1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2016-2017 Intel Corporation. 3 Copyright (C) 2020 Marvell International Ltd. 4 5IPsec Security Gateway Sample Application 6========================================= 7 8The IPsec Security Gateway application is an example of a "real world" 9application using DPDK cryptodev framework. 10 11Overview 12-------- 13 14The application demonstrates the implementation of a Security Gateway 15(not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301, 16RFC4303, RFC3602 and RFC2404. 17 18Internet Key Exchange (IKE) is not implemented, so only manual setting of 19Security Policies and Security Associations is supported. 20 21The Security Policies (SP) are implemented as ACL rules, the Security 22Associations (SA) are stored in a table and the routing is implemented 23using LPM. 24 25The application classifies the ports as *Protected* and *Unprotected*. 26Thus, traffic received on an Unprotected or Protected port is consider 27Inbound or Outbound respectively. 28 29The application also supports complete IPsec protocol offload to hardware 30(Look aside crypto accelerator or using ethernet device). It also support 31inline ipsec processing by the supported ethernet device during transmission. 32These modes can be selected during the SA creation configuration. 33 34In case of complete protocol offload, the processing of headers(ESP and outer 35IP header) is done by the hardware and the application does not need to 36add/remove them during outbound/inbound processing. 37 38For inline offloaded outbound traffic, the application will not do the LPM 39lookup for routing, as the port on which the packet has to be forwarded will be 40part of the SA. Security parameters will be configured on that port only, and 41sending the packet on other ports could result in unencrypted packets being 42sent out. 43 44The Path for IPsec Inbound traffic is: 45 46* Read packets from the port. 47* Classify packets between IPv4 and ESP. 48* Perform Inbound SA lookup for ESP packets based on their SPI. 49* Perform Verification/Decryption (Not needed in case of inline ipsec). 50* Remove ESP and outer IP header (Not needed in case of protocol offload). 51* Inbound SP check using ACL of decrypted packets and any other IPv4 packets. 52* Routing. 53* Write packet to port. 54 55The Path for the IPsec Outbound traffic is: 56 57* Read packets from the port. 58* Perform Outbound SP check using ACL of all IPv4 traffic. 59* Perform Outbound SA lookup for packets that need IPsec protection. 60* Add ESP and outer IP header (Not needed in case protocol offload). 61* Perform Encryption/Digest (Not needed in case of inline ipsec). 62* Routing. 63* Write packet to port. 64 65The application supports two modes of operation: poll mode and event mode. 66 67* In the poll mode a core receives packets from statically configured list 68 of eth ports and eth ports' queues. 69 70* In the event mode a core receives packets as events. After packet processing 71 is done core submits them back as events to an event device. This enables 72 multicore scaling and HW assisted scheduling by making use of the event device 73 capabilities. The event mode configuration is predefined. All packets reaching 74 given eth port will arrive at the same event queue. All event queues are mapped 75 to all event ports. This allows all cores to receive traffic from all ports. 76 Since the underlying event device might have varying capabilities, the worker 77 threads can be drafted differently to maximize performance. For example, if an 78 event device - eth device pair has Tx internal port, then application can call 79 rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst(). 80 So a thread which assumes that the device pair has internal port will not be the 81 right solution for another pair. The infrastructure added for the event mode aims 82 to help application to have multiple worker threads by maximizing performance from 83 every type of event device without affecting existing paths/use cases. The worker 84 to be used will be determined by the operating conditions and the underlying device 85 capabilities. **Currently the application provides non-burst, internal port worker 86 threads and supports inline protocol only.** It also provides infrastructure for 87 non-internal port however does not define any worker threads. 88 89 Event mode also supports event vectorization. The event devices, ethernet device 90 pairs which support the capability ``RTE_EVENT_ETH_RX_ADAPTER_CAP_EVENT_VECTOR`` can 91 aggregate packets based on flow characteristics and generate a ``rte_event`` 92 containing ``rte_event_vector``. 93 The aggregation size and timeout can be given using command line options vector-size 94 (default vector-size is 16) and vector-tmo (default vector-tmo is 102400ns). 95 By default event vectorization is disabled and it can be enabled using event-vector 96 option. 97 98Additionally the event mode introduces two submodes of processing packets: 99 100* Driver submode: This submode has bare minimum changes in the application to support 101 IPsec. There are no lookups, no routing done in the application. And for inline 102 protocol use case, the worker thread resembles l2fwd worker thread as the IPsec 103 processing is done entirely in HW. This mode can be used to benchmark the raw 104 performance of the HW. The driver submode is selected with --single-sa option 105 (used also by poll mode). When --single-sa option is used in conjunction with event 106 mode then index passed to --single-sa is ignored. 107 108* App submode: This submode has all the features currently implemented with the 109 application (non librte_ipsec path). All the lookups, routing follows existing 110 methods and report numbers that can be compared against regular poll mode 111 benchmark numbers. 112 113Constraints 114----------- 115 116* No IPv6 options headers. 117* No AH mode. 118* Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1, 119 AES-GMAC, AES_CTR, AES_XCBC_MAC, AES_CCM, CHACHA20_POLY1305 and NULL. 120* Each SA must be handle by a unique lcore (*1 RX queue per port*). 121 122Compiling the Application 123------------------------- 124 125To compile the sample application see :doc:`compiling`. 126 127The application is located in the ``ipsec-secgw`` sub-directory. 128 129 130Running the Application 131----------------------- 132 133The application has a number of command line options:: 134 135 136 ./<build_dir>/examples/dpdk-ipsec-secgw [EAL options] -- 137 -p PORTMASK -P -u PORTMASK -j FRAMESIZE 138 -l -w REPLAY_WINDOW_SIZE -e -a 139 -c SAD_CACHE_SIZE 140 -t STATISTICS_INTERVAL 141 -s NUMBER_OF_MBUFS_IN_PACKET_POOL 142 -f CONFIG_FILE_PATH 143 --config (port,queue,lcore)[,(port,queue,lcore)] 144 --single-sa SAIDX 145 --cryptodev_mask MASK 146 --transfer-mode MODE 147 --event-schedule-type TYPE 148 --rxoffload MASK 149 --txoffload MASK 150 --reassemble NUM 151 --mtu MTU 152 --frag-ttl FRAG_TTL_NS 153 154Where: 155 156* ``-p PORTMASK``: Hexadecimal bitmask of ports to configure. 157 158* ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are 159 accepted regardless of the packet's Ethernet MAC destination address. 160 Without this option, only packets with the Ethernet MAC destination address 161 set to the Ethernet address of the port are accepted (default is enabled). 162 163* ``-u PORTMASK``: hexadecimal bitmask of unprotected ports 164 165* ``-j FRAMESIZE``: *optional*. data buffer size (in bytes), 166 in other words maximum data size for one segment. 167 Packets with length bigger then FRAMESIZE still can be received, 168 but will be segmented. 169 Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) 170 Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) 171 Maximum value: UINT16_MAX (65535). 172 173* ``-l``: enables code-path that uses librte_ipsec. 174 175* ``-w REPLAY_WINDOW_SIZE``: specifies the IPsec sequence number replay window 176 size for each Security Association (available only with librte_ipsec 177 code path). 178 179* ``-e``: enables Security Association extended sequence number processing 180 (available only with librte_ipsec code path). 181 182* ``-a``: enables Security Association sequence number atomic behavior 183 (available only with librte_ipsec code path). 184 185* ``-c``: specifies the SAD cache size. Stores the most recent SA in a per 186 lcore cache. Cache represents flat array containing SA's indexed by SPI. 187 Zero value disables cache. 188 Default value: 128. 189 190* ``-t``: specifies the statistics screen update interval in seconds. If set 191 to zero or omitted statistics screen is disabled. 192 Default value: 0. 193 194* ``-s``: sets number of mbufs in packet pool, if not provided number of mbufs 195 will be calculated based on number of cores, eth ports and crypto queues. 196 197* ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all 198 configuration items for running the application (See Configuration file 199 syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified. 200 **ONLY** the UNIX format configuration file is accepted. 201 202* ``--config (port,queue,lcore)[,(port,queue,lcore)]``: in poll mode determines 203 which queues from which ports are mapped to which cores. In event mode this 204 option is not used as packets are dynamically scheduled to cores by HW. 205 206* ``--single-sa SAIDX``: in poll mode use a single SA for outbound traffic, 207 bypassing the SP on both Inbound and Outbound. This option is meant for 208 debugging/performance purposes. In event mode selects driver submode, SA index 209 value is ignored. 210 211* ``--cryptodev_mask MASK``: hexadecimal bitmask of the crypto devices 212 to configure. 213 214* ``--transfer-mode MODE``: sets operating mode of the application 215 "poll" : packet transfer via polling (default) 216 "event" : Packet transfer via event device 217 218* ``--event-schedule-type TYPE``: queue schedule type, applies only when 219 --transfer-mode is set to event. 220 "ordered" : Ordered (default) 221 "atomic" : Atomic 222 "parallel" : Parallel 223 When --event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event 224 device will ensure the ordering. Ordering will be lost when tried in PARALLEL. 225 226* ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port 227 (bitmask of RTE_ETH_RX_OFFLOAD_* values). It is an optional parameter and 228 allows user to disable some of the RX HW offload capabilities. 229 By default all HW RX offloads are enabled. 230 231* ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port 232 (bitmask of RTE_ETH_TX_OFFLOAD_* values). It is an optional parameter and 233 allows user to disable some of the TX HW offload capabilities. 234 By default all HW TX offloads are enabled. 235 236* ``--reassemble NUM``: max number of entries in reassemble fragment table. 237 Zero value disables reassembly functionality. 238 Default value: 0. 239 240* ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports. 241 Outgoing packets with length bigger then MTU will be fragmented. 242 Incoming packets with length bigger then MTU will be discarded. 243 Default value: 1500. 244 245* ``--frag-ttl FRAG_TTL_NS``: fragment lifetime (in nanoseconds). 246 If packet is not reassembled within this time, received fragments 247 will be discarded. Fragment lifetime should be decreased when 248 there is a high fragmented traffic loss in high bandwidth networks. 249 Should be lower for low number of reassembly buckets. 250 Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s). 251 252* ``--per-port-pool``: Enable per ethdev port pktmbuf pool. 253 By default one packet mbuf pool per socket is created and configured 254 via Rx queue setup. 255 256* ``--vector-pool-sz``: Number of buffers in vector pool. 257 By default, vector pool size depeneds on packet pool size 258 and size of each vector. 259 260The mapping of lcores to port/queues is similar to other l3fwd applications. 261 262For example, given the following command line to run application in poll mode:: 263 264 ./<build_dir>/examples/dpdk-ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \ 265 --vdev "crypto_null" -- -p 0xf -P -u 0x3 \ 266 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \ 267 -f /path/to/config_file --transfer-mode poll \ 268 269where each option means: 270 271* The ``-l`` option enables cores 20 and 21. 272 273* The ``-n`` option sets memory 4 channels. 274 275* The ``--socket-mem`` to use 2GB on socket 1. 276 277* The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD. 278 279* The ``-p`` option enables ports (detected) 0, 1, 2 and 3. 280 281* The ``-P`` option enables promiscuous mode. 282 283* The ``-u`` option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected. 284 285* The ``--config`` option enables one queue per port with the following mapping: 286 287 +----------+-----------+-----------+---------------------------------------+ 288 | **Port** | **Queue** | **lcore** | **Description** | 289 | | | | | 290 +----------+-----------+-----------+---------------------------------------+ 291 | 0 | 0 | 20 | Map queue 0 from port 0 to lcore 20. | 292 | | | | | 293 +----------+-----------+-----------+---------------------------------------+ 294 | 1 | 0 | 20 | Map queue 0 from port 1 to lcore 20. | 295 | | | | | 296 +----------+-----------+-----------+---------------------------------------+ 297 | 2 | 0 | 21 | Map queue 0 from port 2 to lcore 21. | 298 | | | | | 299 +----------+-----------+-----------+---------------------------------------+ 300 | 3 | 0 | 21 | Map queue 0 from port 3 to lcore 21. | 301 | | | | | 302 +----------+-----------+-----------+---------------------------------------+ 303 304* The ``-f /path/to/config_file`` option enables the application read and 305 parse the configuration file specified, and configures the application 306 with a given set of SP, SA and Routing entries accordingly. The syntax of 307 the configuration file will be explained below in more detail. Please 308 **note** the parser only accepts UNIX format text file. Other formats 309 such as DOS/MAC format will cause a parse error. 310 311* The ``--transfer-mode`` option selects poll mode for processing packets. 312 313Similarly for example, given the following command line to run application in 314event app mode:: 315 316 ./<build_dir>/examples/dpdk-ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1 \ 317 -f /path/to/config_file --transfer-mode event \ 318 --event-schedule-type parallel --event-vector --vector-size 32 \ 319 --vector-tmo 102400 \ 320 321where each option means: 322 323* The ``-c`` option selects cores 0 and 1 to run on. 324 325* The ``-P`` option enables promiscuous mode. 326 327* The ``-p`` option enables ports (detected) 0 and 1. 328 329* The ``-u`` option sets ports 0 as unprotected, leaving 1 as protected. 330 331* The ``-f /path/to/config_file`` option has the same behavior as in poll 332 mode example. 333 334* The ``--transfer-mode`` option selects event mode for processing packets. 335 336* The ``--event-schedule-type`` option selects parallel ordering of event queues. 337 338* The ``--event-vector`` option enables event vectorization. 339 340* The ``--vector-size`` option specifies max vector size. 341 342* The ``--vector-tmo`` option specifies max timeout in nanoseconds for vectorization. 343 344 345Refer to the *DPDK Getting Started Guide* for general information on running 346applications and the Environment Abstraction Layer (EAL) options. 347 348The application would do a best effort to "map" crypto devices to cores, with 349hardware devices having priority. Basically, hardware devices if present would 350be assigned to a core before software ones. 351This means that if the application is using a single core and both hardware 352and software crypto devices are detected, hardware devices will be used. 353 354A way to achieve the case where you want to force the use of virtual crypto 355devices is to only use the Ethernet devices needed (via the allow flag) 356and therefore implicitly blocking all hardware crypto devices. 357 358For example, something like the following command line: 359 360.. code-block:: console 361 362 ./<build_dir>/examples/dpdk-ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \ 363 -a 81:00.0 -a 81:00.1 -a 81:00.2 -a 81:00.3 \ 364 --vdev "crypto_aesni_mb" --vdev "crypto_null" \ 365 -- \ 366 -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \ 367 -f sample.cfg 368 369 370Configurations 371-------------- 372 373The following sections provide the syntax of configurations to initialize 374your SP, SA, Routing, Flow and Neighbour tables. 375Configurations shall be specified in the configuration file to be passed to 376the application. The file is then parsed by the application. The successful 377parsing will result in the appropriate rules being applied to the tables 378accordingly. 379 380 381Configuration File Syntax 382~~~~~~~~~~~~~~~~~~~~~~~~~ 383 384As mention in the overview, the Security Policies are ACL rules. 385The application parsers the rules specified in the configuration file and 386passes them to the ACL table, and replicates them per socket in use. 387 388Following are the configuration file syntax. 389 390General rule syntax 391^^^^^^^^^^^^^^^^^^^ 392 393The parse treats one line in the configuration file as one configuration 394item (unless the line concatenation symbol exists). Every configuration 395item shall follow the syntax of either SP, SA, Routing, Flow or Neighbour 396rules specified below. 397 398The configuration parser supports the following special symbols: 399 400 * Comment symbol **#**. Any character from this symbol to the end of 401 line is treated as comment and will not be parsed. 402 403 * Line concatenation symbol **\\**. This symbol shall be placed in the end 404 of the line to be concatenated to the line below. Multiple lines' 405 concatenation is supported. 406 407 408SP rule syntax 409^^^^^^^^^^^^^^ 410 411The SP rule syntax is shown as follows: 412 413.. code-block:: console 414 415 sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip> 416 <proto> <sport> <dport> 417 418 419where each options means: 420 421``<ip_ver>`` 422 423 * IP protocol version 424 425 * Optional: No 426 427 * Available options: 428 429 * *ipv4*: IP protocol version 4 430 * *ipv6*: IP protocol version 6 431 432``<dir>`` 433 434 * The traffic direction 435 436 * Optional: No 437 438 * Available options: 439 440 * *in*: inbound traffic 441 * *out*: outbound traffic 442 443``<action>`` 444 445 * IPsec action 446 447 * Optional: No 448 449 * Available options: 450 451 * *protect <SA_idx>*: the specified traffic is protected by SA rule 452 with id SA_idx 453 * *bypass*: the specified traffic is bypassed 454 * *discard*: the specified traffic is discarded 455 456``<priority>`` 457 458 * Rule priority 459 460 * Optional: Yes, default priority 0 will be used 461 462 * Syntax: *pri <id>* 463 464``<src_ip>`` 465 466 * The source IP address and mask 467 468 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 469 470 * Syntax: 471 472 * *src X.X.X.X/Y* for IPv4 473 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 474 475``<dst_ip>`` 476 477 * The destination IP address and mask 478 479 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 480 481 * Syntax: 482 483 * *dst X.X.X.X/Y* for IPv4 484 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 485 486``<proto>`` 487 488 * The protocol start and end range 489 490 * Optional: yes, default range of 0 to 0 will be used 491 492 * Syntax: *proto X:Y* 493 494``<sport>`` 495 496 * The source port start and end range 497 498 * Optional: yes, default range of 0 to 0 will be used 499 500 * Syntax: *sport X:Y* 501 502``<dport>`` 503 504 * The destination port start and end range 505 506 * Optional: yes, default range of 0 to 0 will be used 507 508 * Syntax: *dport X:Y* 509 510Example SP rules: 511 512.. code-block:: console 513 514 sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \ 515 dport 0:65535 516 517 sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\ 518 0000:0000/96 sport 0:65535 dport 0:65535 519 520 521SA rule syntax 522^^^^^^^^^^^^^^ 523 524The successfully parsed SA rules will be stored in an array table. 525 526The SA rule syntax is shown as follows: 527 528.. code-block:: console 529 530 sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key> 531 <mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback> 532 <flow-direction> <port_id> <queue_id> <udp-encap> 533 534where each options means: 535 536``<dir>`` 537 538 * The traffic direction 539 540 * Optional: No 541 542 * Available options: 543 544 * *in*: inbound traffic 545 * *out*: outbound traffic 546 547``<spi>`` 548 549 * The SPI number 550 551 * Optional: No 552 553 * Syntax: unsigned integer number 554 555``<cipher_algo>`` 556 557 * Cipher algorithm 558 559 * Optional: Yes, unless <aead_algo> is not used 560 561 * Available options: 562 563 * *null*: NULL algorithm 564 * *aes-128-cbc*: AES-CBC 128-bit algorithm 565 * *aes-192-cbc*: AES-CBC 192-bit algorithm 566 * *aes-256-cbc*: AES-CBC 256-bit algorithm 567 * *aes-128-ctr*: AES-CTR 128-bit algorithm 568 * *3des-cbc*: 3DES-CBC 192-bit algorithm 569 570 * Syntax: *cipher_algo <your algorithm>* 571 572``<cipher_key>`` 573 574 * Cipher key, NOT available when 'null' algorithm is used 575 576 * Optional: Yes, unless <aead_algo> is not used. 577 Must be followed by <cipher_algo> option 578 579 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 580 The number of bytes should be as same as the specified cipher algorithm 581 key size. 582 583 For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 584 A1:B2:C3:D4* 585 586``<auth_algo>`` 587 588 * Authentication algorithm 589 590 * Optional: Yes, unless <aead_algo> is not used 591 592 * Available options: 593 594 * *null*: NULL algorithm 595 * *sha1-hmac*: HMAC SHA1 algorithm 596 597``<auth_key>`` 598 599 * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm 600 is used. 601 602 * Optional: Yes, unless <aead_algo> is not used. 603 Must be followed by <auth_algo> option 604 605 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 606 The number of bytes should be as same as the specified authentication 607 algorithm key size. 608 609 For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 610 A1:B2:C3:D4* 611 612``<aead_algo>`` 613 614 * AEAD algorithm 615 616 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used 617 618 * Available options: 619 620 * *aes-128-gcm*: AES-GCM 128-bit algorithm 621 * *aes-192-gcm*: AES-GCM 192-bit algorithm 622 * *aes-256-gcm*: AES-GCM 256-bit algorithm 623 624 * Syntax: *cipher_algo <your algorithm>* 625 626``<aead_key>`` 627 628 * Cipher key, NOT available when 'null' algorithm is used 629 630 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used. 631 Must be followed by <aead_algo> option 632 633 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 634 Last 4 bytes of the provided key will be used as 'salt' and so, the 635 number of bytes should be same as the sum of specified AEAD algorithm 636 key size and salt size (4 bytes). 637 638 For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 639 A1:B2:C3:D4:A1:B2:C3:D4* 640 641``<mode>`` 642 643 * The operation mode 644 645 * Optional: No 646 647 * Available options: 648 649 * *ipv4-tunnel*: Tunnel mode for IPv4 packets 650 * *ipv6-tunnel*: Tunnel mode for IPv6 packets 651 * *transport*: transport mode 652 653 * Syntax: mode XXX 654 655``<src_ip>`` 656 657 * The source IP address. This option is not available when 658 transport mode is used 659 660 * Optional: Yes, default address 0.0.0.0 will be used 661 662 * Syntax: 663 664 * *src X.X.X.X* for IPv4 665 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6 666 667``<dst_ip>`` 668 669 * The destination IP address. This option is not available when 670 transport mode is used 671 672 * Optional: Yes, default address 0.0.0.0 will be used 673 674 * Syntax: 675 676 * *dst X.X.X.X* for IPv4 677 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6 678 679``<type>`` 680 681 * Action type to specify the security action. This option specify 682 the SA to be performed with look aside protocol offload to HW 683 accelerator or protocol offload on ethernet device or inline 684 crypto processing on the ethernet device during transmission. 685 686 * Optional: Yes, default type *no-offload* 687 688 * Available options: 689 690 * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator 691 * *inline-protocol-offload*: inline protocol offload on ethernet device 692 * *inline-crypto-offload*: inline crypto processing on ethernet device 693 * *no-offload*: no offloading to hardware 694 695 ``<port_id>`` 696 697 * Port/device ID of the ethernet/crypto accelerator for which the SA is 698 configured. For *inline-crypto-offload* and *inline-protocol-offload*, this 699 port will be used for routing. The routing table will not be referred in 700 this case. 701 702 * Optional: No, if *type* is not *no-offload* 703 704 * Syntax: 705 706 * *port_id X* X is a valid device number in decimal 707 708 ``<fallback>`` 709 710 * Action type for ingress IPsec packets that inline processor failed to 711 process. Only a combination of *inline-crypto-offload* as a primary 712 session and *lookaside-none* as a fall-back session is supported at the 713 moment. 714 715 If used in conjunction with IPsec window, its width needs be increased 716 due to different processing times of inline and lookaside modes which 717 results in packet reordering. 718 719 * Optional: Yes. 720 721 * Available options: 722 723 * *lookaside-none*: use automatically chosen cryptodev to process packets 724 725 * Syntax: 726 727 * *fallback lookaside-none* 728 729``<flow-direction>`` 730 731 * Option for redirecting a specific inbound ipsec flow of a port to a specific 732 queue of that port. 733 734 * Optional: Yes. 735 736 * Available options: 737 738 * *port_id*: Port ID of the NIC for which the SA is configured. 739 * *queue_id*: Queue ID to which traffic should be redirected. 740 741 ``<udp-encap>`` 742 743 * Option to enable IPsec UDP encapsulation for NAT Traversal. 744 Only *lookaside-protocol-offload* and *inline-crypto-offload* modes are 745 supported at the moment. 746 747 * Optional: Yes, it is disabled by default 748 749 * Syntax: 750 751 * *udp-encap* 752 753 ``<mss>`` 754 755 * Maximum segment size for TSO offload, available for egress SAs only. 756 757 * Optional: Yes, TSO offload not set by default 758 759 * Syntax: 760 761 * *mss N* N is the segment size in bytes 762 763 764``<telemetry>`` 765 766 * Option to enable per SA telemetry. 767 Currently only supported with IPsec library path. 768 769 * Optional: Yes, it is disabled by default 770 771 * Syntax: 772 773 * *telemetry* 774 775 ``<esn>`` 776 777 * Enable ESN and set the initial ESN value. 778 779 * Optional: Yes, ESN not enabled by default 780 781 * Syntax: 782 783 * *esn N* N is the initial ESN value 784 785Example SA rules: 786 787.. code-block:: console 788 789 sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \ 790 src 172.16.1.5 dst 172.16.2.5 791 792 sa out 25 cipher_algo aes-128-cbc \ 793 cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \ 794 auth_algo sha1-hmac \ 795 auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \ 796 mode ipv6-tunnel \ 797 src 1111:1111:1111:1111:1111:1111:1111:5555 \ 798 dst 2222:2222:2222:2222:2222:2222:2222:5555 799 800 sa in 105 aead_algo aes-128-gcm \ 801 aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \ 802 mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 803 804 sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \ 805 auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \ 806 mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \ 807 type lookaside-protocol-offload port_id 4 808 809 sa in 35 aead_algo aes-128-gcm \ 810 aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \ 811 mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \ 812 type inline-crypto-offload port_id 0 813 814 sa in 117 cipher_algo null auth_algo null mode ipv4-tunnel src 172.16.2.7 \ 815 dst 172.16.1.7 flow-direction 0 2 816 817Routing rule syntax 818^^^^^^^^^^^^^^^^^^^ 819 820The Routing rule syntax is shown as follows: 821 822.. code-block:: console 823 824 rt <ip_ver> <src_ip> <dst_ip> <port> 825 826 827where each options means: 828 829``<ip_ver>`` 830 831 * IP protocol version 832 833 * Optional: No 834 835 * Available options: 836 837 * *ipv4*: IP protocol version 4 838 * *ipv6*: IP protocol version 6 839 840``<src_ip>`` 841 842 * The source IP address and mask 843 844 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 845 846 * Syntax: 847 848 * *src X.X.X.X/Y* for IPv4 849 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 850 851``<dst_ip>`` 852 853 * The destination IP address and mask 854 855 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 856 857 * Syntax: 858 859 * *dst X.X.X.X/Y* for IPv4 860 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 861 862``<port>`` 863 864 * The traffic output port id 865 866 * Optional: yes, default output port 0 will be used 867 868 * Syntax: *port X* 869 870Example SP rules: 871 872.. code-block:: console 873 874 rt ipv4 dst 172.16.1.5/32 port 0 875 876 rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0 877 878Flow rule syntax 879^^^^^^^^^^^^^^^^ 880 881Flow rule enables the usage of hardware classification capabilities to match specific 882ingress traffic and redirect the packets to the specified queue. This feature is 883optional and relies on hardware ``rte_flow`` support. 884 885The flow rule syntax is shown as follows: 886 887.. code-block:: console 888 889 flow <ip_ver> <src_ip> <dst_ip> <port> <queue> 890 891 892where each options means: 893 894``<ip_ver>`` 895 896 * IP protocol version 897 898 * Optional: No 899 900 * Available options: 901 902 * *ipv4*: IP protocol version 4 903 * *ipv6*: IP protocol version 6 904 905``<src_ip>`` 906 907 * The source IP address and mask 908 909 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 910 911 * Syntax: 912 913 * *src X.X.X.X/Y* for IPv4 914 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 915 916``<dst_ip>`` 917 918 * The destination IP address and mask 919 920 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 921 922 * Syntax: 923 924 * *dst X.X.X.X/Y* for IPv4 925 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 926 927``<port>`` 928 929 * The traffic input port id 930 931 * Optional: yes, default input port 0 will be used 932 933 * Syntax: *port X* 934 935``<queue>`` 936 937 * The traffic input queue id 938 939 * Optional: yes, default input queue 0 will be used 940 941 * Syntax: *queue X* 942 943Example flow rules: 944 945.. code-block:: console 946 947 flow ipv4 dst 172.16.1.5/32 port 0 queue 0 948 949 flow ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 1 queue 0 950 951 952Neighbour rule syntax 953^^^^^^^^^^^^^^^^^^^^^ 954 955The Neighbour rule syntax is shown as follows: 956 957.. code-block:: console 958 959 neigh <port> <dst_mac> 960 961 962where each options means: 963 964``<port>`` 965 966 * The output port id 967 968 * Optional: No 969 970 * Syntax: *port X* 971 972``<dst_mac>`` 973 974 * The destination ethernet address to use for that port 975 976 * Optional: No 977 978 * Syntax: 979 980 * XX:XX:XX:XX:XX:XX 981 982Example Neighbour rules: 983 984.. code-block:: console 985 986 neigh port 0 DE:AD:BE:EF:01:02 987 988Test directory 989-------------- 990 991The test directory contains scripts for testing the various encryption 992algorithms. 993 994The purpose of the scripts is to automate ipsec-secgw testing 995using another system running linux as a DUT. 996 997The user must setup the following environment variables: 998 999* ``SGW_PATH``: path to the ipsec-secgw binary to test. 1000 1001* ``REMOTE_HOST``: IP address/hostname of the DUT. 1002 1003* ``REMOTE_IFACE``: interface name for the test-port on the DUT. 1004 1005* ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-a <pci-id>') 1006 1007Also the user can optionally setup: 1008 1009* ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0) 1010 1011* ``CRYPTO_DEV``: crypto device to be used ('-a <pci-id>'). If none specified 1012 appropriate vdevs will be created by the script 1013 1014Scripts can be used for multiple test scenarios. To check all available 1015options run: 1016 1017.. code-block:: console 1018 1019 /bin/bash run_test.sh -h 1020 1021Note that most of the tests require the appropriate crypto PMD/device to be 1022available. 1023 1024Server configuration 1025~~~~~~~~~~~~~~~~~~~~ 1026 1027Two servers are required for the tests, SUT and DUT. 1028 1029Make sure the user from the SUT can ssh to the DUT without entering the password. 1030To enable this feature keys must be setup on the DUT. 1031 1032``ssh-keygen`` will make a private & public key pair on the SUT. 1033 1034``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public 1035key to the DUT. It will ask for credentials so that it can upload the public key. 1036 1037The SUT and DUT are connected through at least 2 NIC ports. 1038 1039One NIC port is expected to be managed by linux on both machines and will be 1040used as a control path. 1041 1042The second NIC port (test-port) should be bound to DPDK on the SUT, and should 1043be managed by linux on the DUT. 1044 1045The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and 1046``tap vdev``. 1047 1048It then configures the local tap interface and the remote interface and IPsec 1049policies in the following way: 1050 1051Traffic going over the test-port in both directions has to be protected by IPsec. 1052 1053Traffic going over the TAP port in both directions does not have to be protected. 1054 1055i.e: 1056 1057DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS 1058 1059SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS 1060 1061It then tries to perform some data transfer using the scheme described above. 1062 1063Usage 1064~~~~~ 1065 1066In the ipsec-secgw/test directory run 1067 1068/bin/bash run_test.sh <options> <ipsec_mode> 1069 1070Available options: 1071 1072* ``-4`` Perform tests with use of IPv4. One or both [-46] options needs to be 1073 selected. 1074 1075* ``-6`` Perform tests with use of IPv6. One or both [-46] options needs to be 1076 selected. 1077 1078* ``-m`` Add IPSec tunnel mixed IP version tests - outer IP version different 1079 than inner. Inner IP version will match selected option [-46]. 1080 1081* ``-i`` Run tests in inline mode. Regular tests will not be invoked. 1082 1083* ``-f`` Run tests for fallback mechanism. Regular tests will not be invoked. 1084 1085* ``-l`` Run tests in legacy mode only. It cannot be used with options [-fsc]. 1086 On default library mode is used. 1087 1088* ``-s`` Run all tests with reassembly support. On default only tests for 1089 fallback mechanism use reassembly support. 1090 1091* ``-c`` Run tests with use of cpu-crypto. For inline tests it will not be 1092 applied. On default lookaside-none is used. 1093 1094* ``-p`` Perform packet validation tests. Option [-46] is not required. 1095 1096* ``-h`` Show usage. 1097 1098If <ipsec_mode> is specified, only tests for that mode will be invoked. For the 1099list of available modes please refer to run_test.sh. 1100