xref: /dpdk/doc/guides/sample_app_ug/ipsec_secgw.rst (revision 9cd9d3e702fba4700539c1a2eddac13dd14ecf70)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2016-2017 Intel Corporation.
3    Copyright (C) 2020 Marvell International Ltd.
4
5IPsec Security Gateway Sample Application
6=========================================
7
8The IPsec Security Gateway application is an example of a "real world"
9application using DPDK cryptodev framework.
10
11Overview
12--------
13
14The application demonstrates the implementation of a Security Gateway
15(not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301,
16RFC4303, RFC3602 and RFC2404.
17
18Internet Key Exchange (IKE) is not implemented, so only manual setting of
19Security Policies and Security Associations is supported.
20
21The Security Policies (SP) are implemented as ACL rules, the Security
22Associations (SA) are stored in a table and the routing is implemented
23using LPM.
24
25The application classifies the ports as *Protected* and *Unprotected*.
26Thus, traffic received on an Unprotected or Protected port is consider
27Inbound or Outbound respectively.
28
29The application also supports complete IPsec protocol offload to hardware
30(Look aside crypto accelerator or using ethernet device). It also support
31inline ipsec processing by the supported ethernet device during transmission.
32These modes can be selected during the SA creation configuration.
33
34In case of complete protocol offload, the processing of headers(ESP and outer
35IP header) is done by the hardware and the application does not need to
36add/remove them during outbound/inbound processing.
37
38For inline offloaded outbound traffic, the application will not do the LPM
39lookup for routing, as the port on which the packet has to be forwarded will be
40part of the SA. Security parameters will be configured on that port only, and
41sending the packet on other ports could result in unencrypted packets being
42sent out.
43
44The Path for IPsec Inbound traffic is:
45
46*  Read packets from the port.
47*  Classify packets between IPv4 and ESP.
48*  Perform Inbound SA lookup for ESP packets based on their SPI.
49*  Perform Verification/Decryption (Not needed in case of inline ipsec).
50*  Remove ESP and outer IP header (Not needed in case of protocol offload).
51*  Inbound SP check using ACL of decrypted packets and any other IPv4 packets.
52*  Routing.
53*  Write packet to port.
54
55The Path for the IPsec Outbound traffic is:
56
57*  Read packets from the port.
58*  Perform Outbound SP check using ACL of all IPv4 traffic.
59*  Perform Outbound SA lookup for packets that need IPsec protection.
60*  Add ESP and outer IP header (Not needed in case protocol offload).
61*  Perform Encryption/Digest (Not needed in case of inline ipsec).
62*  Routing.
63*  Write packet to port.
64
65The application supports two modes of operation: poll mode and event mode.
66
67* In the poll mode a core receives packets from statically configured list
68  of eth ports and eth ports' queues.
69
70* In the event mode a core receives packets as events. After packet processing
71  is done core submits them back as events to an event device. This enables
72  multicore scaling and HW assisted scheduling by making use of the event device
73  capabilities. The event mode configuration is predefined. All packets reaching
74  given eth port will arrive at the same event queue. All event queues are mapped
75  to all event ports. This allows all cores to receive traffic from all ports.
76  Since the underlying event device might have varying capabilities, the worker
77  threads can be drafted differently to maximize performance. For example, if an
78  event device - eth device pair has Tx internal port, then application can call
79  rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst().
80  So a thread which assumes that the device pair has internal port will not be the
81  right solution for another pair. The infrastructure added for the event mode aims
82  to help application to have multiple worker threads by maximizing performance from
83  every type of event device without affecting existing paths/use cases. The worker
84  to be used will be determined by the operating conditions and the underlying device
85  capabilities. **Currently the application provides non-burst, internal port worker
86  threads and supports inline protocol only.** It also provides infrastructure for
87  non-internal port however does not define any worker threads.
88
89Additionally the event mode introduces two submodes of processing packets:
90
91* Driver submode: This submode has bare minimum changes in the application to support
92  IPsec. There are no lookups, no routing done in the application. And for inline
93  protocol use case, the worker thread resembles l2fwd worker thread as the IPsec
94  processing is done entirely in HW. This mode can be used to benchmark the raw
95  performance of the HW. The driver submode is selected with --single-sa option
96  (used also by poll mode). When --single-sa option is used in conjution with event
97  mode then index passed to --single-sa is ignored.
98
99* App submode: This submode has all the features currently implemented with the
100  application (non librte_ipsec path). All the lookups, routing follows existing
101  methods and report numbers that can be compared against regular poll mode
102  benchmark numbers.
103
104Constraints
105-----------
106
107*  No IPv6 options headers.
108*  No AH mode.
109*  Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1 and NULL.
110*  Each SA must be handle by a unique lcore (*1 RX queue per port*).
111
112Compiling the Application
113-------------------------
114
115To compile the sample application see :doc:`compiling`.
116
117The application is located in the ``ipsec-secgw`` sub-directory.
118
119#. [Optional] Build the application for debugging:
120   This option adds some extra flags, disables compiler optimizations and
121   is verbose::
122
123       make DEBUG=1
124
125
126Running the Application
127-----------------------
128
129The application has a number of command line options::
130
131
132   ./build/ipsec-secgw [EAL options] --
133                        -p PORTMASK -P -u PORTMASK -j FRAMESIZE
134                        -l -w REPLAY_WINOW_SIZE -e -a
135                        -c SAD_CACHE_SIZE
136                        -s NUMBER_OF_MBUFS_IN_PACKET_POOL
137                        -f CONFIG_FILE_PATH
138                        --config (port,queue,lcore)[,(port,queue,lcore)]
139                        --single-sa SAIDX
140                        --cryptodev_mask MASK
141                        --transfer-mode MODE
142                        --event-schedule-type TYPE
143                        --rxoffload MASK
144                        --txoffload MASK
145                        --reassemble NUM
146                        --mtu MTU
147                        --frag-ttl FRAG_TTL_NS
148
149Where:
150
151*   ``-p PORTMASK``: Hexadecimal bitmask of ports to configure.
152
153*   ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are
154    accepted regardless of the packet's Ethernet MAC destination address.
155    Without this option, only packets with the Ethernet MAC destination address
156    set to the Ethernet address of the port are accepted (default is enabled).
157
158*   ``-u PORTMASK``: hexadecimal bitmask of unprotected ports
159
160*   ``-j FRAMESIZE``: *optional*. data buffer size (in bytes),
161    in other words maximum data size for one segment.
162    Packets with length bigger then FRAMESIZE still can be received,
163    but will be segmented.
164    Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
165    Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176)
166    Maximum value: UINT16_MAX (65535).
167
168*   ``-l``: enables code-path that uses librte_ipsec.
169
170*   ``-w REPLAY_WINOW_SIZE``: specifies the IPsec sequence number replay window
171    size for each Security Association (available only with librte_ipsec
172    code path).
173
174*   ``-e``: enables Security Association extended sequence number processing
175    (available only with librte_ipsec code path).
176
177*   ``-a``: enables Security Association sequence number atomic behavior
178    (available only with librte_ipsec code path).
179
180*   ``-c``: specifies the SAD cache size. Stores the most recent SA in a per
181    lcore cache. Cache represents flat array containing SA's indexed by SPI.
182    Zero value disables cache.
183    Default value: 128.
184
185*   ``-s``: sets number of mbufs in packet pool, if not provided number of mbufs
186    will be calculated based on number of cores, eth ports and crypto queues.
187
188*   ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all
189    configuration items for running the application (See Configuration file
190    syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified.
191    **ONLY** the UNIX format configuration file is accepted.
192
193*   ``--config (port,queue,lcore)[,(port,queue,lcore)]``: in poll mode determines
194    which queues from which ports are mapped to which cores. In event mode this
195    option is not used as packets are dynamically scheduled to cores by HW.
196
197*   ``--single-sa SAIDX``: in poll mode use a single SA for outbound traffic,
198    bypassing the SP on both Inbound and Outbound. This option is meant for
199    debugging/performance purposes. In event mode selects driver submode, SA index
200    value is ignored.
201
202*   ``--cryptodev_mask MASK``: hexadecimal bitmask of the crypto devices
203    to configure.
204
205*   ``--transfer-mode MODE``: sets operating mode of the application
206    "poll"  : packet transfer via polling (default)
207    "event" : Packet transfer via event device
208
209*   ``--event-schedule-type TYPE``: queue schedule type, applies only when
210    --transfer-mode is set to event.
211    "ordered"  : Ordered (default)
212    "atomic"   : Atomic
213    "parallel" : Parallel
214    When --event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event
215    device will ensure the ordering. Ordering will be lost when tried in PARALLEL.
216
217*   ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port
218    (bitmask of DEV_RX_OFFLOAD_* values). It is an optional parameter and
219    allows user to disable some of the RX HW offload capabilities.
220    By default all HW RX offloads are enabled.
221
222*   ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port
223    (bitmask of DEV_TX_OFFLOAD_* values). It is an optional parameter and
224    allows user to disable some of the TX HW offload capabilities.
225    By default all HW TX offloads are enabled.
226
227*   ``--reassemble NUM``: max number of entries in reassemble fragment table.
228    Zero value disables reassembly functionality.
229    Default value: 0.
230
231*   ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports.
232    Outgoing packets with length bigger then MTU will be fragmented.
233    Incoming packets with length bigger then MTU will be discarded.
234    Default value: 1500.
235
236*   ``--frag-ttl FRAG_TTL_NS``: fragment lifetime (in nanoseconds).
237    If packet is not reassembled within this time, received fragments
238    will be discarded. Fragment lifetime should be decreased when
239    there is a high fragmented traffic loss in high bandwidth networks.
240    Should be lower for low number of reassembly buckets.
241    Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s).
242
243
244The mapping of lcores to port/queues is similar to other l3fwd applications.
245
246For example, given the following command line to run application in poll mode::
247
248    ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048       \
249           --vdev "crypto_null" -- -p 0xf -P -u 0x3             \
250           --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)"       \
251           -f /path/to/config_file --transfer-mode poll         \
252
253where each option means:
254
255*   The ``-l`` option enables cores 20 and 21.
256
257*   The ``-n`` option sets memory 4 channels.
258
259*   The ``--socket-mem`` to use 2GB on socket 1.
260
261*   The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD.
262
263*   The ``-p`` option enables ports (detected) 0, 1, 2 and 3.
264
265*   The ``-P`` option enables promiscuous mode.
266
267*   The ``-u`` option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected.
268
269*   The ``--config`` option enables one queue per port with the following mapping:
270
271    +----------+-----------+-----------+---------------------------------------+
272    | **Port** | **Queue** | **lcore** | **Description**                       |
273    |          |           |           |                                       |
274    +----------+-----------+-----------+---------------------------------------+
275    | 0        | 0         | 20        | Map queue 0 from port 0 to lcore 20.  |
276    |          |           |           |                                       |
277    +----------+-----------+-----------+---------------------------------------+
278    | 1        | 0         | 20        | Map queue 0 from port 1 to lcore 20.  |
279    |          |           |           |                                       |
280    +----------+-----------+-----------+---------------------------------------+
281    | 2        | 0         | 21        | Map queue 0 from port 2 to lcore 21.  |
282    |          |           |           |                                       |
283    +----------+-----------+-----------+---------------------------------------+
284    | 3        | 0         | 21        | Map queue 0 from port 3 to lcore 21.  |
285    |          |           |           |                                       |
286    +----------+-----------+-----------+---------------------------------------+
287
288*   The ``-f /path/to/config_file`` option enables the application read and
289    parse the configuration file specified, and configures the application
290    with a given set of SP, SA and Routing entries accordingly. The syntax of
291    the configuration file will be explained below in more detail. Please
292    **note** the parser only accepts UNIX format text file. Other formats
293    such as DOS/MAC format will cause a parse error.
294
295*   The ``--transfer-mode`` option selects poll mode for processing packets.
296
297Similarly for example, given the following command line to run application in
298event app mode::
299
300    ./build/ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1       \
301           -f /path/to/config_file --transfer-mode event \
302           --event-schedule-type parallel                \
303
304where each option means:
305
306*   The ``-c`` option selects cores 0 and 1 to run on.
307
308*   The ``-P`` option enables promiscuous mode.
309
310*   The ``-p`` option enables ports (detected) 0 and 1.
311
312*   The ``-u`` option sets ports 0 as unprotected, leaving 1 as protected.
313
314*   The ``-f /path/to/config_file`` option has the same behavior as in poll
315    mode example.
316
317*   The ``--transfer-mode`` option selects event mode for processing packets.
318
319*   The ``--event-schedule-type`` option selects parallel ordering of event queues.
320
321
322Refer to the *DPDK Getting Started Guide* for general information on running
323applications and the Environment Abstraction Layer (EAL) options.
324
325The application would do a best effort to "map" crypto devices to cores, with
326hardware devices having priority. Basically, hardware devices if present would
327be assigned to a core before software ones.
328This means that if the application is using a single core and both hardware
329and software crypto devices are detected, hardware devices will be used.
330
331A way to achieve the case where you want to force the use of virtual crypto
332devices is to whitelist the Ethernet devices needed and therefore implicitly
333blacklisting all hardware crypto devices.
334
335For example, something like the following command line:
336
337.. code-block:: console
338
339    ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
340            -w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3 \
341            --vdev "crypto_aesni_mb" --vdev "crypto_null" \
342	    -- \
343            -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
344            -f sample.cfg
345
346
347Configurations
348--------------
349
350The following sections provide the syntax of configurations to initialize
351your SP, SA, Routing and Neighbour tables.
352Configurations shall be specified in the configuration file to be passed to
353the application. The file is then parsed by the application. The successful
354parsing will result in the appropriate rules being applied to the tables
355accordingly.
356
357
358Configuration File Syntax
359~~~~~~~~~~~~~~~~~~~~~~~~~
360
361As mention in the overview, the Security Policies are ACL rules.
362The application parsers the rules specified in the configuration file and
363passes them to the ACL table, and replicates them per socket in use.
364
365Following are the configuration file syntax.
366
367General rule syntax
368^^^^^^^^^^^^^^^^^^^
369
370The parse treats one line in the configuration file as one configuration
371item (unless the line concatenation symbol exists). Every configuration
372item shall follow the syntax of either SP, SA, Routing or Neighbour
373rules specified below.
374
375The configuration parser supports the following special symbols:
376
377 * Comment symbol **#**. Any character from this symbol to the end of
378   line is treated as comment and will not be parsed.
379
380 * Line concatenation symbol **\\**. This symbol shall be placed in the end
381   of the line to be concatenated to the line below. Multiple lines'
382   concatenation is supported.
383
384
385SP rule syntax
386^^^^^^^^^^^^^^
387
388The SP rule syntax is shown as follows:
389
390.. code-block:: console
391
392    sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip>
393    <proto> <sport> <dport>
394
395
396where each options means:
397
398``<ip_ver>``
399
400 * IP protocol version
401
402 * Optional: No
403
404 * Available options:
405
406   * *ipv4*: IP protocol version 4
407   * *ipv6*: IP protocol version 6
408
409``<dir>``
410
411 * The traffic direction
412
413 * Optional: No
414
415 * Available options:
416
417   * *in*: inbound traffic
418   * *out*: outbound traffic
419
420``<action>``
421
422 * IPsec action
423
424 * Optional: No
425
426 * Available options:
427
428   * *protect <SA_idx>*: the specified traffic is protected by SA rule
429     with id SA_idx
430   * *bypass*: the specified traffic traffic is bypassed
431   * *discard*: the specified traffic is discarded
432
433``<priority>``
434
435 * Rule priority
436
437 * Optional: Yes, default priority 0 will be used
438
439 * Syntax: *pri <id>*
440
441``<src_ip>``
442
443 * The source IP address and mask
444
445 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
446
447 * Syntax:
448
449   * *src X.X.X.X/Y* for IPv4
450   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
451
452``<dst_ip>``
453
454 * The destination IP address and mask
455
456 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
457
458 * Syntax:
459
460   * *dst X.X.X.X/Y* for IPv4
461   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
462
463``<proto>``
464
465 * The protocol start and end range
466
467 * Optional: yes, default range of 0 to 0 will be used
468
469 * Syntax: *proto X:Y*
470
471``<sport>``
472
473 * The source port start and end range
474
475 * Optional: yes, default range of 0 to 0 will be used
476
477 * Syntax: *sport X:Y*
478
479``<dport>``
480
481 * The destination port start and end range
482
483 * Optional: yes, default range of 0 to 0 will be used
484
485 * Syntax: *dport X:Y*
486
487Example SP rules:
488
489.. code-block:: console
490
491    sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \
492    dport 0:65535
493
494    sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\
495    0000:0000/96 sport 0:65535 dport 0:65535
496
497
498SA rule syntax
499^^^^^^^^^^^^^^
500
501The successfully parsed SA rules will be stored in an array table.
502
503The SA rule syntax is shown as follows:
504
505.. code-block:: console
506
507    sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key>
508    <mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback>
509
510where each options means:
511
512``<dir>``
513
514 * The traffic direction
515
516 * Optional: No
517
518 * Available options:
519
520   * *in*: inbound traffic
521   * *out*: outbound traffic
522
523``<spi>``
524
525 * The SPI number
526
527 * Optional: No
528
529 * Syntax: unsigned integer number
530
531``<cipher_algo>``
532
533 * Cipher algorithm
534
535 * Optional: Yes, unless <aead_algo> is not used
536
537 * Available options:
538
539   * *null*: NULL algorithm
540   * *aes-128-cbc*: AES-CBC 128-bit algorithm
541   * *aes-256-cbc*: AES-CBC 256-bit algorithm
542   * *aes-128-ctr*: AES-CTR 128-bit algorithm
543   * *3des-cbc*: 3DES-CBC 192-bit algorithm
544
545 * Syntax: *cipher_algo <your algorithm>*
546
547``<cipher_key>``
548
549 * Cipher key, NOT available when 'null' algorithm is used
550
551 * Optional: Yes, unless <aead_algo> is not used.
552   Must be followed by <cipher_algo> option
553
554 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
555   The number of bytes should be as same as the specified cipher algorithm
556   key size.
557
558   For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
559   A1:B2:C3:D4*
560
561``<auth_algo>``
562
563 * Authentication algorithm
564
565 * Optional: Yes, unless <aead_algo> is not used
566
567 * Available options:
568
569    * *null*: NULL algorithm
570    * *sha1-hmac*: HMAC SHA1 algorithm
571
572``<auth_key>``
573
574 * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm
575   is used.
576
577 * Optional: Yes, unless <aead_algo> is not used.
578   Must be followed by <auth_algo> option
579
580 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
581   The number of bytes should be as same as the specified authentication
582   algorithm key size.
583
584   For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
585   A1:B2:C3:D4*
586
587``<aead_algo>``
588
589 * AEAD algorithm
590
591 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used
592
593 * Available options:
594
595   * *aes-128-gcm*: AES-GCM 128-bit algorithm
596
597 * Syntax: *cipher_algo <your algorithm>*
598
599``<aead_key>``
600
601 * Cipher key, NOT available when 'null' algorithm is used
602
603 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used.
604   Must be followed by <aead_algo> option
605
606 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'.
607   The number of bytes should be as same as the specified AEAD algorithm
608   key size.
609
610   For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
611   A1:B2:C3:D4*
612
613``<mode>``
614
615 * The operation mode
616
617 * Optional: No
618
619 * Available options:
620
621   * *ipv4-tunnel*: Tunnel mode for IPv4 packets
622   * *ipv6-tunnel*: Tunnel mode for IPv6 packets
623   * *transport*: transport mode
624
625 * Syntax: mode XXX
626
627``<src_ip>``
628
629 * The source IP address. This option is not available when
630   transport mode is used
631
632 * Optional: Yes, default address 0.0.0.0 will be used
633
634 * Syntax:
635
636   * *src X.X.X.X* for IPv4
637   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6
638
639``<dst_ip>``
640
641 * The destination IP address. This option is not available when
642   transport mode is used
643
644 * Optional: Yes, default address 0.0.0.0 will be used
645
646 * Syntax:
647
648   * *dst X.X.X.X* for IPv4
649   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6
650
651``<type>``
652
653 * Action type to specify the security action. This option specify
654   the SA to be performed with look aside protocol offload to HW
655   accelerator or protocol offload on ethernet device or inline
656   crypto processing on the ethernet device during transmission.
657
658 * Optional: Yes, default type *no-offload*
659
660 * Available options:
661
662   * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator
663   * *inline-protocol-offload*: inline protocol offload on ethernet device
664   * *inline-crypto-offload*: inline crypto processing on ethernet device
665   * *no-offload*: no offloading to hardware
666
667 ``<port_id>``
668
669 * Port/device ID of the ethernet/crypto accelerator for which the SA is
670   configured. For *inline-crypto-offload* and *inline-protocol-offload*, this
671   port will be used for routing. The routing table will not be referred in
672   this case.
673
674 * Optional: No, if *type* is not *no-offload*
675
676 * Syntax:
677
678   * *port_id X* X is a valid device number in decimal
679
680 ``<fallback>``
681
682 * Action type for ingress IPsec packets that inline processor failed to
683   process. Only a combination of *inline-crypto-offload* as a primary
684   session and *lookaside-none* as a fall-back session is supported at the
685   moment.
686
687   If used in conjunction with IPsec window, its width needs be increased
688   due to different processing times of inline and lookaside modes which
689   results in packet reordering.
690
691 * Optional: Yes.
692
693 * Available options:
694
695   * *lookaside-none*: use automatically chosen cryptodev to process packets
696
697 * Syntax:
698
699   * *fallback lookaside-none*
700
701Example SA rules:
702
703.. code-block:: console
704
705    sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \
706    src 172.16.1.5 dst 172.16.2.5
707
708    sa out 25 cipher_algo aes-128-cbc \
709    cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
710    auth_algo sha1-hmac \
711    auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
712    mode ipv6-tunnel \
713    src 1111:1111:1111:1111:1111:1111:1111:5555 \
714    dst 2222:2222:2222:2222:2222:2222:2222:5555
715
716    sa in 105 aead_algo aes-128-gcm \
717    aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
718    mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5
719
720    sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
721    auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
722    mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \
723    type lookaside-protocol-offload port_id 4
724
725    sa in 35 aead_algo aes-128-gcm \
726    aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
727    mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \
728    type inline-crypto-offload port_id 0
729
730Routing rule syntax
731^^^^^^^^^^^^^^^^^^^
732
733The Routing rule syntax is shown as follows:
734
735.. code-block:: console
736
737    rt <ip_ver> <src_ip> <dst_ip> <port>
738
739
740where each options means:
741
742``<ip_ver>``
743
744 * IP protocol version
745
746 * Optional: No
747
748 * Available options:
749
750   * *ipv4*: IP protocol version 4
751   * *ipv6*: IP protocol version 6
752
753``<src_ip>``
754
755 * The source IP address and mask
756
757 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
758
759 * Syntax:
760
761   * *src X.X.X.X/Y* for IPv4
762   * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
763
764``<dst_ip>``
765
766 * The destination IP address and mask
767
768 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used
769
770 * Syntax:
771
772   * *dst X.X.X.X/Y* for IPv4
773   * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6
774
775``<port>``
776
777 * The traffic output port id
778
779 * Optional: yes, default output port 0 will be used
780
781 * Syntax: *port X*
782
783Example SP rules:
784
785.. code-block:: console
786
787    rt ipv4 dst 172.16.1.5/32 port 0
788
789    rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0
790
791Neighbour rule syntax
792^^^^^^^^^^^^^^^^^^^^^
793
794The Neighbour rule syntax is shown as follows:
795
796.. code-block:: console
797
798    neigh <port> <dst_mac>
799
800
801where each options means:
802
803``<port>``
804
805 * The output port id
806
807 * Optional: No
808
809 * Syntax: *port X*
810
811``<dst_mac>``
812
813 * The destination ethernet address to use for that port
814
815 * Optional: No
816
817 * Syntax:
818
819   * XX:XX:XX:XX:XX:XX
820
821Example Neighbour rules:
822
823.. code-block:: console
824
825    neigh port 0 DE:AD:BE:EF:01:02
826
827Test directory
828--------------
829
830The test directory contains scripts for testing the various encryption
831algorithms.
832
833The purpose of the scripts is to automate ipsec-secgw testing
834using another system running linux as a DUT.
835
836The user must setup the following environment variables:
837
838*   ``SGW_PATH``: path to the ipsec-secgw binary to test.
839
840*   ``REMOTE_HOST``: IP address/hostname of the DUT.
841
842*   ``REMOTE_IFACE``: interface name for the test-port on the DUT.
843
844*   ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-w <pci-id>')
845
846Also the user can optionally setup:
847
848*   ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0)
849
850*   ``CRYPTO_DEV``: crypto device to be used ('-w <pci-id>'). If none specified
851    appropriate vdevs will be created by the script
852
853*   ``MULTI_SEG_TEST``: ipsec-secgw option to enable reassembly support and
854    specify size of reassembly table (e.g.
855    ``MULTI_SEG_TEST='--reassemble 128'``). This option must be set for
856    fallback session tests.
857
858Note that most of the tests require the appropriate crypto PMD/device to be
859available.
860
861Server configuration
862~~~~~~~~~~~~~~~~~~~~
863
864Two servers are required for the tests, SUT and DUT.
865
866Make sure the user from the SUT can ssh to the DUT without entering the password.
867To enable this feature keys must be setup on the DUT.
868
869``ssh-keygen`` will make a private & public key pair on the SUT.
870
871``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public
872key to the DUT. It will ask for credentials so that it can upload the public key.
873
874The SUT and DUT are connected through at least 2 NIC ports.
875
876One NIC port is expected to be managed by linux on both machines and will be
877used as a control path.
878
879The second NIC port (test-port) should be bound to DPDK on the SUT, and should
880be managed by linux on the DUT.
881
882The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and
883``tap vdev``.
884
885It then configures the local tap interface and the remote interface and IPsec
886policies in the following way:
887
888Traffic going over the test-port in both directions has to be protected by IPsec.
889
890Traffic going over the TAP port in both directions does not have to be protected.
891
892i.e:
893
894DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS
895
896SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS
897
898It then tries to perform some data transfer using the scheme described above.
899
900usage
901~~~~~
902
903In the ipsec-secgw/test directory
904
905to run one test for IPv4 or IPv6
906
907/bin/bash linux_test(4|6).sh <ipsec_mode>
908
909to run all tests for IPv4 or IPv6
910
911/bin/bash run_test.sh -4|-6
912
913For the list of available modes please refer to run_test.sh.
914