1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2010-2014 Intel Corporation. 3 4.. _l2_fwd_app_real_and_virtual: 5 6L2 Forwarding Sample Application (in Real and Virtualized Environments) 7======================================================================= 8 9The L2 Forwarding sample application is a simple example of packet processing using 10the Data Plane Development Kit (DPDK) which 11also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment. 12 13.. note:: 14 15 Please note that previously a separate L2 Forwarding in Virtualized Environments sample application was used, 16 however, in later DPDK versions these sample applications have been merged. 17 18Overview 19-------- 20 21The L2 Forwarding sample application, which can operate in real and virtualized environments, 22performs L2 forwarding for each packet that is received on an RX_PORT. 23The destination port is the adjacent port from the enabled portmask, that is, 24if the first four ports are enabled (portmask 0xf), 25ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other. 26Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows: 27 28* The source MAC address is replaced by the TX_PORT MAC address 29 30* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 31 32This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup`, 33or in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup`. 34 35.. _figure_l2_fwd_benchmark_setup: 36 37.. figure:: img/l2_fwd_benchmark_setup.* 38 39 Performance Benchmark Setup (Basic Environment) 40 41.. _figure_l2_fwd_virtenv_benchmark_setup: 42 43.. figure:: img/l2_fwd_virtenv_benchmark_setup.* 44 45 Performance Benchmark Setup (Virtualized Environment) 46 47This application may be used for basic VM to VM communication as shown in :numref:`figure_l2_fwd_vm2vm`, 48when MAC addresses updating is disabled. 49 50.. _figure_l2_fwd_vm2vm: 51 52.. figure:: img/l2_fwd_vm2vm.* 53 54 Virtual Machine to Virtual Machine communication. 55 56The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. 57 58.. _l2_fwd_vf_setup: 59 60Virtual Function Setup Instructions 61~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 62 63This application can use the virtual function available in the system and 64therefore can be used in a virtual machine without passing through 65the whole Network Device into a guest machine in a virtualized scenario. 66The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver. 67 68For example, in a Linux* host machine, it is possible to enable a virtual function using the following command: 69 70.. code-block:: console 71 72 modprobe ixgbe max_vfs=2,2 73 74This command enables two Virtual Functions on each of Physical Function of the NIC, 75with two physical ports in the PCI configuration space. 76It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0 77and Virtual Function 1 and 3 would belong to Physical Function 1, 78in this case enabling a total of four Virtual Functions. 79 80Compiling the Application 81------------------------- 82 83To compile the sample application see :doc:`compiling`. 84 85The application is located in the ``l2fwd`` sub-directory. 86 87Running the Application 88----------------------- 89 90The application requires a number of command line options: 91 92.. code-block:: console 93 94 ./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating 95 96where, 97 98* p PORTMASK: A hexadecimal bitmask of the ports to configure 99 100* q NQ: A number of queues (=ports) per lcore (default is 1) 101 102* --[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default). 103 104To run the application in linux environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC address 105updating enabled, issue the command: 106 107.. code-block:: console 108 109 $ ./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff 110 111Refer to the *DPDK Getting Started Guide* for general information on running applications 112and the Environment Abstraction Layer (EAL) options. 113 114Explanation 115----------- 116 117The following sections provide some explanation of the code. 118 119.. _l2_fwd_app_cmd_arguments: 120 121Command Line Arguments 122~~~~~~~~~~~~~~~~~~~~~~ 123 124The L2 Forwarding sample application takes specific parameters, 125in addition to Environment Abstraction Layer (EAL) arguments. 126The preferred way to parse parameters is to use the getopt() function, 127since it is part of a well-defined and portable library. 128 129The parsing of arguments is done in the l2fwd_parse_args() function. 130The method of argument parsing is not described here. 131Refer to the *glibc getopt(3)* man page for details. 132 133EAL arguments are parsed first, then application-specific arguments. 134This is done at the beginning of the main() function: 135 136.. code-block:: c 137 138 /* init EAL */ 139 140 ret = rte_eal_init(argc, argv); 141 if (ret < 0) 142 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 143 144 argc -= ret; 145 argv += ret; 146 147 /* parse application arguments (after the EAL ones) */ 148 149 ret = l2fwd_parse_args(argc, argv); 150 if (ret < 0) 151 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n"); 152 153.. _l2_fwd_app_mbuf_init: 154 155Mbuf Pool Initialization 156~~~~~~~~~~~~~~~~~~~~~~~~ 157 158Once the arguments are parsed, the mbuf pool is created. 159The mbuf pool contains a set of mbuf objects that will be used by the driver 160and the application to store network packet data: 161 162.. code-block:: c 163 164 /* create the mbuf pool */ 165 166 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 167 MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, 168 rte_socket_id()); 169 170 if (l2fwd_pktmbuf_pool == NULL) 171 rte_panic("Cannot init mbuf pool\n"); 172 173The rte_mempool is a generic structure used to handle pools of objects. 174In this case, it is necessary to create a pool that will be used by the driver. 175The number of allocated pkt mbufs is NB_MBUF, with a data room size of 176RTE_MBUF_DEFAULT_BUF_SIZE each. 177A per-lcore cache of 32 mbufs is kept. 178The memory is allocated in NUMA socket 0, 179but it is possible to extend this code to allocate one mbuf pool per socket. 180 181The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf 182initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init(). 183An advanced application may want to use the mempool API to create the 184mbuf pool with more control. 185 186.. _l2_fwd_app_dvr_init: 187 188Driver Initialization 189~~~~~~~~~~~~~~~~~~~~~ 190 191The main part of the code in the main() function relates to the initialization of the driver. 192To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver 193in the *DPDK Programmer's Guide* - Rel 1.4 EAR and the *DPDK API Reference*. 194 195.. code-block:: c 196 197 if (rte_pci_probe() < 0) 198 rte_exit(EXIT_FAILURE, "Cannot probe PCI\n"); 199 200 /* reset l2fwd_dst_ports */ 201 202 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 203 l2fwd_dst_ports[portid] = 0; 204 205 last_port = 0; 206 207 /* 208 * Each logical core is assigned a dedicated TX queue on each port. 209 */ 210 211 RTE_ETH_FOREACH_DEV(portid) { 212 /* skip ports that are not enabled */ 213 214 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 215 continue; 216 217 if (nb_ports_in_mask % 2) { 218 l2fwd_dst_ports[portid] = last_port; 219 l2fwd_dst_ports[last_port] = portid; 220 } 221 else 222 last_port = portid; 223 224 nb_ports_in_mask++; 225 226 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 227 } 228 229Observe that: 230 231* rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll Mode Driver. 232 233* rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices. 234 235The next step is to configure the RX and TX queues. 236For each port, there is only one RX queue (only one lcore is able to poll a given port). 237The number of TX queues depends on the number of available lcores. 238The rte_eth_dev_configure() function is used to configure the number of queues for a port: 239 240.. code-block:: c 241 242 ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf); 243 if (ret < 0) 244 rte_exit(EXIT_FAILURE, "Cannot configure device: " 245 "err=%d, port=%u\n", 246 ret, portid); 247 248.. _l2_fwd_app_rx_init: 249 250RX Queue Initialization 251~~~~~~~~~~~~~~~~~~~~~~~ 252 253The application uses one lcore to poll one or several ports, depending on the -q option, 254which specifies the number of queues per lcore. 255 256For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 257If there are 16 ports on the target (and if the portmask argument is -p ffff ), 258the application will need four lcores to poll all the ports. 259 260.. code-block:: c 261 262 ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool); 263 if (ret < 0) 264 265 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: " 266 "err=%d, port=%u\n", 267 ret, portid); 268 269The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 270 271.. code-block:: c 272 273 struct lcore_queue_conf { 274 unsigned n_rx_port; 275 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 276 struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS]; 277 } rte_cache_aligned; 278 279 struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE]; 280 281The values n_rx_port and rx_port_list[] are used in the main packet processing loop 282(see :ref:`l2_fwd_app_rx_tx_packets`). 283 284The global configuration for the RX queues is stored in a static structure: 285 286.. code-block:: c 287 288 static const struct rte_eth_rxconf rx_conf = { 289 .rx_thresh = { 290 .pthresh = RX_PTHRESH, 291 .hthresh = RX_HTHRESH, 292 .wthresh = RX_WTHRESH, 293 }, 294 }; 295 296.. _l2_fwd_app_tx_init: 297 298TX Queue Initialization 299~~~~~~~~~~~~~~~~~~~~~~~ 300 301Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized. 302 303.. code-block:: c 304 305 /* init one TX queue on each port */ 306 307 fflush(stdout); 308 309 ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf); 310 if (ret < 0) 311 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid); 312 313The global configuration for TX queues is stored in a static structure: 314 315.. code-block:: c 316 317 static const struct rte_eth_txconf tx_conf = { 318 .tx_thresh = { 319 .pthresh = TX_PTHRESH, 320 .hthresh = TX_HTHRESH, 321 .wthresh = TX_WTHRESH, 322 }, 323 .tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */ 324 }; 325 326.. _l2_fwd_app_rx_tx_packets: 327 328Receive, Process and Transmit Packets 329~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 330 331In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues. 332This is done using the following code: 333 334.. code-block:: c 335 336 /* 337 * Read packet from RX queues 338 */ 339 340 for (i = 0; i < qconf->n_rx_port; i++) { 341 portid = qconf->rx_port_list[i]; 342 nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST); 343 344 for (j = 0; j < nb_rx; j++) { 345 m = pkts_burst[j]; 346 rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid); 347 } 348 } 349 350Packets are read in a burst of size MAX_PKT_BURST. 351The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 352 353Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. 354The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses if MAC 355addresses updating is enabled. 356 357.. note:: 358 359 In the following code, one line for getting the output port requires some explanation. 360 361During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port, 362a destination port is assigned that is either the next or previous enabled port from the portmask. 363Naturally, the number of ports in the portmask must be even, otherwise, the application exits. 364 365.. code-block:: c 366 367 static void 368 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 369 { 370 struct rte_ether_hdr *eth; 371 void *tmp; 372 unsigned dst_port; 373 374 dst_port = l2fwd_dst_ports[portid]; 375 376 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 377 378 /* 02:00:00:00:00:xx */ 379 380 tmp = ð->d_addr.addr_bytes[0]; 381 382 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40); 383 384 /* src addr */ 385 386 rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 387 388 l2fwd_send_packet(m, (uint8_t) dst_port); 389 } 390 391Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. 392For this test application, the processing is exactly the same for all packets arriving on the same RX port. 393Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop 394to send all the received packets on the same TX port, 395using the burst-oriented send function, which is more efficient. 396 397However, in real-life applications (such as, L3 routing), 398packet N is not necessarily forwarded on the same port as packet N-1. 399The application is implemented to illustrate that, so the same approach can be reused in a more complex application. 400 401The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. 402If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function: 403 404.. code-block:: c 405 406 /* Send the packet on an output interface */ 407 408 static int 409 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) 410 { 411 unsigned lcore_id, len; 412 struct lcore_queue_conf *qconf; 413 414 lcore_id = rte_lcore_id(); 415 qconf = &lcore_queue_conf[lcore_id]; 416 len = qconf->tx_mbufs[port].len; 417 qconf->tx_mbufs[port].m_table[len] = m; 418 len++; 419 420 /* enough pkts to be sent */ 421 422 if (unlikely(len == MAX_PKT_BURST)) { 423 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 424 len = 0; 425 } 426 427 qconf->tx_mbufs[port].len = len; return 0; 428 } 429 430To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop. 431This technique introduces some latency when there are not many packets to send, 432however it improves performance: 433 434.. code-block:: c 435 436 cur_tsc = rte_rdtsc(); 437 438 /* 439 * TX burst queue drain 440 */ 441 442 diff_tsc = cur_tsc - prev_tsc; 443 444 if (unlikely(diff_tsc > drain_tsc)) { 445 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 446 if (qconf->tx_mbufs[portid].len == 0) 447 continue; 448 449 l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid); 450 451 qconf->tx_mbufs[portid].len = 0; 452 } 453 454 /* if timer is enabled */ 455 456 if (timer_period > 0) { 457 /* advance the timer */ 458 459 timer_tsc += diff_tsc; 460 461 /* if timer has reached its timeout */ 462 463 if (unlikely(timer_tsc >= (uint64_t) timer_period)) { 464 /* do this only on master core */ 465 466 if (lcore_id == rte_get_master_lcore()) { 467 print_stats(); 468 469 /* reset the timer */ 470 timer_tsc = 0; 471 } 472 } 473 } 474 475 prev_tsc = cur_tsc; 476 } 477