xref: /dpdk/doc/guides/sample_app_ug/ipsec_secgw.rst (revision e11bdd37745229bf26b557305c07d118c3dbaad7)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2016-2017 Intel Corporation.
3    Copyright (C) 2020 Marvell International Ltd.
4
5IPsec Security Gateway Sample Application
6=========================================
7
8The IPsec Security Gateway application is an example of a "real world"
9application using DPDK cryptodev framework.
10
11Overview
12--------
13
14The application demonstrates the implementation of a Security Gateway
15(not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301,
16RFC4303, RFC3602 and RFC2404.
17
18Internet Key Exchange (IKE) is not implemented, so only manual setting of
19Security Policies and Security Associations is supported.
20
21The Security Policies (SP) are implemented as ACL rules, the Security
22Associations (SA) are stored in a table and the routing is implemented
23using LPM.
24
25The application classifies the ports as *Protected* and *Unprotected*.
26Thus, traffic received on an Unprotected or Protected port is consider
27Inbound or Outbound respectively.
28
29The application also supports complete IPsec protocol offload to hardware
30(Look aside crypto accelerator or using ethernet device). It also support
31inline ipsec processing by the supported ethernet device during transmission.
32These modes can be selected during the SA creation configuration.
33
34In case of complete protocol offload, the processing of headers(ESP and outer
35IP header) is done by the hardware and the application does not need to
36add/remove them during outbound/inbound processing.
37
38For inline offloaded outbound traffic, the application will not do the LPM
39lookup for routing, as the port on which the packet has to be forwarded will be
40part of the SA. Security parameters will be configured on that port only, and
41sending the packet on other ports could result in unencrypted packets being
42sent out.
43
44The Path for IPsec Inbound traffic is:
45
46*  Read packets from the port.
47*  Classify packets between IPv4 and ESP.
48*  Perform Inbound SA lookup for ESP packets based on their SPI.
49*  Perform Verification/Decryption (Not needed in case of inline ipsec).
50*  Remove ESP and outer IP header (Not needed in case of protocol offload).
51*  Inbound SP check using ACL of decrypted packets and any other IPv4 packets.
52*  Routing.
53*  Write packet to port.
54
55The Path for the IPsec Outbound traffic is:
56
57*  Read packets from the port.
58*  Perform Outbound SP check using ACL of all IPv4 traffic.
59*  Perform Outbound SA lookup for packets that need IPsec protection.
60*  Add ESP and outer IP header (Not needed in case protocol offload).
61*  Perform Encryption/Digest (Not needed in case of inline ipsec).
62*  Routing.
63*  Write packet to port.
64
65The application supports two modes of operation: poll mode and event mode.
66
67* In the poll mode a core receives packets from statically configured list
68  of eth ports and eth ports' queues.
69
70* In the event mode a core receives packets as events. After packet processing
71  is done core submits them back as events to an event device. This enables
72  multicore scaling and HW assisted scheduling by making use of the event device
73  capabilities. The event mode configuration is predefined. All packets reaching
74  given eth port will arrive at the same event queue. All event queues are mapped
75  to all event ports. This allows all cores to receive traffic from all ports.
76  Since the underlying event device might have varying capabilities, the worker
77  threads can be drafted differently to maximize performance. For example, if an
78  event device - eth device pair has Tx internal port, then application can call
79  rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst().
80  So a thread which assumes that the device pair has internal port will not be the
81  right solution for another pair. The infrastructure added for the event mode aims
82  to help application to have multiple worker threads by maximizing performance from
83  every type of event device without affecting existing paths/use cases. The worker
84  to be used will be determined by the operating conditions and the underlying device
85  capabilities. **Currently the application provides non-burst, internal port worker
86  threads and supports inline protocol only.** It also provides infrastructure for
87  non-internal port however does not define any worker threads.
88
89Additionally the event mode introduces two submodes of processing packets:
90
91* Driver submode: This submode has bare minimum changes in the application to support
92  IPsec. There are no lookups, no routing done in the application. And for inline
93  protocol use case, the worker thread resembles l2fwd worker thread as the IPsec
94  processing is done entirely in HW. This mode can be used to benchmark the raw
95  performance of the HW. The driver submode is selected with --single-sa option
96  (used also by poll mode). When --single-sa option is used in conjution with event
97  mode then index passed to --single-sa is ignored.
98
99* App submode: This submode has all the features currently implemented with the
100  application (non librte_ipsec path). All the lookups, routing follows existing
101  methods and report numbers that can be compared against regular poll mode
102  benchmark numbers.
103
104Constraints
105-----------
106
107*  No IPv6 options headers.
108*  No AH mode.
109*  Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1 and NULL.
110*  Each SA must be handle by a unique lcore (*1 RX queue per port*).
111
112Compiling the Application
113-------------------------
114
115To compile the sample application see :doc:`compiling`.
116
117The application is located in the ``ipsec-secgw`` sub-directory.
118
119#. [Optional] Build the application for debugging:
120   This option adds some extra flags, disables compiler optimizations and
121   is verbose::
122
123       make DEBUG=1
124
125
126Running the Application
127-----------------------
128
129The application has a number of command line options::
130
131
132   ./build/ipsec-secgw [EAL options] --
133                        -p PORTMASK -P -u PORTMASK -j FRAMESIZE
134                        -l -w REPLAY_WINOW_SIZE -e -a
135                        -c SAD_CACHE_SIZE
136                        -s NUMBER_OF_MBUFS_IN_PACKET_POOL
137                        -f CONFIG_FILE_PATH
138                        --config (port,queue,lcore)[,(port,queue,lcore)]
139                        --single-sa SAIDX
140                        --cryptodev_mask MASK
141                        --transfer-mode MODE
142                        --event-schedule-type TYPE
143                        --rxoffload MASK
144                        --txoffload MASK
145                        --reassemble NUM
146                        --mtu MTU
147                        --frag-ttl FRAG_TTL_NS
148
149Where:
150
151*   ``-p PORTMASK``: Hexadecimal bitmask of ports to configure.
152
153*   ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are
154    accepted regardless of the packet's Ethernet MAC destination address.
155    Without this option, only packets with the Ethernet MAC destination address
156    set to the Ethernet address of the port are accepted (default is enabled).
157
158*   ``-u PORTMASK``: hexadecimal bitmask of unprotected ports
159
160*   ``-j FRAMESIZE``: *optional*. data buffer size (in bytes),
161    in other words maximum data size for one segment.
162    Packets with length bigger then FRAMESIZE still can be received,
163    but will be segmented.
164    Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
165    Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
166    Maximum value: UINT16_MAX (65535).
167
168*   ``-l``: enables code-path that uses librte_ipsec.
169
170*   ``-w REPLAY_WINOW_SIZE``: specifies the IPsec sequence number replay window
171    size for each Security Association (available only with librte_ipsec
172    code path).
173
174*   ``-e``: enables Security Association extended sequence number processing
175    (available only with librte_ipsec code path).
176
177*   ``-a``: enables Security Association sequence number atomic behavior
178    (available only with librte_ipsec code path).
179
180*   ``-c``: specifies the SAD cache size. Stores the most recent SA in a per
181    lcore cache. Cache represents flat array containing SA's indexed by SPI.
182    Zero value disables cache.
183    Default value: 128.
184
185*   ``-s``: sets number of mbufs in packet pool, if not provided number of mbufs
186    will be calculated based on number of cores, eth ports and crypto queues.
187
188*   ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all
189    configuration items for running the application (See Configuration file
190    syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified.
191    **ONLY** the UNIX format configuration file is accepted.
192
193*   ``--config (port,queue,lcore)[,(port,queue,lcore)]``: in poll mode determines
194    which queues from which ports are mapped to which cores. In event mode this
195    option is not used as packets are dynamically scheduled to cores by HW.
196
197*   ``--single-sa SAIDX``: in poll mode use a single SA for outbound traffic,
198    bypassing the SP on both Inbound and Outbound. This option is meant for
199    debugging/performance purposes. In event mode selects driver submode, SA index
200    value is ignored.
201
202*   ``--cryptodev_mask MASK``: hexadecimal bitmask of the crypto devices
203    to configure.
204
205*   ``--transfer-mode MODE``: sets operating mode of the application
206    "poll"  : packet transfer via polling (default)
207    "event" : Packet transfer via event device
208
209*   ``--event-schedule-type TYPE``: queue schedule type, applies only when
210    --transfer-mode is set to event.
211    "ordered"  : Ordered (default)
212    "atomic"   : Atomic
213    "parallel" : Parallel
214    When --event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event
215    device will ensure the ordering. Ordering will be lost when tried in PARALLEL.
216
217*   ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port
218    (bitmask of DEV_RX_OFFLOAD_* values). It is an optional parameter and
219    allows user to disable some of the RX HW offload capabilities.
220    By default all HW RX offloads are enabled.
221
222*   ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port
223    (bitmask of DEV_TX_OFFLOAD_* values). It is an optional parameter and
224    allows user to disable some of the TX HW offload capabilities.
225    By default all HW TX offloads are enabled.
226
227*   ``--reassemble NUM``: max number of entries in reassemble fragment table.
228    Zero value disables reassembly functionality.
229    Default value: 0.
230
231*   ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports.
232    Outgoing packets with length bigger then MTU will be fragmented.
233    Incoming packets with length bigger then MTU will be discarded.
234    Default value: 1500.
235
236*   ``--frag-ttl FRAG_TTL_NS``: fragment lifetime (in nanoseconds).
237    If packet is not reassembled within this time, received fragments
238    will be discarded. Fragment lifetime should be decreased when
239    there is a high fragmented traffic loss in high bandwidth networks.
240    Should be lower for low number of reassembly buckets.
241    Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s).
242
243
244The mapping of lcores to port/queues is similar to other l3fwd applications.
245
246For example, given the following command line to run application in poll mode::
247
248    ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048       \
249           --vdev "crypto_null" -- -p 0xf -P -u 0x3             \
250           --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)"       \
251           -f /path/to/config_file --transfer-mode poll         \
252
253where each option means:
254
255*   The ``-l`` option enables cores 20 and 21.
256
257*   The ``-n`` option sets memory 4 channels.
258
259*   The ``--socket-mem`` to use 2GB on socket 1.
260
261*   The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD.
262
263*   The ``-p`` option enables ports (detected) 0, 1, 2 and 3.
264
265*   The ``-P`` option enables promiscuous mode.
266
267*   The ``-u`` option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected.
268
269*   The ``--config`` option enables one queue per port with the following mapping:
270
271    +----------+-----------+-----------+---------------------------------------+
272    | **Port** | **Queue** | **lcore** | **Description**                       |
273    |          |           |           |                                       |
274    +----------+-----------+-----------+---------------------------------------+
275    | 0        | 0         | 20        | Map queue 0 from port 0 to lcore 20.  |
276    |          |           |           |                                       |
277    +----------+-----------+-----------+---------------------------------------+
278    | 1        | 0         | 20        | Map queue 0 from port 1 to lcore 20.  |
279    |          |           |           |                                       |
280    +----------+-----------+-----------+---------------------------------------+
281    | 2        | 0         | 21        | Map queue 0 from port 2 to lcore 21.  |
282    |          |           |           |                                       |
283    +----------+-----------+-----------+---------------------------------------+
284    | 3        | 0         | 21        | Map queue 0 from port 3 to lcore 21.  |
285    |          |           |           |                                       |
286    +----------+-----------+-----------+---------------------------------------+
287
288*   The ``-f /path/to/config_file`` option enables the application read and
289    parse the configuration file specified, and configures the application
290    with a given set of SP, SA and Routing entries accordingly. The syntax of
291    the configuration file will be explained below in more detail. Please
292    **note** the parser only accepts UNIX format text file. Other formats
293    such as DOS/MAC format will cause a parse error.
294
295*   The ``--transfer-mode`` option selects poll mode for processing packets.
296
297Similarly for example, given the following command line to run application in
298event app mode::
299
300    ./build/ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1       \
301           -f /path/to/config_file --transfer-mode event \
302           --event-schedule-type parallel                \
303
304where each option means:
305
306*   The ``-c`` option selects cores 0 and 1 to run on.
307
308*   The ``-P`` option enables promiscuous mode.
309
310*   The ``-p`` option enables ports (detected) 0 and 1.
311
312*   The ``-u`` option sets ports 0 as unprotected, leaving 1 as protected.
313
314*   The ``-f /path/to/config_file`` option has the same behavior as in poll
315    mode example.
316
317*   The ``--transfer-mode`` option selects event mode for processing packets.
318
319*   The ``--event-schedule-type`` option selects parallel ordering of event queues.
320
321
322Refer to the *DPDK Getting Started Guide* for general information on running
323applications and the Environment Abstraction Layer (EAL) options.
324
325The application would do a best effort to "map" crypto devices to cores, with
326hardware devices having priority. Basically, hardware devices if present would
327be assigned to a core before software ones.
328This means that if the application is using a single core and both hardware
329and software crypto devices are detected, hardware devices will be used.
330
331A way to achieve the case where you want to force the use of virtual crypto
332devices is to whitelist the Ethernet devices needed and therefore implicitly
333blacklisting all hardware crypto devices.
334
335For example, something like the following command line:
336
337.. code-block:: console
338
339    ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
340            -w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3 \
341            --vdev "crypto_aesni_mb" --vdev "crypto_null" \
342	    -- \
343            -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
344            -f sample.cfg
345
346
347Configurations
348--------------
349
350The following sections provide the syntax of configurations to initialize
351your SP, SA, Routing and Neighbour tables.
352Configurations shall be specified in the configuration file to be passed to
353the application. The file is then parsed by the application. The successful
354parsing will result in the appropriate rules being applied to the tables
355accordingly.
356
357
358Configuration File Syntax
359~~~~~~~~~~~~~~~~~~~~~~~~~
360
361As mention in the overview, the Security Policies are ACL rules.
362The application parsers the rules specified in the configuration file and
363passes them to the ACL table, and replicates them per socket in use.
364
365Following are the configuration file syntax.
366
367General rule syntax
368^^^^^^^^^^^^^^^^^^^
369
370The parse treats one line in the configuration file as one configuration
371item (unless the line concatenation symbol exists). Every configuration
372item shall follow the syntax of either SP, SA, Routing or Neighbour
373rules specified below.
374
375The configuration parser supports the following special symbols:
376
377 * Comment symbol **#**. Any character from this symbol to the end of
378   line is treated as comment and will not be parsed.
379
380 * Line concatenation symbol **\\**. This symbol shall be placed in the end
381   of the line to be concatenated to the line below. Multiple lines'
382   concatenation is supported.
383
384
385SP rule syntax
386^^^^^^^^^^^^^^
387
388The SP rule syntax is shown as follows:
389
390.. code-block:: console
391
392    sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip>
393    <proto> <sport> <dport>
394
395
396where each options means:
397
398``<ip_ver>``
399
400 * IP protocol version
401
402 * Optional: No
403
404 * Available options:
405
406   * *ipv4*: IP protocol version 4
407   * *ipv6*: IP protocol version 6
408
409``<dir>``
410
411 * The traffic direction
412
413 * Optional: No
414
415 * Available options:
416
417   * *in*: inbound traffic
418   * *out*: outbound traffic
419
420``<action>``
421
422 * IPsec action
423
424 * Optional: No
425
426 * Available options:
427
428   * *protect <SA_idx>*: the specified traffic is protected by SA rule
429     with id SA_idx
430   * *bypass*: the specified traffic traffic is bypassed
431   * *discard*: the specified traffic is discarded
432
433``<priority>``
434
435 * Rule priority
436
437 * Optional: Yes, default priority 0 will be used
438
439 * Syntax: *pri <id>*
440
441``<src_ip>``
442
443 * The source IP address and mask
444
445 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
446
447 * Syntax:
448
449   * *src X.X.X.X/Y* for IPv4
450   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
451
452``<dst_ip>``
453
454 * The destination IP address and mask
455
456 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
457
458 * Syntax:
459
460   * *dst X.X.X.X/Y* for IPv4
461   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
462
463``<proto>``
464
465 * The protocol start and end range
466
467 * Optional: yes, default range of 0 to 0 will be used
468
469 * Syntax: *proto X:Y*
470
471``<sport>``
472
473 * The source port start and end range
474
475 * Optional: yes, default range of 0 to 0 will be used
476
477 * Syntax: *sport X:Y*
478
479``<dport>``
480
481 * The destination port start and end range
482
483 * Optional: yes, default range of 0 to 0 will be used
484
485 * Syntax: *dport X:Y*
486
487Example SP rules:
488
489.. code-block:: console
490
491    sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \
492    dport 0:65535
493
494    sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\
495    0000:0000/96 sport 0:65535 dport 0:65535
496
497
498SA rule syntax
499^^^^^^^^^^^^^^
500
501The successfully parsed SA rules will be stored in an array table.
502
503The SA rule syntax is shown as follows:
504
505.. code-block:: console
506
507    sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key>
508    <mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback>
509    <flow-direction> <port_id> <queue_id>
510
511where each options means:
512
513``<dir>``
514
515 * The traffic direction
516
517 * Optional: No
518
519 * Available options:
520
521   * *in*: inbound traffic
522   * *out*: outbound traffic
523
524``<spi>``
525
526 * The SPI number
527
528 * Optional: No
529
530 * Syntax: unsigned integer number
531
532``<cipher_algo>``
533
534 * Cipher algorithm
535
536 * Optional: Yes, unless <aead_algo> is not used
537
538 * Available options:
539
540   * *null*: NULL algorithm
541   * *aes-128-cbc*: AES-CBC 128-bit algorithm
542   * *aes-192-cbc*: AES-CBC 192-bit algorithm
543   * *aes-256-cbc*: AES-CBC 256-bit algorithm
544   * *aes-128-ctr*: AES-CTR 128-bit algorithm
545   * *3des-cbc*: 3DES-CBC 192-bit algorithm
546
547 * Syntax: *cipher_algo <your algorithm>*
548
549``<cipher_key>``
550
551 * Cipher key, NOT available when 'null' algorithm is used
552
553 * Optional: Yes, unless <aead_algo> is not used.
554   Must be followed by <cipher_algo> option
555
556 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
557   The number of bytes should be as same as the specified cipher algorithm
558   key size.
559
560   For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
561   A1:B2:C3:D4*
562
563``<auth_algo>``
564
565 * Authentication algorithm
566
567 * Optional: Yes, unless <aead_algo> is not used
568
569 * Available options:
570
571    * *null*: NULL algorithm
572    * *sha1-hmac*: HMAC SHA1 algorithm
573
574``<auth_key>``
575
576 * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm
577   is used.
578
579 * Optional: Yes, unless <aead_algo> is not used.
580   Must be followed by <auth_algo> option
581
582 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
583   The number of bytes should be as same as the specified authentication
584   algorithm key size.
585
586   For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
587   A1:B2:C3:D4*
588
589``<aead_algo>``
590
591 * AEAD algorithm
592
593 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used
594
595 * Available options:
596
597   * *aes-128-gcm*: AES-GCM 128-bit algorithm
598   * *aes-192-gcm*: AES-GCM 192-bit algorithm
599   * *aes-256-gcm*: AES-GCM 256-bit algorithm
600
601 * Syntax: *cipher_algo <your algorithm>*
602
603``<aead_key>``
604
605 * Cipher key, NOT available when 'null' algorithm is used
606
607 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used.
608   Must be followed by <aead_algo> option
609
610 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
611   Last 4 bytes of the provided key will be used as 'salt' and so, the
612   number of bytes should be same as the sum of specified AEAD algorithm
613   key size and salt size (4 bytes).
614
615   For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
616   A1:B2:C3:D4:A1:B2:C3:D4*
617
618``<mode>``
619
620 * The operation mode
621
622 * Optional: No
623
624 * Available options:
625
626   * *ipv4-tunnel*: Tunnel mode for IPv4 packets
627   * *ipv6-tunnel*: Tunnel mode for IPv6 packets
628   * *transport*: transport mode
629
630 * Syntax: mode XXX
631
632``<src_ip>``
633
634 * The source IP address. This option is not available when
635   transport mode is used
636
637 * Optional: Yes, default address 0.0.0.0 will be used
638
639 * Syntax:
640
641   * *src X.X.X.X* for IPv4
642   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6
643
644``<dst_ip>``
645
646 * The destination IP address. This option is not available when
647   transport mode is used
648
649 * Optional: Yes, default address 0.0.0.0 will be used
650
651 * Syntax:
652
653   * *dst X.X.X.X* for IPv4
654   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6
655
656``<type>``
657
658 * Action type to specify the security action. This option specify
659   the SA to be performed with look aside protocol offload to HW
660   accelerator or protocol offload on ethernet device or inline
661   crypto processing on the ethernet device during transmission.
662
663 * Optional: Yes, default type *no-offload*
664
665 * Available options:
666
667   * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator
668   * *inline-protocol-offload*: inline protocol offload on ethernet device
669   * *inline-crypto-offload*: inline crypto processing on ethernet device
670   * *no-offload*: no offloading to hardware
671
672 ``<port_id>``
673
674 * Port/device ID of the ethernet/crypto accelerator for which the SA is
675   configured. For *inline-crypto-offload* and *inline-protocol-offload*, this
676   port will be used for routing. The routing table will not be referred in
677   this case.
678
679 * Optional: No, if *type* is not *no-offload*
680
681 * Syntax:
682
683   * *port_id X* X is a valid device number in decimal
684
685 ``<fallback>``
686
687 * Action type for ingress IPsec packets that inline processor failed to
688   process. Only a combination of *inline-crypto-offload* as a primary
689   session and *lookaside-none* as a fall-back session is supported at the
690   moment.
691
692   If used in conjunction with IPsec window, its width needs be increased
693   due to different processing times of inline and lookaside modes which
694   results in packet reordering.
695
696 * Optional: Yes.
697
698 * Available options:
699
700   * *lookaside-none*: use automatically chosen cryptodev to process packets
701
702 * Syntax:
703
704   * *fallback lookaside-none*
705
706``<flow-direction>``
707
708 * Option for redirecting a specific inbound ipsec flow of a port to a specific
709   queue of that port.
710
711 * Optional: Yes.
712
713 * Available options:
714
715   * *port_id*: Port ID of the NIC for which the SA is configured.
716   * *queue_id*: Queue ID to which traffic should be redirected.
717
718Example SA rules:
719
720.. code-block:: console
721
722    sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \
723    src 172.16.1.5 dst 172.16.2.5
724
725    sa out 25 cipher_algo aes-128-cbc \
726    cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
727    auth_algo sha1-hmac \
728    auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
729    mode ipv6-tunnel \
730    src 1111:1111:1111:1111:1111:1111:1111:5555 \
731    dst 2222:2222:2222:2222:2222:2222:2222:5555
732
733    sa in 105 aead_algo aes-128-gcm \
734    aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
735    mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5
736
737    sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
738    auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
739    mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \
740    type lookaside-protocol-offload port_id 4
741
742    sa in 35 aead_algo aes-128-gcm \
743    aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
744    mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \
745    type inline-crypto-offload port_id 0
746
747    sa in 117 cipher_algo null auth_algo null mode ipv4-tunnel src 172.16.2.7 \
748    dst 172.16.1.7 flow-direction 0 2
749
750Routing rule syntax
751^^^^^^^^^^^^^^^^^^^
752
753The Routing rule syntax is shown as follows:
754
755.. code-block:: console
756
757    rt <ip_ver> <src_ip> <dst_ip> <port>
758
759
760where each options means:
761
762``<ip_ver>``
763
764 * IP protocol version
765
766 * Optional: No
767
768 * Available options:
769
770   * *ipv4*: IP protocol version 4
771   * *ipv6*: IP protocol version 6
772
773``<src_ip>``
774
775 * The source IP address and mask
776
777 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
778
779 * Syntax:
780
781   * *src X.X.X.X/Y* for IPv4
782   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
783
784``<dst_ip>``
785
786 * The destination IP address and mask
787
788 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
789
790 * Syntax:
791
792   * *dst X.X.X.X/Y* for IPv4
793   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
794
795``<port>``
796
797 * The traffic output port id
798
799 * Optional: yes, default output port 0 will be used
800
801 * Syntax: *port X*
802
803Example SP rules:
804
805.. code-block:: console
806
807    rt ipv4 dst 172.16.1.5/32 port 0
808
809    rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0
810
811Neighbour rule syntax
812^^^^^^^^^^^^^^^^^^^^^
813
814The Neighbour rule syntax is shown as follows:
815
816.. code-block:: console
817
818    neigh <port> <dst_mac>
819
820
821where each options means:
822
823``<port>``
824
825 * The output port id
826
827 * Optional: No
828
829 * Syntax: *port X*
830
831``<dst_mac>``
832
833 * The destination ethernet address to use for that port
834
835 * Optional: No
836
837 * Syntax:
838
839   * XX:XX:XX:XX:XX:XX
840
841Example Neighbour rules:
842
843.. code-block:: console
844
845    neigh port 0 DE:AD:BE:EF:01:02
846
847Test directory
848--------------
849
850The test directory contains scripts for testing the various encryption
851algorithms.
852
853The purpose of the scripts is to automate ipsec-secgw testing
854using another system running linux as a DUT.
855
856The user must setup the following environment variables:
857
858*   ``SGW_PATH``: path to the ipsec-secgw binary to test.
859
860*   ``REMOTE_HOST``: IP address/hostname of the DUT.
861
862*   ``REMOTE_IFACE``: interface name for the test-port on the DUT.
863
864*   ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-w <pci-id>')
865
866Also the user can optionally setup:
867
868*   ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0)
869
870*   ``CRYPTO_DEV``: crypto device to be used ('-w <pci-id>'). If none specified
871    appropriate vdevs will be created by the script
872
873Scripts can be used for multiple test scenarios. To check all available
874options run:
875
876.. code-block:: console
877
878    /bin/bash run_test.sh -h
879
880Note that most of the tests require the appropriate crypto PMD/device to be
881available.
882
883Server configuration
884~~~~~~~~~~~~~~~~~~~~
885
886Two servers are required for the tests, SUT and DUT.
887
888Make sure the user from the SUT can ssh to the DUT without entering the password.
889To enable this feature keys must be setup on the DUT.
890
891``ssh-keygen`` will make a private & public key pair on the SUT.
892
893``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public
894key to the DUT. It will ask for credentials so that it can upload the public key.
895
896The SUT and DUT are connected through at least 2 NIC ports.
897
898One NIC port is expected to be managed by linux on both machines and will be
899used as a control path.
900
901The second NIC port (test-port) should be bound to DPDK on the SUT, and should
902be managed by linux on the DUT.
903
904The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and
905``tap vdev``.
906
907It then configures the local tap interface and the remote interface and IPsec
908policies in the following way:
909
910Traffic going over the test-port in both directions has to be protected by IPsec.
911
912Traffic going over the TAP port in both directions does not have to be protected.
913
914i.e:
915
916DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS
917
918SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS
919
920It then tries to perform some data transfer using the scheme described above.
921
922Usage
923~~~~~
924
925In the ipsec-secgw/test directory run
926
927/bin/bash run_test.sh <options> <ipsec_mode>
928
929Available options:
930
931*   ``-4`` Perform tests with use of IPv4. One or both [-46] options needs to be
932    selected.
933
934*   ``-6`` Perform tests with use of IPv6. One or both [-46] options needs to be
935    selected.
936
937*   ``-m`` Add IPSec tunnel mixed IP version tests - outer IP version different
938    than inner. Inner IP version will match selected option [-46].
939
940*   ``-i`` Run tests in inline mode. Regular tests will not be invoked.
941
942*   ``-f`` Run tests for fallback mechanism. Regular tests will not be invoked.
943
944*   ``-l`` Run tests in legacy mode only. It cannot be used with options [-fsc].
945    On default library mode is used.
946
947*   ``-s`` Run all tests with reassembly support. On default only tests for
948    fallback mechanism use reassembly support.
949
950*   ``-c`` Run tests with use of cpu-crypto. For inline tests it will not be
951    applied. On default lookaside-none is used.
952
953*   ``-p`` Perform packet validation tests. Option [-46] is not required.
954
955*   ``-h`` Show usage.
956
957If <ipsec_mode> is specified, only tests for that mode will be invoked. For the
958list of available modes please refer to run_test.sh.