xref: /dpdk/doc/guides/sample_app_ug/l2_forward_real_virtual.rst (revision 5a11168d9bf3d687950e84a9ddc8e13a77a2ef2a)
1..  BSD LICENSE
2    Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
3    All rights reserved.
4
5    Redistribution and use in source and binary forms, with or without
6    modification, are permitted provided that the following conditions
7    are met:
8
9    * Redistributions of source code must retain the above copyright
10    notice, this list of conditions and the following disclaimer.
11    * Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in
13    the documentation and/or other materials provided with the
14    distribution.
15    * Neither the name of Intel Corporation nor the names of its
16    contributors may be used to endorse or promote products derived
17    from this software without specific prior written permission.
18
19    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31.. _l2_fwd_app_real_and_virtual:
32
33L2 Forwarding Sample Application (in Real and Virtualized Environments)
34=======================================================================
35
36The L2 Forwarding sample application is a simple example of packet processing using
37the Data Plane Development Kit (DPDK) which
38also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.
39
40.. note::
41
42    Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used,
43    however, in later DPDK versions these sample applications have been merged.
44
45Overview
46--------
47
48The L2 Forwarding sample application, which can operate in real and virtualized environments,
49performs L2 forwarding for each packet that is received on an RX_PORT.
50The destination port is the adjacent port from the enabled portmask, that is,
51if the first four ports are enabled (portmask 0xf),
52ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other.
53Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:
54
55*   The source MAC address is replaced by the TX_PORT MAC address
56
57*   The destination MAC address is replaced by  02:00:00:00:00:TX_PORT_ID
58
59This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`,
60or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`.
61
62.. _figure_l2_fwd_benchmark_setup:
63
64.. figure:: img/l2_fwd_benchmark_setup.*
65
66   Performance Benchmark Setup (Basic Environment)
67
68.. _figure_l2_fwd_virtenv_benchmark_setup:
69
70.. figure:: img/l2_fwd_virtenv_benchmark_setup.*
71
72   Performance Benchmark Setup (Virtualized Environment)
73
74This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`,
75when MAC addresses updating is disabled.
76
77.. _figure_l2_fwd_vm2vm:
78
79.. figure:: img/l2_fwd_vm2vm.*
80
81   Virtual Machine to Virtual Machine communication.
82
83The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK.
84
85.. _l2_fwd_vf_setup:
86
87Virtual Function Setup Instructions
88~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
89
90This application can use the virtual function available in the system and
91therefore can be used in a virtual machine without passing through
92the whole Network Device into a guest machine in a virtualized scenario.
93The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver.
94
95For example, in a Linux* host machine, it is possible to enable a virtual function using the following command:
96
97.. code-block:: console
98
99    modprobe ixgbe max_vfs=2,2
100
101This command enables two Virtual Functions on each of Physical Function of the NIC,
102with two physical ports in the PCI configuration space.
103It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0
104and Virtual Function 1 and 3 would belong to Physical Function 1,
105in this case enabling a total of four Virtual Functions.
106
107Compiling the Application
108-------------------------
109
110#.  Go to the example directory:
111
112    .. code-block:: console
113
114        export RTE_SDK=/path/to/rte_sdk
115        cd ${RTE_SDK}/examples/l2fwd
116
117#.  Set the target (a default target is used if not specified). For example:
118
119    .. code-block:: console
120
121        export RTE_TARGET=x86_64-native-linuxapp-gcc
122
123    *See the DPDK Getting Started Guide* for possible RTE_TARGET values.
124
125#.  Build the application:
126
127    .. code-block:: console
128
129        make
130
131Running the Application
132-----------------------
133
134The application requires a number of command line options:
135
136.. code-block:: console
137
138    ./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating
139
140where,
141
142*   p PORTMASK: A hexadecimal bitmask of the ports to configure
143
144*   q NQ: A number of queues (=ports) per lcore (default is 1)
145
146*   --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).
147
148To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address
149updating enabled, issue the command:
150
151.. code-block:: console
152
153    $ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff
154
155Refer to the *DPDK Getting Started Guide* for general information on running applications
156and the Environment Abstraction Layer (EAL) options.
157
158Explanation
159-----------
160
161The following sections provide some explanation of the code.
162
163.. _l2_fwd_app_cmd_arguments:
164
165Command Line Arguments
166~~~~~~~~~~~~~~~~~~~~~~
167
168The L2 Forwarding sample application takes specific parameters,
169in addition to Environment Abstraction Layer (EAL) arguments.
170The preferred way to parse parameters is to use the getopt() function,
171since it is part of a well-defined and portable library.
172
173The parsing of arguments is done in the l2fwd_parse_args() function.
174The method of argument parsing is not described here.
175Refer to the *glibc getopt(3)* man page for details.
176
177EAL arguments are parsed first, then application-specific arguments.
178This is done at the beginning of the main() function:
179
180.. code-block:: c
181
182    /* init EAL */
183
184    ret = rte_eal_init(argc, argv);
185    if (ret < 0)
186        rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
187
188    argc -= ret;
189    argv += ret;
190
191    /* parse application arguments (after the EAL ones) */
192
193    ret = l2fwd_parse_args(argc, argv);
194    if (ret < 0)
195        rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");
196
197.. _l2_fwd_app_mbuf_init:
198
199Mbuf Pool Initialization
200~~~~~~~~~~~~~~~~~~~~~~~~
201
202Once the arguments are parsed, the mbuf pool is created.
203The mbuf pool contains a set of mbuf objects that will be used by the driver
204and the application to store network packet data:
205
206.. code-block:: c
207
208    /* create the mbuf pool */
209
210    l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
211	MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
212	rte_socket_id());
213
214    if (l2fwd_pktmbuf_pool == NULL)
215        rte_panic("Cannot init mbuf pool\n");
216
217The rte_mempool is a generic structure used to handle pools of objects.
218In this case, it is necessary to create a pool that will be used by the driver.
219The number of allocated pkt mbufs is NB_MBUF, with a data room size of
220RTE_MBUF_DEFAULT_BUF_SIZE each.
221A per-lcore cache of 32 mbufs is kept.
222The memory is allocated in NUMA socket 0,
223but it is possible to extend this code to allocate one mbuf pool per socket.
224
225The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf
226initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init().
227An advanced application may want to use the mempool API to create the
228mbuf pool with more control.
229
230.. _l2_fwd_app_dvr_init:
231
232Driver Initialization
233~~~~~~~~~~~~~~~~~~~~~
234
235The main part of the code in the main() function relates to the initialization of the driver.
236To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver
237in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*.
238
239.. code-block:: c
240
241    if (rte_eal_pci_probe() < 0)
242        rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
243
244    nb_ports = rte_eth_dev_count();
245
246    if (nb_ports == 0)
247        rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");
248
249    /* reset l2fwd_dst_ports */
250
251    for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
252        l2fwd_dst_ports[portid] = 0;
253
254    last_port = 0;
255
256    /*
257     * Each logical core is assigned a dedicated TX queue on each port.
258     */
259
260    for (portid = 0; portid < nb_ports; portid++) {
261        /* skip ports that are not enabled */
262
263        if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
264           continue;
265
266        if (nb_ports_in_mask % 2) {
267            l2fwd_dst_ports[portid] = last_port;
268            l2fwd_dst_ports[last_port] = portid;
269        }
270        else
271           last_port = portid;
272
273        nb_ports_in_mask++;
274
275        rte_eth_dev_info_get((uint8_t) portid, &dev_info);
276    }
277
278Observe that:
279
280*   rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver.
281
282*   rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.
283
284The next step is to configure the RX and TX queues.
285For each port, there is only one RX queue (only one lcore is able to poll a given port).
286The number of TX queues depends on the number of available lcores.
287The rte_eth_dev_configure() function is used to configure the number of queues for a port:
288
289.. code-block:: c
290
291    ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
292    if (ret < 0)
293        rte_exit(EXIT_FAILURE, "Cannot configure device: "
294            "err=%d, port=%u\n",
295            ret, portid);
296
297The global configuration is stored in a static structure:
298
299.. code-block:: c
300
301    static const struct rte_eth_conf port_conf = {
302        .rxmode = {
303            .split_hdr_size = 0,
304            .header_split = 0,   /**< Header Split disabled */
305            .hw_ip_checksum = 0, /**< IP checksum offload disabled */
306            .hw_vlan_filter = 0, /**< VLAN filtering disabled */
307            .jumbo_frame = 0,    /**< Jumbo Frame Support disabled */
308            .hw_strip_crc= 0,    /**< CRC stripped by hardware */
309        },
310
311        .txmode = {
312            .mq_mode = ETH_DCB_NONE
313        },
314    };
315
316.. _l2_fwd_app_rx_init:
317
318RX Queue Initialization
319~~~~~~~~~~~~~~~~~~~~~~~
320
321The application uses one lcore to poll one or several ports, depending on the -q option,
322which specifies the number of queues per lcore.
323
324For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
325If there are 16 ports on the target (and if the portmask argument is -p ffff ),
326the application will need four lcores to poll all the ports.
327
328.. code-block:: c
329
330    ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
331    if (ret < 0)
332
333        rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
334            "err=%d, port=%u\n",
335            ret, portid);
336
337The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf.
338
339.. code-block:: c
340
341    struct lcore_queue_conf {
342        unsigned n_rx_port;
343        unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
344        struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];
345    } rte_cache_aligned;
346
347    struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
348
349The values n_rx_port and rx_port_list[] are used in the main packet processing loop
350(see :ref:`l2_fwd_app_rx_tx_packets`).
351
352The global configuration for the RX queues is stored in a static structure:
353
354.. code-block:: c
355
356    static const struct rte_eth_rxconf rx_conf = {
357        .rx_thresh = {
358            .pthresh = RX_PTHRESH,
359            .hthresh = RX_HTHRESH,
360            .wthresh = RX_WTHRESH,
361        },
362    };
363
364.. _l2_fwd_app_tx_init:
365
366TX Queue Initialization
367~~~~~~~~~~~~~~~~~~~~~~~
368
369Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.
370
371.. code-block:: c
372
373    /* init one TX queue on each port */
374
375    fflush(stdout);
376
377    ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
378    if (ret < 0)
379        rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);
380
381The global configuration for TX queues is stored in a static structure:
382
383.. code-block:: c
384
385    static const struct rte_eth_txconf tx_conf = {
386        .tx_thresh = {
387            .pthresh = TX_PTHRESH,
388            .hthresh = TX_HTHRESH,
389            .wthresh = TX_WTHRESH,
390        },
391        .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
392    };
393
394.. _l2_fwd_app_rx_tx_packets:
395
396Receive, Process and Transmit Packets
397~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
398
399In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
400This is done using the following code:
401
402.. code-block:: c
403
404    /*
405     * Read packet from RX queues
406     */
407
408    for (i = 0; i < qconf->n_rx_port; i++) {
409        portid = qconf->rx_port_list[i];
410        nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,  pkts_burst, MAX_PKT_BURST);
411
412        for (j = 0; j < nb_rx; j++) {
413            m = pkts_burst[j];
414            rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);
415        }
416    }
417
418Packets are read in a burst of size MAX_PKT_BURST.
419The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table.
420
421Then, each mbuf in the table is processed by the l2fwd_simple_forward() function.
422The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC
423addresses updating is enabled.
424
425.. note::
426
427    In the following code, one line for getting the output port requires some explanation.
428
429During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port,
430a destination port is assigned that is either the next or previous enabled port from the portmask.
431Naturally, the number of ports in the portmask must be even, otherwise, the application exits.
432
433.. code-block:: c
434
435    static void
436    l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
437    {
438        struct ether_hdr *eth;
439        void *tmp;
440        unsigned dst_port;
441
442        dst_port = l2fwd_dst_ports[portid];
443
444        eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
445
446        /* 02:00:00:00:00:xx */
447
448        tmp = &eth->d_addr.addr_bytes[0];
449
450        *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);
451
452        /* src addr */
453
454        ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
455
456        l2fwd_send_packet(m, (uint8_t) dst_port);
457    }
458
459Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function.
460For this test application, the processing is exactly the same for all packets arriving on the same RX port.
461Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop
462to send all the received packets on the same TX port,
463using the burst-oriented send function, which is more efficient.
464
465However, in real-life applications (such as, L3 routing),
466packet N is not necessarily forwarded on the same port as packet N-1.
467The application is implemented to illustrate that, so the same approach can be reused in a more complex application.
468
469The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table.
470If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:
471
472.. code-block:: c
473
474    /* Send the packet on an output interface */
475
476    static int
477    l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
478    {
479        unsigned lcore_id, len;
480        struct lcore_queue_conf *qconf;
481
482        lcore_id = rte_lcore_id();
483        qconf = &lcore_queue_conf[lcore_id];
484        len = qconf->tx_mbufs[port].len;
485        qconf->tx_mbufs[port].m_table[len] = m;
486        len++;
487
488        /* enough pkts to be sent */
489
490        if (unlikely(len == MAX_PKT_BURST)) {
491            l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
492            len = 0;
493        }
494
495        qconf->tx_mbufs[port].len = len; return 0;
496    }
497
498To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop.
499This technique introduces some latency when there are not many packets to send,
500however it improves performance:
501
502.. code-block:: c
503
504    cur_tsc = rte_rdtsc();
505
506    /*
507     *   TX burst queue drain
508     */
509
510    diff_tsc = cur_tsc - prev_tsc;
511
512    if (unlikely(diff_tsc > drain_tsc)) {
513        for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
514            if (qconf->tx_mbufs[portid].len == 0)
515                continue;
516
517            l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);
518
519            qconf->tx_mbufs[portid].len = 0;
520        }
521
522        /* if timer is enabled */
523
524        if (timer_period > 0) {
525            /* advance the timer */
526
527            timer_tsc += diff_tsc;
528
529            /* if timer has reached its timeout */
530
531            if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
532                /* do this only on master core */
533
534                if (lcore_id == rte_get_master_lcore()) {
535                    print_stats();
536
537                    /* reset the timer */
538                    timer_tsc = 0;
539                }
540            }
541        }
542
543        prev_tsc = cur_tsc;
544    }
545