1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2016-2017 Intel Corporation. 3 Copyright (C) 2020 Marvell International Ltd. 4 5IPsec Security Gateway Sample Application 6========================================= 7 8The IPsec Security Gateway application is an example of a "real world" 9application using DPDK cryptodev framework. 10 11Overview 12-------- 13 14The application demonstrates the implementation of a Security Gateway 15(not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301, 16RFC4303, RFC3602 and RFC2404. 17 18Internet Key Exchange (IKE) is not implemented, so only manual setting of 19Security Policies and Security Associations is supported. 20 21The Security Policies (SP) are implemented as ACL rules, the Security 22Associations (SA) are stored in a table and the routing is implemented 23using LPM. 24 25The application classifies the ports as *Protected* and *Unprotected*. 26Thus, traffic received on an Unprotected or Protected port is consider 27Inbound or Outbound respectively. 28 29The application also supports complete IPsec protocol offload to hardware 30(Look aside crypto accelerator or using ethernet device). It also support 31inline ipsec processing by the supported ethernet device during transmission. 32These modes can be selected during the SA creation configuration. 33 34In case of complete protocol offload, the processing of headers(ESP and outer 35IP header) is done by the hardware and the application does not need to 36add/remove them during outbound/inbound processing. 37 38For inline offloaded outbound traffic, the application will not do the LPM 39lookup for routing, as the port on which the packet has to be forwarded will be 40part of the SA. Security parameters will be configured on that port only, and 41sending the packet on other ports could result in unencrypted packets being 42sent out. 43 44The Path for IPsec Inbound traffic is: 45 46* Read packets from the port. 47* Classify packets between IPv4 and ESP. 48* Perform Inbound SA lookup for ESP packets based on their SPI. 49* Perform Verification/Decryption (Not needed in case of inline ipsec). 50* Remove ESP and outer IP header (Not needed in case of protocol offload). 51* Inbound SP check using ACL of decrypted packets and any other IPv4 packets. 52* Routing. 53* Write packet to port. 54 55The Path for the IPsec Outbound traffic is: 56 57* Read packets from the port. 58* Perform Outbound SP check using ACL of all IPv4 traffic. 59* Perform Outbound SA lookup for packets that need IPsec protection. 60* Add ESP and outer IP header (Not needed in case protocol offload). 61* Perform Encryption/Digest (Not needed in case of inline ipsec). 62* Routing. 63* Write packet to port. 64 65The application supports two modes of operation: poll mode and event mode. 66 67* In the poll mode a core receives packets from statically configured list 68 of eth ports and eth ports' queues. 69 70* In the event mode a core receives packets as events. After packet processing 71 is done core submits them back as events to an event device. This enables 72 multicore scaling and HW assisted scheduling by making use of the event device 73 capabilities. The event mode configuration is predefined. All packets reaching 74 given eth port will arrive at the same event queue. All event queues are mapped 75 to all event ports. This allows all cores to receive traffic from all ports. 76 Since the underlying event device might have varying capabilities, the worker 77 threads can be drafted differently to maximize performance. For example, if an 78 event device - eth device pair has Tx internal port, then application can call 79 rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst(). 80 So a thread which assumes that the device pair has internal port will not be the 81 right solution for another pair. The infrastructure added for the event mode aims 82 to help application to have multiple worker threads by maximizing performance from 83 every type of event device without affecting existing paths/use cases. The worker 84 to be used will be determined by the operating conditions and the underlying device 85 capabilities. **Currently the application provides non-burst, internal port worker 86 threads and supports inline protocol only.** It also provides infrastructure for 87 non-internal port however does not define any worker threads. 88 89Additionally the event mode introduces two submodes of processing packets: 90 91* Driver submode: This submode has bare minimum changes in the application to support 92 IPsec. There are no lookups, no routing done in the application. And for inline 93 protocol use case, the worker thread resembles l2fwd worker thread as the IPsec 94 processing is done entirely in HW. This mode can be used to benchmark the raw 95 performance of the HW. The driver submode is selected with --single-sa option 96 (used also by poll mode). When --single-sa option is used in conjution with event 97 mode then index passed to --single-sa is ignored. 98 99* App submode: This submode has all the features currently implemented with the 100 application (non librte_ipsec path). All the lookups, routing follows existing 101 methods and report numbers that can be compared against regular poll mode 102 benchmark numbers. 103 104Constraints 105----------- 106 107* No IPv6 options headers. 108* No AH mode. 109* Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1 and NULL. 110* Each SA must be handle by a unique lcore (*1 RX queue per port*). 111 112Compiling the Application 113------------------------- 114 115To compile the sample application see :doc:`compiling`. 116 117The application is located in the ``ipsec-secgw`` sub-directory. 118 119 120Running the Application 121----------------------- 122 123The application has a number of command line options:: 124 125 126 ./<build_dir>/examples/dpdk-ipsec-secgw [EAL options] -- 127 -p PORTMASK -P -u PORTMASK -j FRAMESIZE 128 -l -w REPLAY_WINDOW_SIZE -e -a 129 -c SAD_CACHE_SIZE 130 -s NUMBER_OF_MBUFS_IN_PACKET_POOL 131 -f CONFIG_FILE_PATH 132 --config (port,queue,lcore)[,(port,queue,lcore)] 133 --single-sa SAIDX 134 --cryptodev_mask MASK 135 --transfer-mode MODE 136 --event-schedule-type TYPE 137 --rxoffload MASK 138 --txoffload MASK 139 --reassemble NUM 140 --mtu MTU 141 --frag-ttl FRAG_TTL_NS 142 143Where: 144 145* ``-p PORTMASK``: Hexadecimal bitmask of ports to configure. 146 147* ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are 148 accepted regardless of the packet's Ethernet MAC destination address. 149 Without this option, only packets with the Ethernet MAC destination address 150 set to the Ethernet address of the port are accepted (default is enabled). 151 152* ``-u PORTMASK``: hexadecimal bitmask of unprotected ports 153 154* ``-j FRAMESIZE``: *optional*. data buffer size (in bytes), 155 in other words maximum data size for one segment. 156 Packets with length bigger then FRAMESIZE still can be received, 157 but will be segmented. 158 Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) 159 Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) 160 Maximum value: UINT16_MAX (65535). 161 162* ``-l``: enables code-path that uses librte_ipsec. 163 164* ``-w REPLAY_WINDOW_SIZE``: specifies the IPsec sequence number replay window 165 size for each Security Association (available only with librte_ipsec 166 code path). 167 168* ``-e``: enables Security Association extended sequence number processing 169 (available only with librte_ipsec code path). 170 171* ``-a``: enables Security Association sequence number atomic behavior 172 (available only with librte_ipsec code path). 173 174* ``-c``: specifies the SAD cache size. Stores the most recent SA in a per 175 lcore cache. Cache represents flat array containing SA's indexed by SPI. 176 Zero value disables cache. 177 Default value: 128. 178 179* ``-s``: sets number of mbufs in packet pool, if not provided number of mbufs 180 will be calculated based on number of cores, eth ports and crypto queues. 181 182* ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all 183 configuration items for running the application (See Configuration file 184 syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified. 185 **ONLY** the UNIX format configuration file is accepted. 186 187* ``--config (port,queue,lcore)[,(port,queue,lcore)]``: in poll mode determines 188 which queues from which ports are mapped to which cores. In event mode this 189 option is not used as packets are dynamically scheduled to cores by HW. 190 191* ``--single-sa SAIDX``: in poll mode use a single SA for outbound traffic, 192 bypassing the SP on both Inbound and Outbound. This option is meant for 193 debugging/performance purposes. In event mode selects driver submode, SA index 194 value is ignored. 195 196* ``--cryptodev_mask MASK``: hexadecimal bitmask of the crypto devices 197 to configure. 198 199* ``--transfer-mode MODE``: sets operating mode of the application 200 "poll" : packet transfer via polling (default) 201 "event" : Packet transfer via event device 202 203* ``--event-schedule-type TYPE``: queue schedule type, applies only when 204 --transfer-mode is set to event. 205 "ordered" : Ordered (default) 206 "atomic" : Atomic 207 "parallel" : Parallel 208 When --event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event 209 device will ensure the ordering. Ordering will be lost when tried in PARALLEL. 210 211* ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port 212 (bitmask of DEV_RX_OFFLOAD_* values). It is an optional parameter and 213 allows user to disable some of the RX HW offload capabilities. 214 By default all HW RX offloads are enabled. 215 216* ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port 217 (bitmask of DEV_TX_OFFLOAD_* values). It is an optional parameter and 218 allows user to disable some of the TX HW offload capabilities. 219 By default all HW TX offloads are enabled. 220 221* ``--reassemble NUM``: max number of entries in reassemble fragment table. 222 Zero value disables reassembly functionality. 223 Default value: 0. 224 225* ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports. 226 Outgoing packets with length bigger then MTU will be fragmented. 227 Incoming packets with length bigger then MTU will be discarded. 228 Default value: 1500. 229 230* ``--frag-ttl FRAG_TTL_NS``: fragment lifetime (in nanoseconds). 231 If packet is not reassembled within this time, received fragments 232 will be discarded. Fragment lifetime should be decreased when 233 there is a high fragmented traffic loss in high bandwidth networks. 234 Should be lower for low number of reassembly buckets. 235 Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s). 236 237 238The mapping of lcores to port/queues is similar to other l3fwd applications. 239 240For example, given the following command line to run application in poll mode:: 241 242 ./<build_dir>/examples/dpdk-ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \ 243 --vdev "crypto_null" -- -p 0xf -P -u 0x3 \ 244 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \ 245 -f /path/to/config_file --transfer-mode poll \ 246 247where each option means: 248 249* The ``-l`` option enables cores 20 and 21. 250 251* The ``-n`` option sets memory 4 channels. 252 253* The ``--socket-mem`` to use 2GB on socket 1. 254 255* The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD. 256 257* The ``-p`` option enables ports (detected) 0, 1, 2 and 3. 258 259* The ``-P`` option enables promiscuous mode. 260 261* The ``-u`` option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected. 262 263* The ``--config`` option enables one queue per port with the following mapping: 264 265 +----------+-----------+-----------+---------------------------------------+ 266 | **Port** | **Queue** | **lcore** | **Description** | 267 | | | | | 268 +----------+-----------+-----------+---------------------------------------+ 269 | 0 | 0 | 20 | Map queue 0 from port 0 to lcore 20. | 270 | | | | | 271 +----------+-----------+-----------+---------------------------------------+ 272 | 1 | 0 | 20 | Map queue 0 from port 1 to lcore 20. | 273 | | | | | 274 +----------+-----------+-----------+---------------------------------------+ 275 | 2 | 0 | 21 | Map queue 0 from port 2 to lcore 21. | 276 | | | | | 277 +----------+-----------+-----------+---------------------------------------+ 278 | 3 | 0 | 21 | Map queue 0 from port 3 to lcore 21. | 279 | | | | | 280 +----------+-----------+-----------+---------------------------------------+ 281 282* The ``-f /path/to/config_file`` option enables the application read and 283 parse the configuration file specified, and configures the application 284 with a given set of SP, SA and Routing entries accordingly. The syntax of 285 the configuration file will be explained below in more detail. Please 286 **note** the parser only accepts UNIX format text file. Other formats 287 such as DOS/MAC format will cause a parse error. 288 289* The ``--transfer-mode`` option selects poll mode for processing packets. 290 291Similarly for example, given the following command line to run application in 292event app mode:: 293 294 ./<build_dir>/examples/dpdk-ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1 \ 295 -f /path/to/config_file --transfer-mode event \ 296 --event-schedule-type parallel \ 297 298where each option means: 299 300* The ``-c`` option selects cores 0 and 1 to run on. 301 302* The ``-P`` option enables promiscuous mode. 303 304* The ``-p`` option enables ports (detected) 0 and 1. 305 306* The ``-u`` option sets ports 0 as unprotected, leaving 1 as protected. 307 308* The ``-f /path/to/config_file`` option has the same behavior as in poll 309 mode example. 310 311* The ``--transfer-mode`` option selects event mode for processing packets. 312 313* The ``--event-schedule-type`` option selects parallel ordering of event queues. 314 315 316Refer to the *DPDK Getting Started Guide* for general information on running 317applications and the Environment Abstraction Layer (EAL) options. 318 319The application would do a best effort to "map" crypto devices to cores, with 320hardware devices having priority. Basically, hardware devices if present would 321be assigned to a core before software ones. 322This means that if the application is using a single core and both hardware 323and software crypto devices are detected, hardware devices will be used. 324 325A way to achieve the case where you want to force the use of virtual crypto 326devices is to only use the Ethernet devices needed (via the allow flag) 327and therefore implicitly blocking all hardware crypto devices. 328 329For example, something like the following command line: 330 331.. code-block:: console 332 333 ./<build_dir>/examples/dpdk-ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \ 334 -a 81:00.0 -a 81:00.1 -a 81:00.2 -a 81:00.3 \ 335 --vdev "crypto_aesni_mb" --vdev "crypto_null" \ 336 -- \ 337 -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \ 338 -f sample.cfg 339 340 341Configurations 342-------------- 343 344The following sections provide the syntax of configurations to initialize 345your SP, SA, Routing, Flow and Neighbour tables. 346Configurations shall be specified in the configuration file to be passed to 347the application. The file is then parsed by the application. The successful 348parsing will result in the appropriate rules being applied to the tables 349accordingly. 350 351 352Configuration File Syntax 353~~~~~~~~~~~~~~~~~~~~~~~~~ 354 355As mention in the overview, the Security Policies are ACL rules. 356The application parsers the rules specified in the configuration file and 357passes them to the ACL table, and replicates them per socket in use. 358 359Following are the configuration file syntax. 360 361General rule syntax 362^^^^^^^^^^^^^^^^^^^ 363 364The parse treats one line in the configuration file as one configuration 365item (unless the line concatenation symbol exists). Every configuration 366item shall follow the syntax of either SP, SA, Routing, Flow or Neighbour 367rules specified below. 368 369The configuration parser supports the following special symbols: 370 371 * Comment symbol **#**. Any character from this symbol to the end of 372 line is treated as comment and will not be parsed. 373 374 * Line concatenation symbol **\\**. This symbol shall be placed in the end 375 of the line to be concatenated to the line below. Multiple lines' 376 concatenation is supported. 377 378 379SP rule syntax 380^^^^^^^^^^^^^^ 381 382The SP rule syntax is shown as follows: 383 384.. code-block:: console 385 386 sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip> 387 <proto> <sport> <dport> 388 389 390where each options means: 391 392``<ip_ver>`` 393 394 * IP protocol version 395 396 * Optional: No 397 398 * Available options: 399 400 * *ipv4*: IP protocol version 4 401 * *ipv6*: IP protocol version 6 402 403``<dir>`` 404 405 * The traffic direction 406 407 * Optional: No 408 409 * Available options: 410 411 * *in*: inbound traffic 412 * *out*: outbound traffic 413 414``<action>`` 415 416 * IPsec action 417 418 * Optional: No 419 420 * Available options: 421 422 * *protect <SA_idx>*: the specified traffic is protected by SA rule 423 with id SA_idx 424 * *bypass*: the specified traffic traffic is bypassed 425 * *discard*: the specified traffic is discarded 426 427``<priority>`` 428 429 * Rule priority 430 431 * Optional: Yes, default priority 0 will be used 432 433 * Syntax: *pri <id>* 434 435``<src_ip>`` 436 437 * The source IP address and mask 438 439 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 440 441 * Syntax: 442 443 * *src X.X.X.X/Y* for IPv4 444 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 445 446``<dst_ip>`` 447 448 * The destination IP address and mask 449 450 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 451 452 * Syntax: 453 454 * *dst X.X.X.X/Y* for IPv4 455 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 456 457``<proto>`` 458 459 * The protocol start and end range 460 461 * Optional: yes, default range of 0 to 0 will be used 462 463 * Syntax: *proto X:Y* 464 465``<sport>`` 466 467 * The source port start and end range 468 469 * Optional: yes, default range of 0 to 0 will be used 470 471 * Syntax: *sport X:Y* 472 473``<dport>`` 474 475 * The destination port start and end range 476 477 * Optional: yes, default range of 0 to 0 will be used 478 479 * Syntax: *dport X:Y* 480 481Example SP rules: 482 483.. code-block:: console 484 485 sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \ 486 dport 0:65535 487 488 sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\ 489 0000:0000/96 sport 0:65535 dport 0:65535 490 491 492SA rule syntax 493^^^^^^^^^^^^^^ 494 495The successfully parsed SA rules will be stored in an array table. 496 497The SA rule syntax is shown as follows: 498 499.. code-block:: console 500 501 sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key> 502 <mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback> 503 <flow-direction> <port_id> <queue_id> 504 505where each options means: 506 507``<dir>`` 508 509 * The traffic direction 510 511 * Optional: No 512 513 * Available options: 514 515 * *in*: inbound traffic 516 * *out*: outbound traffic 517 518``<spi>`` 519 520 * The SPI number 521 522 * Optional: No 523 524 * Syntax: unsigned integer number 525 526``<cipher_algo>`` 527 528 * Cipher algorithm 529 530 * Optional: Yes, unless <aead_algo> is not used 531 532 * Available options: 533 534 * *null*: NULL algorithm 535 * *aes-128-cbc*: AES-CBC 128-bit algorithm 536 * *aes-192-cbc*: AES-CBC 192-bit algorithm 537 * *aes-256-cbc*: AES-CBC 256-bit algorithm 538 * *aes-128-ctr*: AES-CTR 128-bit algorithm 539 * *3des-cbc*: 3DES-CBC 192-bit algorithm 540 541 * Syntax: *cipher_algo <your algorithm>* 542 543``<cipher_key>`` 544 545 * Cipher key, NOT available when 'null' algorithm is used 546 547 * Optional: Yes, unless <aead_algo> is not used. 548 Must be followed by <cipher_algo> option 549 550 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 551 The number of bytes should be as same as the specified cipher algorithm 552 key size. 553 554 For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 555 A1:B2:C3:D4* 556 557``<auth_algo>`` 558 559 * Authentication algorithm 560 561 * Optional: Yes, unless <aead_algo> is not used 562 563 * Available options: 564 565 * *null*: NULL algorithm 566 * *sha1-hmac*: HMAC SHA1 algorithm 567 568``<auth_key>`` 569 570 * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm 571 is used. 572 573 * Optional: Yes, unless <aead_algo> is not used. 574 Must be followed by <auth_algo> option 575 576 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 577 The number of bytes should be as same as the specified authentication 578 algorithm key size. 579 580 For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 581 A1:B2:C3:D4* 582 583``<aead_algo>`` 584 585 * AEAD algorithm 586 587 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used 588 589 * Available options: 590 591 * *aes-128-gcm*: AES-GCM 128-bit algorithm 592 * *aes-192-gcm*: AES-GCM 192-bit algorithm 593 * *aes-256-gcm*: AES-GCM 256-bit algorithm 594 595 * Syntax: *cipher_algo <your algorithm>* 596 597``<aead_key>`` 598 599 * Cipher key, NOT available when 'null' algorithm is used 600 601 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used. 602 Must be followed by <aead_algo> option 603 604 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 605 Last 4 bytes of the provided key will be used as 'salt' and so, the 606 number of bytes should be same as the sum of specified AEAD algorithm 607 key size and salt size (4 bytes). 608 609 For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 610 A1:B2:C3:D4:A1:B2:C3:D4* 611 612``<mode>`` 613 614 * The operation mode 615 616 * Optional: No 617 618 * Available options: 619 620 * *ipv4-tunnel*: Tunnel mode for IPv4 packets 621 * *ipv6-tunnel*: Tunnel mode for IPv6 packets 622 * *transport*: transport mode 623 624 * Syntax: mode XXX 625 626``<src_ip>`` 627 628 * The source IP address. This option is not available when 629 transport mode is used 630 631 * Optional: Yes, default address 0.0.0.0 will be used 632 633 * Syntax: 634 635 * *src X.X.X.X* for IPv4 636 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6 637 638``<dst_ip>`` 639 640 * The destination IP address. This option is not available when 641 transport mode is used 642 643 * Optional: Yes, default address 0.0.0.0 will be used 644 645 * Syntax: 646 647 * *dst X.X.X.X* for IPv4 648 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6 649 650``<type>`` 651 652 * Action type to specify the security action. This option specify 653 the SA to be performed with look aside protocol offload to HW 654 accelerator or protocol offload on ethernet device or inline 655 crypto processing on the ethernet device during transmission. 656 657 * Optional: Yes, default type *no-offload* 658 659 * Available options: 660 661 * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator 662 * *inline-protocol-offload*: inline protocol offload on ethernet device 663 * *inline-crypto-offload*: inline crypto processing on ethernet device 664 * *no-offload*: no offloading to hardware 665 666 ``<port_id>`` 667 668 * Port/device ID of the ethernet/crypto accelerator for which the SA is 669 configured. For *inline-crypto-offload* and *inline-protocol-offload*, this 670 port will be used for routing. The routing table will not be referred in 671 this case. 672 673 * Optional: No, if *type* is not *no-offload* 674 675 * Syntax: 676 677 * *port_id X* X is a valid device number in decimal 678 679 ``<fallback>`` 680 681 * Action type for ingress IPsec packets that inline processor failed to 682 process. Only a combination of *inline-crypto-offload* as a primary 683 session and *lookaside-none* as a fall-back session is supported at the 684 moment. 685 686 If used in conjunction with IPsec window, its width needs be increased 687 due to different processing times of inline and lookaside modes which 688 results in packet reordering. 689 690 * Optional: Yes. 691 692 * Available options: 693 694 * *lookaside-none*: use automatically chosen cryptodev to process packets 695 696 * Syntax: 697 698 * *fallback lookaside-none* 699 700``<flow-direction>`` 701 702 * Option for redirecting a specific inbound ipsec flow of a port to a specific 703 queue of that port. 704 705 * Optional: Yes. 706 707 * Available options: 708 709 * *port_id*: Port ID of the NIC for which the SA is configured. 710 * *queue_id*: Queue ID to which traffic should be redirected. 711 712Example SA rules: 713 714.. code-block:: console 715 716 sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \ 717 src 172.16.1.5 dst 172.16.2.5 718 719 sa out 25 cipher_algo aes-128-cbc \ 720 cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \ 721 auth_algo sha1-hmac \ 722 auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \ 723 mode ipv6-tunnel \ 724 src 1111:1111:1111:1111:1111:1111:1111:5555 \ 725 dst 2222:2222:2222:2222:2222:2222:2222:5555 726 727 sa in 105 aead_algo aes-128-gcm \ 728 aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \ 729 mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 730 731 sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \ 732 auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \ 733 mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \ 734 type lookaside-protocol-offload port_id 4 735 736 sa in 35 aead_algo aes-128-gcm \ 737 aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \ 738 mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \ 739 type inline-crypto-offload port_id 0 740 741 sa in 117 cipher_algo null auth_algo null mode ipv4-tunnel src 172.16.2.7 \ 742 dst 172.16.1.7 flow-direction 0 2 743 744Routing rule syntax 745^^^^^^^^^^^^^^^^^^^ 746 747The Routing rule syntax is shown as follows: 748 749.. code-block:: console 750 751 rt <ip_ver> <src_ip> <dst_ip> <port> 752 753 754where each options means: 755 756``<ip_ver>`` 757 758 * IP protocol version 759 760 * Optional: No 761 762 * Available options: 763 764 * *ipv4*: IP protocol version 4 765 * *ipv6*: IP protocol version 6 766 767``<src_ip>`` 768 769 * The source IP address and mask 770 771 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 772 773 * Syntax: 774 775 * *src X.X.X.X/Y* for IPv4 776 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 777 778``<dst_ip>`` 779 780 * The destination IP address and mask 781 782 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 783 784 * Syntax: 785 786 * *dst X.X.X.X/Y* for IPv4 787 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 788 789``<port>`` 790 791 * The traffic output port id 792 793 * Optional: yes, default output port 0 will be used 794 795 * Syntax: *port X* 796 797Example SP rules: 798 799.. code-block:: console 800 801 rt ipv4 dst 172.16.1.5/32 port 0 802 803 rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0 804 805Flow rule syntax 806^^^^^^^^^^^^^^^^ 807 808Flow rule enables the usage of hardware classification capabilities to match specific 809ingress traffic and redirect the packets to the specified queue. This feature is 810optional and relies on hardware ``rte_flow`` support. 811 812The flow rule syntax is shown as follows: 813 814.. code-block:: console 815 816 flow <ip_ver> <src_ip> <dst_ip> <port> <queue> 817 818 819where each options means: 820 821``<ip_ver>`` 822 823 * IP protocol version 824 825 * Optional: No 826 827 * Available options: 828 829 * *ipv4*: IP protocol version 4 830 * *ipv6*: IP protocol version 6 831 832``<src_ip>`` 833 834 * The source IP address and mask 835 836 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 837 838 * Syntax: 839 840 * *src X.X.X.X/Y* for IPv4 841 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 842 843``<dst_ip>`` 844 845 * The destination IP address and mask 846 847 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 848 849 * Syntax: 850 851 * *dst X.X.X.X/Y* for IPv4 852 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 853 854``<port>`` 855 856 * The traffic input port id 857 858 * Optional: yes, default input port 0 will be used 859 860 * Syntax: *port X* 861 862``<queue>`` 863 864 * The traffic input queue id 865 866 * Optional: yes, default input queue 0 will be used 867 868 * Syntax: *queue X* 869 870Example flow rules: 871 872.. code-block:: console 873 874 flow ipv4 dst 172.16.1.5/32 port 0 queue 0 875 876 flow ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 1 queue 0 877 878 879Neighbour rule syntax 880^^^^^^^^^^^^^^^^^^^^^ 881 882The Neighbour rule syntax is shown as follows: 883 884.. code-block:: console 885 886 neigh <port> <dst_mac> 887 888 889where each options means: 890 891``<port>`` 892 893 * The output port id 894 895 * Optional: No 896 897 * Syntax: *port X* 898 899``<dst_mac>`` 900 901 * The destination ethernet address to use for that port 902 903 * Optional: No 904 905 * Syntax: 906 907 * XX:XX:XX:XX:XX:XX 908 909Example Neighbour rules: 910 911.. code-block:: console 912 913 neigh port 0 DE:AD:BE:EF:01:02 914 915Test directory 916-------------- 917 918The test directory contains scripts for testing the various encryption 919algorithms. 920 921The purpose of the scripts is to automate ipsec-secgw testing 922using another system running linux as a DUT. 923 924The user must setup the following environment variables: 925 926* ``SGW_PATH``: path to the ipsec-secgw binary to test. 927 928* ``REMOTE_HOST``: IP address/hostname of the DUT. 929 930* ``REMOTE_IFACE``: interface name for the test-port on the DUT. 931 932* ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-a <pci-id>') 933 934Also the user can optionally setup: 935 936* ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0) 937 938* ``CRYPTO_DEV``: crypto device to be used ('-a <pci-id>'). If none specified 939 appropriate vdevs will be created by the script 940 941Scripts can be used for multiple test scenarios. To check all available 942options run: 943 944.. code-block:: console 945 946 /bin/bash run_test.sh -h 947 948Note that most of the tests require the appropriate crypto PMD/device to be 949available. 950 951Server configuration 952~~~~~~~~~~~~~~~~~~~~ 953 954Two servers are required for the tests, SUT and DUT. 955 956Make sure the user from the SUT can ssh to the DUT without entering the password. 957To enable this feature keys must be setup on the DUT. 958 959``ssh-keygen`` will make a private & public key pair on the SUT. 960 961``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public 962key to the DUT. It will ask for credentials so that it can upload the public key. 963 964The SUT and DUT are connected through at least 2 NIC ports. 965 966One NIC port is expected to be managed by linux on both machines and will be 967used as a control path. 968 969The second NIC port (test-port) should be bound to DPDK on the SUT, and should 970be managed by linux on the DUT. 971 972The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and 973``tap vdev``. 974 975It then configures the local tap interface and the remote interface and IPsec 976policies in the following way: 977 978Traffic going over the test-port in both directions has to be protected by IPsec. 979 980Traffic going over the TAP port in both directions does not have to be protected. 981 982i.e: 983 984DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS 985 986SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS 987 988It then tries to perform some data transfer using the scheme described above. 989 990Usage 991~~~~~ 992 993In the ipsec-secgw/test directory run 994 995/bin/bash run_test.sh <options> <ipsec_mode> 996 997Available options: 998 999* ``-4`` Perform tests with use of IPv4. One or both [-46] options needs to be 1000 selected. 1001 1002* ``-6`` Perform tests with use of IPv6. One or both [-46] options needs to be 1003 selected. 1004 1005* ``-m`` Add IPSec tunnel mixed IP version tests - outer IP version different 1006 than inner. Inner IP version will match selected option [-46]. 1007 1008* ``-i`` Run tests in inline mode. Regular tests will not be invoked. 1009 1010* ``-f`` Run tests for fallback mechanism. Regular tests will not be invoked. 1011 1012* ``-l`` Run tests in legacy mode only. It cannot be used with options [-fsc]. 1013 On default library mode is used. 1014 1015* ``-s`` Run all tests with reassembly support. On default only tests for 1016 fallback mechanism use reassembly support. 1017 1018* ``-c`` Run tests with use of cpu-crypto. For inline tests it will not be 1019 applied. On default lookaside-none is used. 1020 1021* ``-p`` Perform packet validation tests. Option [-46] is not required. 1022 1023* ``-h`` Show usage. 1024 1025If <ipsec_mode> is specified, only tests for that mode will be invoked. For the 1026list of available modes please refer to run_test.sh.