_tsc > drain_tsc)) { 513 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 514 if (qconf->tx_mbufs[portid].len == 0) 515 continue; 516 517 l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid); 518 519 qconf->tx_mbufs[portid].len = 0; 520 } 521 522 /* if timer is enabled */ 523 524 if (timer_period > 0) { 525 /* advance the timer */ 526 527 timer_tsc += diff_tsc; 528 529 /* if timer has reached its timeout */ 530 531 if (unlikely(timer_tsc >= (uint64_t) timer_period)) { 532 /* do this only on master core */ 533 534 if (lcore_id == rte_get_master_lcore()) { 535 print_stats(); 536 537 /* reset the timer */ 538 timer_tsc = 0; 539 } 540 } 541 } 542 543 prev_tsc = cur_tsc; 544 } 545