1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2016-2017 Intel Corporation. 3 Copyright (C) 2020 Marvell International Ltd. 4 5IPsec Security Gateway Sample Application 6========================================= 7 8The IPsec Security Gateway application is an example of a "real world" 9application using DPDK cryptodev framework. 10 11Overview 12-------- 13 14The application demonstrates the implementation of a Security Gateway 15(not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301, 16RFC4303, RFC3602 and RFC2404. 17 18Internet Key Exchange (IKE) is not implemented, so only manual setting of 19Security Policies and Security Associations is supported. 20 21The Security Policies (SP) are implemented as ACL rules, the Security 22Associations (SA) are stored in a table and the routing is implemented 23using LPM. 24 25The application classifies the ports as *Protected* and *Unprotected*. 26Thus, traffic received on an Unprotected or Protected port is consider 27Inbound or Outbound respectively. 28 29The application also supports complete IPsec protocol offload to hardware 30(Look aside crypto accelerator or using ethernet device). It also support 31inline ipsec processing by the supported ethernet device during transmission. 32These modes can be selected during the SA creation configuration. 33 34In case of complete protocol offload, the processing of headers(ESP and outer 35IP header) is done by the hardware and the application does not need to 36add/remove them during outbound/inbound processing. 37 38For inline offloaded outbound traffic, the application will not do the LPM 39lookup for routing, as the port on which the packet has to be forwarded will be 40part of the SA. Security parameters will be configured on that port only, and 41sending the packet on other ports could result in unencrypted packets being 42sent out. 43 44The Path for IPsec Inbound traffic is: 45 46* Read packets from the port. 47* Classify packets between IPv4 and ESP. 48* Perform Inbound SA lookup for ESP packets based on their SPI. 49* Perform Verification/Decryption (Not needed in case of inline ipsec). 50* Remove ESP and outer IP header (Not needed in case of protocol offload). 51* Inbound SP check using ACL of decrypted packets and any other IPv4 packets. 52* Routing. 53* Write packet to port. 54 55The Path for the IPsec Outbound traffic is: 56 57* Read packets from the port. 58* Perform Outbound SP check using ACL of all IPv4 traffic. 59* Perform Outbound SA lookup for packets that need IPsec protection. 60* Add ESP and outer IP header (Not needed in case protocol offload). 61* Perform Encryption/Digest (Not needed in case of inline ipsec). 62* Routing. 63* Write packet to port. 64 65The application supports two modes of operation: poll mode and event mode. 66 67* In the poll mode a core receives packets from statically configured list 68 of eth ports and eth ports' queues. 69 70* In the event mode a core receives packets as events. After packet processing 71 is done core submits them back as events to an event device. This enables 72 multicore scaling and HW assisted scheduling by making use of the event device 73 capabilities. The event mode configuration is predefined. All packets reaching 74 given eth port will arrive at the same event queue. All event queues are mapped 75 to all event ports. This allows all cores to receive traffic from all ports. 76 Since the underlying event device might have varying capabilities, the worker 77 threads can be drafted differently to maximize performance. For example, if an 78 event device - eth device pair has Tx internal port, then application can call 79 rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst(). 80 So a thread which assumes that the device pair has internal port will not be the 81 right solution for another pair. The infrastructure added for the event mode aims 82 to help application to have multiple worker threads by maximizing performance from 83 every type of event device without affecting existing paths/use cases. The worker 84 to be used will be determined by the operating conditions and the underlying device 85 capabilities. **Currently the application provides non-burst, internal port worker 86 threads and supports inline protocol only.** It also provides infrastructure for 87 non-internal port however does not define any worker threads. 88 89Additionally the event mode introduces two submodes of processing packets: 90 91* Driver submode: This submode has bare minimum changes in the application to support 92 IPsec. There are no lookups, no routing done in the application. And for inline 93 protocol use case, the worker thread resembles l2fwd worker thread as the IPsec 94 processing is done entirely in HW. This mode can be used to benchmark the raw 95 performance of the HW. The driver submode is selected with --single-sa option 96 (used also by poll mode). When --single-sa option is used in conjution with event 97 mode then index passed to --single-sa is ignored. 98 99* App submode: This submode has all the features currently implemented with the 100 application (non librte_ipsec path). All the lookups, routing follows existing 101 methods and report numbers that can be compared against regular poll mode 102 benchmark numbers. 103 104Constraints 105----------- 106 107* No IPv6 options headers. 108* No AH mode. 109* Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1 and NULL. 110* Each SA must be handle by a unique lcore (*1 RX queue per port*). 111 112Compiling the Application 113------------------------- 114 115To compile the sample application see :doc:`compiling`. 116 117The application is located in the ``ipsec-secgw`` sub-directory. 118 119#. [Optional] Build the application for debugging: 120 This option adds some extra flags, disables compiler optimizations and 121 is verbose:: 122 123 make DEBUG=1 124 125 126Running the Application 127----------------------- 128 129The application has a number of command line options:: 130 131 132 ./build/ipsec-secgw [EAL options] -- 133 -p PORTMASK -P -u PORTMASK -j FRAMESIZE 134 -l -w REPLAY_WINOW_SIZE -e -a 135 -c SAD_CACHE_SIZE 136 -s NUMBER_OF_MBUFS_IN_PACKET_POOL 137 -f CONFIG_FILE_PATH 138 --config (port,queue,lcore)[,(port,queue,lcore)] 139 --single-sa SAIDX 140 --cryptodev_mask MASK 141 --transfer-mode MODE 142 --event-schedule-type TYPE 143 --rxoffload MASK 144 --txoffload MASK 145 --reassemble NUM 146 --mtu MTU 147 --frag-ttl FRAG_TTL_NS 148 149Where: 150 151* ``-p PORTMASK``: Hexadecimal bitmask of ports to configure. 152 153* ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are 154 accepted regardless of the packet's Ethernet MAC destination address. 155 Without this option, only packets with the Ethernet MAC destination address 156 set to the Ethernet address of the port are accepted (default is enabled). 157 158* ``-u PORTMASK``: hexadecimal bitmask of unprotected ports 159 160* ``-j FRAMESIZE``: *optional*. data buffer size (in bytes), 161 in other words maximum data size for one segment. 162 Packets with length bigger then FRAMESIZE still can be received, 163 but will be segmented. 164 Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) 165 Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) 166 Maximum value: UINT16_MAX (65535). 167 168* ``-l``: enables code-path that uses librte_ipsec. 169 170* ``-w REPLAY_WINOW_SIZE``: specifies the IPsec sequence number replay window 171 size for each Security Association (available only with librte_ipsec 172 code path). 173 174* ``-e``: enables Security Association extended sequence number processing 175 (available only with librte_ipsec code path). 176 177* ``-a``: enables Security Association sequence number atomic behavior 178 (available only with librte_ipsec code path). 179 180* ``-c``: specifies the SAD cache size. Stores the most recent SA in a per 181 lcore cache. Cache represents flat array containing SA's indexed by SPI. 182 Zero value disables cache. 183 Default value: 128. 184 185* ``-s``: sets number of mbufs in packet pool, if not provided number of mbufs 186 will be calculated based on number of cores, eth ports and crypto queues. 187 188* ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all 189 configuration items for running the application (See Configuration file 190 syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified. 191 **ONLY** the UNIX format configuration file is accepted. 192 193* ``--config (port,queue,lcore)[,(port,queue,lcore)]``: in poll mode determines 194 which queues from which ports are mapped to which cores. In event mode this 195 option is not used as packets are dynamically scheduled to cores by HW. 196 197* ``--single-sa SAIDX``: in poll mode use a single SA for outbound traffic, 198 bypassing the SP on both Inbound and Outbound. This option is meant for 199 debugging/performance purposes. In event mode selects driver submode, SA index 200 value is ignored. 201 202* ``--cryptodev_mask MASK``: hexadecimal bitmask of the crypto devices 203 to configure. 204 205* ``--transfer-mode MODE``: sets operating mode of the application 206 "poll" : packet transfer via polling (default) 207 "event" : Packet transfer via event device 208 209* ``--event-schedule-type TYPE``: queue schedule type, applies only when 210 --transfer-mode is set to event. 211 "ordered" : Ordered (default) 212 "atomic" : Atomic 213 "parallel" : Parallel 214 When --event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event 215 device will ensure the ordering. Ordering will be lost when tried in PARALLEL. 216 217* ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port 218 (bitmask of DEV_RX_OFFLOAD_* values). It is an optional parameter and 219 allows user to disable some of the RX HW offload capabilities. 220 By default all HW RX offloads are enabled. 221 222* ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port 223 (bitmask of DEV_TX_OFFLOAD_* values). It is an optional parameter and 224 allows user to disable some of the TX HW offload capabilities. 225 By default all HW TX offloads are enabled. 226 227* ``--reassemble NUM``: max number of entries in reassemble fragment table. 228 Zero value disables reassembly functionality. 229 Default value: 0. 230 231* ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports. 232 Outgoing packets with length bigger then MTU will be fragmented. 233 Incoming packets with length bigger then MTU will be discarded. 234 Default value: 1500. 235 236* ``--frag-ttl FRAG_TTL_NS``: fragment lifetime (in nanoseconds). 237 If packet is not reassembled within this time, received fragments 238 will be discarded. Fragment lifetime should be decreased when 239 there is a high fragmented traffic loss in high bandwidth networks. 240 Should be lower for low number of reassembly buckets. 241 Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s). 242 243 244The mapping of lcores to port/queues is similar to other l3fwd applications. 245 246For example, given the following command line to run application in poll mode:: 247 248 ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \ 249 --vdev "crypto_null" -- -p 0xf -P -u 0x3 \ 250 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \ 251 -f /path/to/config_file --transfer-mode poll \ 252 253where each option means: 254 255* The ``-l`` option enables cores 20 and 21. 256 257* The ``-n`` option sets memory 4 channels. 258 259* The ``--socket-mem`` to use 2GB on socket 1. 260 261* The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD. 262 263* The ``-p`` option enables ports (detected) 0, 1, 2 and 3. 264 265* The ``-P`` option enables promiscuous mode. 266 267* The ``-u`` option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected. 268 269* The ``--config`` option enables one queue per port with the following mapping: 270 271 +----------+-----------+-----------+---------------------------------------+ 272 | **Port** | **Queue** | **lcore** | **Description** | 273 | | | | | 274 +----------+-----------+-----------+---------------------------------------+ 275 | 0 | 0 | 20 | Map queue 0 from port 0 to lcore 20. | 276 | | | | | 277 +----------+-----------+-----------+---------------------------------------+ 278 | 1 | 0 | 20 | Map queue 0 from port 1 to lcore 20. | 279 | | | | | 280 +----------+-----------+-----------+---------------------------------------+ 281 | 2 | 0 | 21 | Map queue 0 from port 2 to lcore 21. | 282 | | | | | 283 +----------+-----------+-----------+---------------------------------------+ 284 | 3 | 0 | 21 | Map queue 0 from port 3 to lcore 21. | 285 | | | | | 286 +----------+-----------+-----------+---------------------------------------+ 287 288* The ``-f /path/to/config_file`` option enables the application read and 289 parse the configuration file specified, and configures the application 290 with a given set of SP, SA and Routing entries accordingly. The syntax of 291 the configuration file will be explained below in more detail. Please 292 **note** the parser only accepts UNIX format text file. Other formats 293 such as DOS/MAC format will cause a parse error. 294 295* The ``--transfer-mode`` option selects poll mode for processing packets. 296 297Similarly for example, given the following command line to run application in 298event app mode:: 299 300 ./build/ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1 \ 301 -f /path/to/config_file --transfer-mode event \ 302 --event-schedule-type parallel \ 303 304where each option means: 305 306* The ``-c`` option selects cores 0 and 1 to run on. 307 308* The ``-P`` option enables promiscuous mode. 309 310* The ``-p`` option enables ports (detected) 0 and 1. 311 312* The ``-u`` option sets ports 0 as unprotected, leaving 1 as protected. 313 314* The ``-f /path/to/config_file`` option has the same behavior as in poll 315 mode example. 316 317* The ``--transfer-mode`` option selects event mode for processing packets. 318 319* The ``--event-schedule-type`` option selects parallel ordering of event queues. 320 321 322Refer to the *DPDK Getting Started Guide* for general information on running 323applications and the Environment Abstraction Layer (EAL) options. 324 325The application would do a best effort to "map" crypto devices to cores, with 326hardware devices having priority. Basically, hardware devices if present would 327be assigned to a core before software ones. 328This means that if the application is using a single core and both hardware 329and software crypto devices are detected, hardware devices will be used. 330 331A way to achieve the case where you want to force the use of virtual crypto 332devices is to whitelist the Ethernet devices needed and therefore implicitly 333blacklisting all hardware crypto devices. 334 335For example, something like the following command line: 336 337.. code-block:: console 338 339 ./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \ 340 -w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3 \ 341 --vdev "crypto_aesni_mb" --vdev "crypto_null" \ 342 -- \ 343 -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \ 344 -f sample.cfg 345 346 347Configurations 348-------------- 349 350The following sections provide the syntax of configurations to initialize 351your SP, SA, Routing and Neighbour tables. 352Configurations shall be specified in the configuration file to be passed to 353the application. The file is then parsed by the application. The successful 354parsing will result in the appropriate rules being applied to the tables 355accordingly. 356 357 358Configuration File Syntax 359~~~~~~~~~~~~~~~~~~~~~~~~~ 360 361As mention in the overview, the Security Policies are ACL rules. 362The application parsers the rules specified in the configuration file and 363passes them to the ACL table, and replicates them per socket in use. 364 365Following are the configuration file syntax. 366 367General rule syntax 368^^^^^^^^^^^^^^^^^^^ 369 370The parse treats one line in the configuration file as one configuration 371item (unless the line concatenation symbol exists). Every configuration 372item shall follow the syntax of either SP, SA, Routing or Neighbour 373rules specified below. 374 375The configuration parser supports the following special symbols: 376 377 * Comment symbol **#**. Any character from this symbol to the end of 378 line is treated as comment and will not be parsed. 379 380 * Line concatenation symbol **\\**. This symbol shall be placed in the end 381 of the line to be concatenated to the line below. Multiple lines' 382 concatenation is supported. 383 384 385SP rule syntax 386^^^^^^^^^^^^^^ 387 388The SP rule syntax is shown as follows: 389 390.. code-block:: console 391 392 sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip> 393 <proto> <sport> <dport> 394 395 396where each options means: 397 398``<ip_ver>`` 399 400 * IP protocol version 401 402 * Optional: No 403 404 * Available options: 405 406 * *ipv4*: IP protocol version 4 407 * *ipv6*: IP protocol version 6 408 409``<dir>`` 410 411 * The traffic direction 412 413 * Optional: No 414 415 * Available options: 416 417 * *in*: inbound traffic 418 * *out*: outbound traffic 419 420``<action>`` 421 422 * IPsec action 423 424 * Optional: No 425 426 * Available options: 427 428 * *protect <SA_idx>*: the specified traffic is protected by SA rule 429 with id SA_idx 430 * *bypass*: the specified traffic traffic is bypassed 431 * *discard*: the specified traffic is discarded 432 433``<priority>`` 434 435 * Rule priority 436 437 * Optional: Yes, default priority 0 will be used 438 439 * Syntax: *pri <id>* 440 441``<src_ip>`` 442 443 * The source IP address and mask 444 445 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 446 447 * Syntax: 448 449 * *src X.X.X.X/Y* for IPv4 450 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 451 452``<dst_ip>`` 453 454 * The destination IP address and mask 455 456 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 457 458 * Syntax: 459 460 * *dst X.X.X.X/Y* for IPv4 461 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 462 463``<proto>`` 464 465 * The protocol start and end range 466 467 * Optional: yes, default range of 0 to 0 will be used 468 469 * Syntax: *proto X:Y* 470 471``<sport>`` 472 473 * The source port start and end range 474 475 * Optional: yes, default range of 0 to 0 will be used 476 477 * Syntax: *sport X:Y* 478 479``<dport>`` 480 481 * The destination port start and end range 482 483 * Optional: yes, default range of 0 to 0 will be used 484 485 * Syntax: *dport X:Y* 486 487Example SP rules: 488 489.. code-block:: console 490 491 sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \ 492 dport 0:65535 493 494 sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\ 495 0000:0000/96 sport 0:65535 dport 0:65535 496 497 498SA rule syntax 499^^^^^^^^^^^^^^ 500 501The successfully parsed SA rules will be stored in an array table. 502 503The SA rule syntax is shown as follows: 504 505.. code-block:: console 506 507 sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key> 508 <mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback> 509 510where each options means: 511 512``<dir>`` 513 514 * The traffic direction 515 516 * Optional: No 517 518 * Available options: 519 520 * *in*: inbound traffic 521 * *out*: outbound traffic 522 523``<spi>`` 524 525 * The SPI number 526 527 * Optional: No 528 529 * Syntax: unsigned integer number 530 531``<cipher_algo>`` 532 533 * Cipher algorithm 534 535 * Optional: Yes, unless <aead_algo> is not used 536 537 * Available options: 538 539 * *null*: NULL algorithm 540 * *aes-128-cbc*: AES-CBC 128-bit algorithm 541 * *aes-256-cbc*: AES-CBC 256-bit algorithm 542 * *aes-128-ctr*: AES-CTR 128-bit algorithm 543 * *3des-cbc*: 3DES-CBC 192-bit algorithm 544 545 * Syntax: *cipher_algo <your algorithm>* 546 547``<cipher_key>`` 548 549 * Cipher key, NOT available when 'null' algorithm is used 550 551 * Optional: Yes, unless <aead_algo> is not used. 552 Must be followed by <cipher_algo> option 553 554 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 555 The number of bytes should be as same as the specified cipher algorithm 556 key size. 557 558 For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 559 A1:B2:C3:D4* 560 561``<auth_algo>`` 562 563 * Authentication algorithm 564 565 * Optional: Yes, unless <aead_algo> is not used 566 567 * Available options: 568 569 * *null*: NULL algorithm 570 * *sha1-hmac*: HMAC SHA1 algorithm 571 572``<auth_key>`` 573 574 * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm 575 is used. 576 577 * Optional: Yes, unless <aead_algo> is not used. 578 Must be followed by <auth_algo> option 579 580 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 581 The number of bytes should be as same as the specified authentication 582 algorithm key size. 583 584 For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 585 A1:B2:C3:D4* 586 587``<aead_algo>`` 588 589 * AEAD algorithm 590 591 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used 592 593 * Available options: 594 595 * *aes-128-gcm*: AES-GCM 128-bit algorithm 596 597 * Syntax: *cipher_algo <your algorithm>* 598 599``<aead_key>`` 600 601 * Cipher key, NOT available when 'null' algorithm is used 602 603 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used. 604 Must be followed by <aead_algo> option 605 606 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 607 The number of bytes should be as same as the specified AEAD algorithm 608 key size. 609 610 For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 611 A1:B2:C3:D4* 612 613``<mode>`` 614 615 * The operation mode 616 617 * Optional: No 618 619 * Available options: 620 621 * *ipv4-tunnel*: Tunnel mode for IPv4 packets 622 * *ipv6-tunnel*: Tunnel mode for IPv6 packets 623 * *transport*: transport mode 624 625 * Syntax: mode XXX 626 627``<src_ip>`` 628 629 * The source IP address. This option is not available when 630 transport mode is used 631 632 * Optional: Yes, default address 0.0.0.0 will be used 633 634 * Syntax: 635 636 * *src X.X.X.X* for IPv4 637 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6 638 639``<dst_ip>`` 640 641 * The destination IP address. This option is not available when 642 transport mode is used 643 644 * Optional: Yes, default address 0.0.0.0 will be used 645 646 * Syntax: 647 648 * *dst X.X.X.X* for IPv4 649 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6 650 651``<type>`` 652 653 * Action type to specify the security action. This option specify 654 the SA to be performed with look aside protocol offload to HW 655 accelerator or protocol offload on ethernet device or inline 656 crypto processing on the ethernet device during transmission. 657 658 * Optional: Yes, default type *no-offload* 659 660 * Available options: 661 662 * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator 663 * *inline-protocol-offload*: inline protocol offload on ethernet device 664 * *inline-crypto-offload*: inline crypto processing on ethernet device 665 * *no-offload*: no offloading to hardware 666 667 ``<port_id>`` 668 669 * Port/device ID of the ethernet/crypto accelerator for which the SA is 670 configured. For *inline-crypto-offload* and *inline-protocol-offload*, this 671 port will be used for routing. The routing table will not be referred in 672 this case. 673 674 * Optional: No, if *type* is not *no-offload* 675 676 * Syntax: 677 678 * *port_id X* X is a valid device number in decimal 679 680 ``<fallback>`` 681 682 * Action type for ingress IPsec packets that inline processor failed to 683 process. Only a combination of *inline-crypto-offload* as a primary 684 session and *lookaside-none* as a fall-back session is supported at the 685 moment. 686 687 If used in conjunction with IPsec window, its width needs be increased 688 due to different processing times of inline and lookaside modes which 689 results in packet reordering. 690 691 * Optional: Yes. 692 693 * Available options: 694 695 * *lookaside-none*: use automatically chosen cryptodev to process packets 696 697 * Syntax: 698 699 * *fallback lookaside-none* 700 701Example SA rules: 702 703.. code-block:: console 704 705 sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \ 706 src 172.16.1.5 dst 172.16.2.5 707 708 sa out 25 cipher_algo aes-128-cbc \ 709 cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \ 710 auth_algo sha1-hmac \ 711 auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \ 712 mode ipv6-tunnel \ 713 src 1111:1111:1111:1111:1111:1111:1111:5555 \ 714 dst 2222:2222:2222:2222:2222:2222:2222:5555 715 716 sa in 105 aead_algo aes-128-gcm \ 717 aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \ 718 mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 719 720 sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \ 721 auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \ 722 mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \ 723 type lookaside-protocol-offload port_id 4 724 725 sa in 35 aead_algo aes-128-gcm \ 726 aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \ 727 mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \ 728 type inline-crypto-offload port_id 0 729 730Routing rule syntax 731^^^^^^^^^^^^^^^^^^^ 732 733The Routing rule syntax is shown as follows: 734 735.. code-block:: console 736 737 rt <ip_ver> <src_ip> <dst_ip> <port> 738 739 740where each options means: 741 742``<ip_ver>`` 743 744 * IP protocol version 745 746 * Optional: No 747 748 * Available options: 749 750 * *ipv4*: IP protocol version 4 751 * *ipv6*: IP protocol version 6 752 753``<src_ip>`` 754 755 * The source IP address and mask 756 757 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 758 759 * Syntax: 760 761 * *src X.X.X.X/Y* for IPv4 762 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 763 764``<dst_ip>`` 765 766 * The destination IP address and mask 767 768 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 769 770 * Syntax: 771 772 * *dst X.X.X.X/Y* for IPv4 773 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 774 775``<port>`` 776 777 * The traffic output port id 778 779 * Optional: yes, default output port 0 will be used 780 781 * Syntax: *port X* 782 783Example SP rules: 784 785.. code-block:: console 786 787 rt ipv4 dst 172.16.1.5/32 port 0 788 789 rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0 790 791Neighbour rule syntax 792^^^^^^^^^^^^^^^^^^^^^ 793 794The Neighbour rule syntax is shown as follows: 795 796.. code-block:: console 797 798 neigh <port> <dst_mac> 799 800 801where each options means: 802 803``<port>`` 804 805 * The output port id 806 807 * Optional: No 808 809 * Syntax: *port X* 810 811``<dst_mac>`` 812 813 * The destination ethernet address to use for that port 814 815 * Optional: No 816 817 * Syntax: 818 819 * XX:XX:XX:XX:XX:XX 820 821Example Neighbour rules: 822 823.. code-block:: console 824 825 neigh port 0 DE:AD:BE:EF:01:02 826 827Test directory 828-------------- 829 830The test directory contains scripts for testing the various encryption 831algorithms. 832 833The purpose of the scripts is to automate ipsec-secgw testing 834using another system running linux as a DUT. 835 836The user must setup the following environment variables: 837 838* ``SGW_PATH``: path to the ipsec-secgw binary to test. 839 840* ``REMOTE_HOST``: IP address/hostname of the DUT. 841 842* ``REMOTE_IFACE``: interface name for the test-port on the DUT. 843 844* ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-w <pci-id>') 845 846Also the user can optionally setup: 847 848* ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0) 849 850* ``CRYPTO_DEV``: crypto device to be used ('-w <pci-id>'). If none specified 851 appropriate vdevs will be created by the script 852 853* ``MULTI_SEG_TEST``: ipsec-secgw option to enable reassembly support and 854 specify size of reassembly table (e.g. 855 ``MULTI_SEG_TEST='--reassemble 128'``). This option must be set for 856 fallback session tests. 857 858Note that most of the tests require the appropriate crypto PMD/device to be 859available. 860 861Server configuration 862~~~~~~~~~~~~~~~~~~~~ 863 864Two servers are required for the tests, SUT and DUT. 865 866Make sure the user from the SUT can ssh to the DUT without entering the password. 867To enable this feature keys must be setup on the DUT. 868 869``ssh-keygen`` will make a private & public key pair on the SUT. 870 871``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public 872key to the DUT. It will ask for credentials so that it can upload the public key. 873 874The SUT and DUT are connected through at least 2 NIC ports. 875 876One NIC port is expected to be managed by linux on both machines and will be 877used as a control path. 878 879The second NIC port (test-port) should be bound to DPDK on the SUT, and should 880be managed by linux on the DUT. 881 882The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and 883``tap vdev``. 884 885It then configures the local tap interface and the remote interface and IPsec 886policies in the following way: 887 888Traffic going over the test-port in both directions has to be protected by IPsec. 889 890Traffic going over the TAP port in both directions does not have to be protected. 891 892i.e: 893 894DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS 895 896SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS 897 898It then tries to perform some data transfer using the scheme described above. 899 900usage 901~~~~~ 902 903In the ipsec-secgw/test directory 904 905to run one test for IPv4 or IPv6 906 907/bin/bash linux_test(4|6).sh <ipsec_mode> 908 909to run all tests for IPv4 or IPv6 910 911/bin/bash run_test.sh -4|-6 912 913For the list of available modes please refer to run_test.sh. 914