1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2010-2015 Intel Corporation. 3 4L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics. 5================================================================================================== 6 7The L2 Forwarding sample application is a simple example of packet processing using 8the Data Plane Development Kit (DPDK) which 9also takes advantage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment. 10 11.. note:: 12 13 This application is a variation of L2 Forwarding sample application. It demonstrate possible 14 scheme of job stats library usage therefore some parts of this document is identical with original 15 L2 forwarding application. 16 17Overview 18-------- 19 20The L2 Forwarding sample application, which can operate in real and virtualized environments, 21performs L2 forwarding for each packet that is received. 22The destination port is the adjacent port from the enabled portmask, that is, 23if the first four ports are enabled (portmask 0xf), 24ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other. 25Also, the MAC addresses are affected as follows: 26 27* The source MAC address is replaced by the TX port MAC address 28 29* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID 30 31This application can be used to benchmark performance using a traffic-generator, as shown in the :numref:`figure_l2_fwd_benchmark_setup_jobstats`. 32 33The application can also be used in a virtualized environment as shown in :numref:`figure_l2_fwd_virtenv_benchmark_setup_jobstats`. 34 35The L2 Forwarding application can also be used as a starting point for developing a new application based on the DPDK. 36 37.. _figure_l2_fwd_benchmark_setup_jobstats: 38 39.. figure:: img/l2_fwd_benchmark_setup.* 40 41 Performance Benchmark Setup (Basic Environment) 42 43.. _figure_l2_fwd_virtenv_benchmark_setup_jobstats: 44 45.. figure:: img/l2_fwd_virtenv_benchmark_setup.* 46 47 Performance Benchmark Setup (Virtualized Environment) 48 49 50Virtual Function Setup Instructions 51~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 52 53This application can use the virtual function available in the system and 54therefore can be used in a virtual machine without passing through 55the whole Network Device into a guest machine in a virtualized scenario. 56The virtual functions can be enabled in the host machine or the hypervisor with the respective physical function driver. 57 58For example, in a Linux* host machine, it is possible to enable a virtual function using the following command: 59 60.. code-block:: console 61 62 modprobe ixgbe max_vfs=2,2 63 64This command enables two Virtual Functions on each of Physical Function of the NIC, 65with two physical ports in the PCI configuration space. 66It is important to note that enabled Virtual Function 0 and 2 would belong to Physical Function 0 67and Virtual Function 1 and 3 would belong to Physical Function 1, 68in this case enabling a total of four Virtual Functions. 69 70Compiling the Application 71------------------------- 72 73To compile the sample application see :doc:`compiling`. 74 75The application is located in the ``l2fwd-jobstats`` sub-directory. 76 77Running the Application 78----------------------- 79 80The application requires a number of command line options: 81 82.. code-block:: console 83 84 ./<build_dir>/examples/dpdk-l2fwd-jobstats [EAL options] -- -p PORTMASK [-q NQ] [-l] 85 86where, 87 88* p PORTMASK: A hexadecimal bitmask of the ports to configure 89 90* q NQ: A number of queues (=ports) per lcore (default is 1) 91 92* l: Use locale thousands separator when formatting big numbers. 93 94To run the application in linux environment with 4 lcores, 16 ports, 8 RX queues per lcore and 95thousands separator printing, issue the command: 96 97.. code-block:: console 98 99 $ ./<build_dir>/examples/dpdk-l2fwd-jobstats -l 0-3 -n 4 -- -q 8 -p ffff -l 100 101Refer to the *DPDK Getting Started Guide* for general information on running applications 102and the Environment Abstraction Layer (EAL) options. 103 104Explanation 105----------- 106 107The following sections provide some explanation of the code. 108 109Command Line Arguments 110~~~~~~~~~~~~~~~~~~~~~~ 111 112The L2 Forwarding sample application takes specific parameters, 113in addition to Environment Abstraction Layer (EAL) arguments 114(see `Running the Application`_). 115The preferred way to parse parameters is to use the getopt() function, 116since it is part of a well-defined and portable library. 117 118The parsing of arguments is done in the l2fwd_parse_args() function. 119The method of argument parsing is not described here. 120Refer to the *glibc getopt(3)* man page for details. 121 122EAL arguments are parsed first, then application-specific arguments. 123This is done at the beginning of the main() function: 124 125.. code-block:: c 126 127 /* init EAL */ 128 129 ret = rte_eal_init(argc, argv); 130 if (ret < 0) 131 rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n"); 132 133 argc -= ret; 134 argv += ret; 135 136 /* parse application arguments (after the EAL ones) */ 137 138 ret = l2fwd_parse_args(argc, argv); 139 if (ret < 0) 140 rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n"); 141 142Mbuf Pool Initialization 143~~~~~~~~~~~~~~~~~~~~~~~~ 144 145Once the arguments are parsed, the mbuf pool is created. 146The mbuf pool contains a set of mbuf objects that will be used by the driver 147and the application to store network packet data: 148 149.. code-block:: c 150 151 /* create the mbuf pool */ 152 l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 153 MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, 154 rte_socket_id()); 155 156 if (l2fwd_pktmbuf_pool == NULL) 157 rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n"); 158 159The rte_mempool is a generic structure used to handle pools of objects. 160In this case, it is necessary to create a pool that will be used by the driver. 161The number of allocated pkt mbufs is NB_MBUF, with a data room size of 162RTE_MBUF_DEFAULT_BUF_SIZE each. 163A per-lcore cache of MEMPOOL_CACHE_SIZE mbufs is kept. 164The memory is allocated in rte_socket_id() socket, 165but it is possible to extend this code to allocate one mbuf pool per socket. 166 167The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf 168initializers, respectively rte_pktmbuf_pool_init() and rte_pktmbuf_init(). 169An advanced application may want to use the mempool API to create the 170mbuf pool with more control. 171 172Driver Initialization 173~~~~~~~~~~~~~~~~~~~~~ 174 175The main part of the code in the main() function relates to the initialization of the driver. 176To fully understand this code, it is recommended to study the chapters that related to the Poll Mode Driver 177in the *DPDK Programmer's Guide* and the *DPDK API Reference*. 178 179.. code-block:: c 180 181 /* reset l2fwd_dst_ports */ 182 183 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) 184 l2fwd_dst_ports[portid] = 0; 185 186 last_port = 0; 187 188 /* 189 * Each logical core is assigned a dedicated TX queue on each port. 190 */ 191 RTE_ETH_FOREACH_DEV(portid) { 192 /* skip ports that are not enabled */ 193 if ((l2fwd_enabled_port_mask & (1 << portid)) == 0) 194 continue; 195 196 if (nb_ports_in_mask % 2) { 197 l2fwd_dst_ports[portid] = last_port; 198 l2fwd_dst_ports[last_port] = portid; 199 } 200 else 201 last_port = portid; 202 203 nb_ports_in_mask++; 204 205 rte_eth_dev_info_get((uint8_t) portid, &dev_info); 206 } 207 208The next step is to configure the RX and TX queues. 209For each port, there is only one RX queue (only one lcore is able to poll a given port). 210The number of TX queues depends on the number of available lcores. 211The rte_eth_dev_configure() function is used to configure the number of queues for a port: 212 213.. code-block:: c 214 215 ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf); 216 if (ret < 0) 217 rte_exit(EXIT_FAILURE, "Cannot configure device: " 218 "err=%d, port=%u\n", 219 ret, portid); 220 221RX Queue Initialization 222~~~~~~~~~~~~~~~~~~~~~~~ 223 224The application uses one lcore to poll one or several ports, depending on the -q option, 225which specifies the number of queues per lcore. 226 227For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. 228If there are 16 ports on the target (and if the portmask argument is -p ffff ), 229the application will need four lcores to poll all the ports. 230 231.. code-block:: c 232 233 ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd, 234 rte_eth_dev_socket_id(portid), 235 NULL, 236 l2fwd_pktmbuf_pool); 237 238 if (ret < 0) 239 rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n", 240 ret, (unsigned) portid); 241 242The list of queues that must be polled for a given lcore is stored in a private structure called struct lcore_queue_conf. 243 244.. code-block:: c 245 246 struct lcore_queue_conf { 247 unsigned n_rx_port; 248 unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; 249 truct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS]; 250 251 struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE]; 252 struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE]; 253 254 struct rte_timer flush_timer; 255 struct rte_jobstats flush_job; 256 struct rte_jobstats idle_job; 257 struct rte_jobstats_context jobs_context; 258 259 rte_atomic16_t stats_read_pending; 260 rte_spinlock_t lock; 261 } __rte_cache_aligned; 262 263Values of struct lcore_queue_conf: 264 265* n_rx_port and rx_port_list[] are used in the main packet processing loop 266 (see Section `Receive, Process and Transmit Packets`_ later in this chapter). 267 268* rx_timers and flush_timer are used to ensure forced TX on low packet rate. 269 270* flush_job, idle_job and jobs_context are librte_jobstats objects used for managing l2fwd jobs. 271 272* stats_read_pending and lock are used during job stats read phase. 273 274TX Queue Initialization 275~~~~~~~~~~~~~~~~~~~~~~~ 276 277Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized. 278 279.. code-block:: c 280 281 /* init one TX queue on each port */ 282 283 fflush(stdout); 284 ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, 285 rte_eth_dev_socket_id(portid), 286 NULL); 287 if (ret < 0) 288 rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", 289 ret, (unsigned) portid); 290 291Jobs statistics initialization 292~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 293There are several statistics objects available: 294 295* Flush job statistics 296 297.. code-block:: c 298 299 rte_jobstats_init(&qconf->flush_job, "flush", drain_tsc, drain_tsc, 300 drain_tsc, 0); 301 302 rte_timer_init(&qconf->flush_timer); 303 ret = rte_timer_reset(&qconf->flush_timer, drain_tsc, PERIODICAL, 304 lcore_id, &l2fwd_flush_job, NULL); 305 306 if (ret < 0) { 307 rte_exit(1, "Failed to reset flush job timer for lcore %u: %s", 308 lcore_id, rte_strerror(-ret)); 309 } 310 311* Statistics per RX port 312 313.. code-block:: c 314 315 rte_jobstats_init(job, name, 0, drain_tsc, 0, MAX_PKT_BURST); 316 rte_jobstats_set_update_period_function(job, l2fwd_job_update_cb); 317 318 rte_timer_init(&qconf->rx_timers[i]); 319 ret = rte_timer_reset(&qconf->rx_timers[i], 0, PERIODICAL, lcore_id, 320 l2fwd_fwd_job, (void *)(uintptr_t)i); 321 322 if (ret < 0) { 323 rte_exit(1, "Failed to reset lcore %u port %u job timer: %s", 324 lcore_id, qconf->rx_port_list[i], rte_strerror(-ret)); 325 } 326 327Following parameters are passed to rte_jobstats_init(): 328 329* 0 as minimal poll period 330 331* drain_tsc as maximum poll period 332 333* MAX_PKT_BURST as desired target value (RX burst size) 334 335Main loop 336~~~~~~~~~ 337 338The forwarding path is reworked comparing to original L2 Forwarding application. 339In the l2fwd_main_loop() function three loops are placed. 340 341.. code-block:: c 342 343 for (;;) { 344 rte_spinlock_lock(&qconf->lock); 345 346 do { 347 rte_jobstats_context_start(&qconf->jobs_context); 348 349 /* Do the Idle job: 350 * - Read stats_read_pending flag 351 * - check if some real job need to be executed 352 */ 353 rte_jobstats_start(&qconf->jobs_context, &qconf->idle_job); 354 355 do { 356 uint8_t i; 357 uint64_t now = rte_get_timer_cycles(); 358 359 need_manage = qconf->flush_timer.expire < now; 360 /* Check if we was esked to give a stats. */ 361 stats_read_pending = 362 rte_atomic16_read(&qconf->stats_read_pending); 363 need_manage |= stats_read_pending; 364 365 for (i = 0; i < qconf->n_rx_port && !need_manage; i++) 366 need_manage = qconf->rx_timers[i].expire < now; 367 368 } while (!need_manage); 369 rte_jobstats_finish(&qconf->idle_job, qconf->idle_job.target); 370 371 rte_timer_manage(); 372 rte_jobstats_context_finish(&qconf->jobs_context); 373 } while (likely(stats_read_pending == 0)); 374 375 rte_spinlock_unlock(&qconf->lock); 376 rte_pause(); 377 } 378 379First infinite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when asked. 380 381Second inner while loop do the whole jobs management. When any job is ready, the use rte_timer_manage() is used to call the job handler. 382In this place functions l2fwd_fwd_job() and l2fwd_flush_job() are called when needed. 383Then rte_jobstats_context_finish() is called to mark loop end - no other jobs are ready to execute. By this time stats are ready to be read 384and if stats_read_pending is set, loop breaks allowing stats to be read. 385 386Third do-while loop is the idle job (idle stats counter). Its only purpose is monitoring if any job is ready or stats job read is pending 387for this lcore. Statistics from this part of code is considered as the headroom available for additional processing. 388 389Receive, Process and Transmit Packets 390~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 391 392The main task of l2fwd_fwd_job() function is to read ingress packets from the RX queue of particular port and forward it. 393This is done using the following code: 394 395.. code-block:: c 396 397 total_nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, 398 MAX_PKT_BURST); 399 400 for (j = 0; j < total_nb_rx; j++) { 401 m = pkts_burst[j]; 402 rte_prefetch0(rte_pktmbuf_mtod(m, void *)); 403 l2fwd_simple_forward(m, portid); 404 } 405 406Packets are read in a burst of size MAX_PKT_BURST. 407Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. 408The processing is very simple: process the TX port from the RX port, then replace the source and destination MAC addresses. 409 410The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of available mbufs in the table. 411 412After first read second try is issued. 413 414.. code-block:: c 415 416 if (total_nb_rx == MAX_PKT_BURST) { 417 const uint16_t nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, 418 MAX_PKT_BURST); 419 420 total_nb_rx += nb_rx; 421 for (j = 0; j < nb_rx; j++) { 422 m = pkts_burst[j]; 423 rte_prefetch0(rte_pktmbuf_mtod(m, void *)); 424 l2fwd_simple_forward(m, portid); 425 } 426 } 427 428This second read is important to give job stats library a feedback how many packets was processed. 429 430.. code-block:: c 431 432 /* Adjust period time in which we are running here. */ 433 if (rte_jobstats_finish(job, total_nb_rx) != 0) { 434 rte_timer_reset(&qconf->rx_timers[port_idx], job->period, PERIODICAL, 435 lcore_id, l2fwd_fwd_job, arg); 436 } 437 438To maximize performance exactly MAX_PKT_BURST is expected (the target value) to be read for each l2fwd_fwd_job() call. 439If total_nb_rx is smaller than target value job->period will be increased. If it is greater the period will be decreased. 440 441.. note:: 442 443 In the following code, one line for getting the output port requires some explanation. 444 445During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that for each source port, 446a destination port is assigned that is either the next or previous enabled port from the portmask. 447Naturally, the number of ports in the portmask must be even, otherwise, the application exits. 448 449.. code-block:: c 450 451 static void 452 l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid) 453 { 454 struct rte_ether_hdr *eth; 455 void *tmp; 456 unsigned dst_port; 457 458 dst_port = l2fwd_dst_ports[portid]; 459 460 eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 461 462 /* 02:00:00:00:00:xx */ 463 464 tmp = ð->d_addr.addr_bytes[0]; 465 466 *((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40); 467 468 /* src addr */ 469 470 rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr); 471 472 l2fwd_send_packet(m, (uint8_t) dst_port); 473 } 474 475Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. 476For this test application, the processing is exactly the same for all packets arriving on the same RX port. 477Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the main loop 478to send all the received packets on the same TX port, 479using the burst-oriented send function, which is more efficient. 480 481However, in real-life applications (such as, L3 routing), 482packet N is not necessarily forwarded on the same port as packet N-1. 483The application is implemented to illustrate that, so the same approach can be reused in a more complex application. 484 485The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. 486If the table is full, the whole packets table is transmitted using the l2fwd_send_burst() function: 487 488.. code-block:: c 489 490 /* Send the packet on an output interface */ 491 492 static int 493 l2fwd_send_packet(struct rte_mbuf *m, uint16_t port) 494 { 495 unsigned lcore_id, len; 496 struct lcore_queue_conf *qconf; 497 498 lcore_id = rte_lcore_id(); 499 qconf = &lcore_queue_conf[lcore_id]; 500 len = qconf->tx_mbufs[port].len; 501 qconf->tx_mbufs[port].m_table[len] = m; 502 len++; 503 504 /* enough pkts to be sent */ 505 506 if (unlikely(len == MAX_PKT_BURST)) { 507 l2fwd_send_burst(qconf, MAX_PKT_BURST, port); 508 len = 0; 509 } 510 511 qconf->tx_mbufs[port].len = len; return 0; 512 } 513 514To ensure that no packets remain in the tables, the flush job exists. The l2fwd_flush_job() 515is called periodically to for each lcore draining TX queue of each port. 516This technique introduces some latency when there are not many packets to send, 517however it improves performance: 518 519.. code-block:: c 520 521 static void 522 l2fwd_flush_job(__rte_unused struct rte_timer *timer, __rte_unused void *arg) 523 { 524 uint64_t now; 525 unsigned lcore_id; 526 struct lcore_queue_conf *qconf; 527 struct mbuf_table *m_table; 528 uint16_t portid; 529 530 lcore_id = rte_lcore_id(); 531 qconf = &lcore_queue_conf[lcore_id]; 532 533 rte_jobstats_start(&qconf->jobs_context, &qconf->flush_job); 534 535 now = rte_get_timer_cycles(); 536 lcore_id = rte_lcore_id(); 537 qconf = &lcore_queue_conf[lcore_id]; 538 for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) { 539 m_table = &qconf->tx_mbufs[portid]; 540 if (m_table->len == 0 || m_table->next_flush_time <= now) 541 continue; 542 543 l2fwd_send_burst(qconf, portid); 544 } 545 546 547 /* Pass target to indicate that this job is happy of time interval 548 * in which it was called. */ 549 rte_jobstats_finish(&qconf->flush_job, qconf->flush_job.target); 550 } 551