1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2016-2017 Intel Corporation. 3 Copyright (C) 2020 Marvell International Ltd. 4 5IPsec Security Gateway Sample Application 6========================================= 7 8The IPsec Security Gateway application is an example of a "real world" 9application using DPDK cryptodev framework. 10 11Overview 12-------- 13 14The application demonstrates the implementation of a Security Gateway 15(not IPsec compliant, see the Constraints section below) using DPDK based on RFC4301, 16RFC4303, RFC3602 and RFC2404. 17 18Internet Key Exchange (IKE) is not implemented, so only manual setting of 19Security Policies and Security Associations is supported. 20 21The Security Policies (SP) are implemented as ACL rules, the Security 22Associations (SA) are stored in a table and the routing is implemented 23using LPM. 24 25The application classifies the ports as *Protected* and *Unprotected*. 26Thus, traffic received on an Unprotected or Protected port is consider 27Inbound or Outbound respectively. 28 29The application also supports complete IPsec protocol offload to hardware 30(Look aside crypto accelerator or using ethernet device). It also support 31inline ipsec processing by the supported ethernet device during transmission. 32These modes can be selected during the SA creation configuration. 33 34In case of complete protocol offload, the processing of headers(ESP and outer 35IP header) is done by the hardware and the application does not need to 36add/remove them during outbound/inbound processing. 37 38For inline offloaded outbound traffic, the application will not do the LPM 39lookup for routing, as the port on which the packet has to be forwarded will be 40part of the SA. Security parameters will be configured on that port only, and 41sending the packet on other ports could result in unencrypted packets being 42sent out. 43 44The Path for IPsec Inbound traffic is: 45 46* Read packets from the port. 47* Classify packets between IPv4 and ESP. 48* Perform Inbound SA lookup for ESP packets based on their SPI. 49* Perform Verification/Decryption (Not needed in case of inline ipsec). 50* Remove ESP and outer IP header (Not needed in case of protocol offload). 51* Inbound SP check using ACL of decrypted packets and any other IPv4 packets. 52* Routing. 53* Write packet to port. 54 55The Path for the IPsec Outbound traffic is: 56 57* Read packets from the port. 58* Perform Outbound SP check using ACL of all IPv4 traffic. 59* Perform Outbound SA lookup for packets that need IPsec protection. 60* Add ESP and outer IP header (Not needed in case protocol offload). 61* Perform Encryption/Digest (Not needed in case of inline ipsec). 62* Routing. 63* Write packet to port. 64 65The application supports two modes of operation: poll mode and event mode. 66 67* In the poll mode a core receives packets from statically configured list 68 of eth ports and eth ports' queues. 69 70* In the event mode a core receives packets as events. After packet processing 71 is done core submits them back as events to an event device. This enables 72 multicore scaling and HW assisted scheduling by making use of the event device 73 capabilities. The event mode configuration is predefined. All packets reaching 74 given eth port will arrive at the same event queue. All event queues are mapped 75 to all event ports. This allows all cores to receive traffic from all ports. 76 Since the underlying event device might have varying capabilities, the worker 77 threads can be drafted differently to maximize performance. For example, if an 78 event device - eth device pair has Tx internal port, then application can call 79 rte_event_eth_tx_adapter_enqueue() instead of regular rte_event_enqueue_burst(). 80 So a thread which assumes that the device pair has internal port will not be the 81 right solution for another pair. The infrastructure added for the event mode aims 82 to help application to have multiple worker threads by maximizing performance from 83 every type of event device without affecting existing paths/use cases. The worker 84 to be used will be determined by the operating conditions and the underlying device 85 capabilities. **Currently the application provides non-burst, internal port worker 86 threads and supports inline protocol only.** It also provides infrastructure for 87 non-internal port however does not define any worker threads. 88 89 Event mode also supports event vectorization. The event devices, ethernet device 90 pairs which support the capability ``RTE_EVENT_ETH_RX_ADAPTER_CAP_EVENT_VECTOR`` can 91 aggregate packets based on flow characteristics and generate a ``rte_event`` 92 containing ``rte_event_vector``. 93 The aggregation size and timeout can be given using command line options vector-size 94 (default vector-size is 16) and vector-tmo (default vector-tmo is 102400ns). 95 By default event vectorization is disabled and it can be enabled using event-vector 96 option. 97 98Additionally the event mode introduces two submodes of processing packets: 99 100* Driver submode: This submode has bare minimum changes in the application to support 101 IPsec. There are no lookups, no routing done in the application. And for inline 102 protocol use case, the worker thread resembles l2fwd worker thread as the IPsec 103 processing is done entirely in HW. This mode can be used to benchmark the raw 104 performance of the HW. The driver submode is selected with --single-sa option 105 (used also by poll mode). When --single-sa option is used in conjunction with event 106 mode then index passed to --single-sa is ignored. 107 108* App submode: This submode has all the features currently implemented with the 109 application (non librte_ipsec path). All the lookups, routing follows existing 110 methods and report numbers that can be compared against regular poll mode 111 benchmark numbers. 112 113Constraints 114----------- 115 116* No IPv6 options headers. 117* No AH mode. 118* Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1, 119 AES-GMAC, AES_CTR, AES_XCBC_MAC, AES_CCM, CHACHA20_POLY1305 and NULL. 120* Each SA must be handle by a unique lcore (*1 RX queue per port*). 121 122Compiling the Application 123------------------------- 124 125To compile the sample application see :doc:`compiling`. 126 127The application is located in the ``ipsec-secgw`` sub-directory. 128 129 130Running the Application 131----------------------- 132 133The application has a number of command line options:: 134 135 136 ./<build_dir>/examples/dpdk-ipsec-secgw [EAL options] -- 137 -p PORTMASK -P -u PORTMASK -j FRAMESIZE 138 -l -w REPLAY_WINDOW_SIZE -e -a 139 -c SAD_CACHE_SIZE 140 -t STATISTICS_INTERVAL 141 -s NUMBER_OF_MBUFS_IN_PACKET_POOL 142 -f CONFIG_FILE_PATH 143 --config (port,queue,lcore)[,(port,queue,lcore)] 144 --single-sa SAIDX 145 --cryptodev_mask MASK 146 --transfer-mode MODE 147 --event-schedule-type TYPE 148 --rxoffload MASK 149 --txoffload MASK 150 --reassemble NUM 151 --mtu MTU 152 --frag-ttl FRAG_TTL_NS 153 154Where: 155 156* ``-p PORTMASK``: Hexadecimal bitmask of ports to configure. 157 158* ``-P``: *optional*. Sets all ports to promiscuous mode so that packets are 159 accepted regardless of the packet's Ethernet MAC destination address. 160 Without this option, only packets with the Ethernet MAC destination address 161 set to the Ethernet address of the port are accepted (default is enabled). 162 163* ``-u PORTMASK``: hexadecimal bitmask of unprotected ports 164 165* ``-j FRAMESIZE``: *optional*. data buffer size (in bytes), 166 in other words maximum data size for one segment. 167 Packets with length bigger then FRAMESIZE still can be received, 168 but will be segmented. 169 Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) 170 Minimum value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) 171 Maximum value: UINT16_MAX (65535). 172 173* ``-l``: enables code-path that uses librte_ipsec. 174 175* ``-w REPLAY_WINDOW_SIZE``: specifies the IPsec sequence number replay window 176 size for each Security Association (available only with librte_ipsec 177 code path). 178 179* ``-e``: enables Security Association extended sequence number processing 180 (available only with librte_ipsec code path). 181 182* ``-a``: enables Security Association sequence number atomic behavior 183 (available only with librte_ipsec code path). 184 185* ``-c``: specifies the SAD cache size. Stores the most recent SA in a per 186 lcore cache. Cache represents flat array containing SA's indexed by SPI. 187 Zero value disables cache. 188 Default value: 128. 189 190* ``-t``: specifies the statistics screen update interval in seconds. If set 191 to zero or omitted statistics screen is disabled. 192 Default value: 0. 193 194* ``-s``: sets number of mbufs in packet pool, if not provided number of mbufs 195 will be calculated based on number of cores, eth ports and crypto queues. 196 197* ``-f CONFIG_FILE_PATH``: the full path of text-based file containing all 198 configuration items for running the application (See Configuration file 199 syntax section below). ``-f CONFIG_FILE_PATH`` **must** be specified. 200 **ONLY** the UNIX format configuration file is accepted. 201 202* ``--config (port,queue,lcore)[,(port,queue,lcore)]``: in poll mode determines 203 which queues from which ports are mapped to which cores. In event mode this 204 option is not used as packets are dynamically scheduled to cores by HW. 205 206* ``--single-sa SAIDX``: in poll mode use a single SA for outbound traffic, 207 bypassing the SP on both Inbound and Outbound. This option is meant for 208 debugging/performance purposes. In event mode selects driver submode, SA index 209 value is ignored. 210 211* ``--cryptodev_mask MASK``: hexadecimal bitmask of the crypto devices 212 to configure. 213 214* ``--transfer-mode MODE``: sets operating mode of the application 215 "poll" : packet transfer via polling (default) 216 "event" : Packet transfer via event device 217 218* ``--event-schedule-type TYPE``: queue schedule type, applies only when 219 --transfer-mode is set to event. 220 "ordered" : Ordered (default) 221 "atomic" : Atomic 222 "parallel" : Parallel 223 When --event-schedule-type is set as RTE_SCHED_TYPE_ORDERED/ATOMIC, event 224 device will ensure the ordering. Ordering will be lost when tried in PARALLEL. 225 226* ``--rxoffload MASK``: RX HW offload capabilities to enable/use on this port 227 (bitmask of RTE_ETH_RX_OFFLOAD_* values). It is an optional parameter and 228 allows user to disable some of the RX HW offload capabilities. 229 By default all HW RX offloads are enabled. 230 231* ``--txoffload MASK``: TX HW offload capabilities to enable/use on this port 232 (bitmask of RTE_ETH_TX_OFFLOAD_* values). It is an optional parameter and 233 allows user to disable some of the TX HW offload capabilities. 234 By default all HW TX offloads are enabled. 235 236* ``--reassemble NUM``: max number of entries in reassemble fragment table. 237 Zero value disables reassembly functionality. 238 Default value: 0. 239 240* ``--mtu MTU``: MTU value (in bytes) on all attached ethernet ports. 241 Outgoing packets with length bigger then MTU will be fragmented. 242 Incoming packets with length bigger then MTU will be discarded. 243 Default value: 1500. 244 245* ``--frag-ttl FRAG_TTL_NS``: fragment lifetime (in nanoseconds). 246 If packet is not reassembled within this time, received fragments 247 will be discarded. Fragment lifetime should be decreased when 248 there is a high fragmented traffic loss in high bandwidth networks. 249 Should be lower for low number of reassembly buckets. 250 Valid values: from 1 ns to 10 s. Default value: 10000000 (10 s). 251 252 253The mapping of lcores to port/queues is similar to other l3fwd applications. 254 255For example, given the following command line to run application in poll mode:: 256 257 ./<build_dir>/examples/dpdk-ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \ 258 --vdev "crypto_null" -- -p 0xf -P -u 0x3 \ 259 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \ 260 -f /path/to/config_file --transfer-mode poll \ 261 262where each option means: 263 264* The ``-l`` option enables cores 20 and 21. 265 266* The ``-n`` option sets memory 4 channels. 267 268* The ``--socket-mem`` to use 2GB on socket 1. 269 270* The ``--vdev "crypto_null"`` option creates virtual NULL cryptodev PMD. 271 272* The ``-p`` option enables ports (detected) 0, 1, 2 and 3. 273 274* The ``-P`` option enables promiscuous mode. 275 276* The ``-u`` option sets ports 0 and 1 as unprotected, leaving 2 and 3 as protected. 277 278* The ``--config`` option enables one queue per port with the following mapping: 279 280 +----------+-----------+-----------+---------------------------------------+ 281 | **Port** | **Queue** | **lcore** | **Description** | 282 | | | | | 283 +----------+-----------+-----------+---------------------------------------+ 284 | 0 | 0 | 20 | Map queue 0 from port 0 to lcore 20. | 285 | | | | | 286 +----------+-----------+-----------+---------------------------------------+ 287 | 1 | 0 | 20 | Map queue 0 from port 1 to lcore 20. | 288 | | | | | 289 +----------+-----------+-----------+---------------------------------------+ 290 | 2 | 0 | 21 | Map queue 0 from port 2 to lcore 21. | 291 | | | | | 292 +----------+-----------+-----------+---------------------------------------+ 293 | 3 | 0 | 21 | Map queue 0 from port 3 to lcore 21. | 294 | | | | | 295 +----------+-----------+-----------+---------------------------------------+ 296 297* The ``-f /path/to/config_file`` option enables the application read and 298 parse the configuration file specified, and configures the application 299 with a given set of SP, SA and Routing entries accordingly. The syntax of 300 the configuration file will be explained below in more detail. Please 301 **note** the parser only accepts UNIX format text file. Other formats 302 such as DOS/MAC format will cause a parse error. 303 304* The ``--transfer-mode`` option selects poll mode for processing packets. 305 306Similarly for example, given the following command line to run application in 307event app mode:: 308 309 ./<build_dir>/examples/dpdk-ipsec-secgw -c 0x3 -- -P -p 0x3 -u 0x1 \ 310 -f /path/to/config_file --transfer-mode event \ 311 --event-schedule-type parallel --event-vector --vector-size 32 \ 312 --vector-tmo 102400 \ 313 314where each option means: 315 316* The ``-c`` option selects cores 0 and 1 to run on. 317 318* The ``-P`` option enables promiscuous mode. 319 320* The ``-p`` option enables ports (detected) 0 and 1. 321 322* The ``-u`` option sets ports 0 as unprotected, leaving 1 as protected. 323 324* The ``-f /path/to/config_file`` option has the same behavior as in poll 325 mode example. 326 327* The ``--transfer-mode`` option selects event mode for processing packets. 328 329* The ``--event-schedule-type`` option selects parallel ordering of event queues. 330 331* The ``--event-vector`` option enables event vectorization. 332 333* The ``--vector-size`` option specifies max vector size. 334 335* The ``--vector-tmo`` option specifies max timeout in nanoseconds for vectorization. 336 337 338Refer to the *DPDK Getting Started Guide* for general information on running 339applications and the Environment Abstraction Layer (EAL) options. 340 341The application would do a best effort to "map" crypto devices to cores, with 342hardware devices having priority. Basically, hardware devices if present would 343be assigned to a core before software ones. 344This means that if the application is using a single core and both hardware 345and software crypto devices are detected, hardware devices will be used. 346 347A way to achieve the case where you want to force the use of virtual crypto 348devices is to only use the Ethernet devices needed (via the allow flag) 349and therefore implicitly blocking all hardware crypto devices. 350 351For example, something like the following command line: 352 353.. code-block:: console 354 355 ./<build_dir>/examples/dpdk-ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \ 356 -a 81:00.0 -a 81:00.1 -a 81:00.2 -a 81:00.3 \ 357 --vdev "crypto_aesni_mb" --vdev "crypto_null" \ 358 -- \ 359 -p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \ 360 -f sample.cfg 361 362 363Configurations 364-------------- 365 366The following sections provide the syntax of configurations to initialize 367your SP, SA, Routing, Flow and Neighbour tables. 368Configurations shall be specified in the configuration file to be passed to 369the application. The file is then parsed by the application. The successful 370parsing will result in the appropriate rules being applied to the tables 371accordingly. 372 373 374Configuration File Syntax 375~~~~~~~~~~~~~~~~~~~~~~~~~ 376 377As mention in the overview, the Security Policies are ACL rules. 378The application parsers the rules specified in the configuration file and 379passes them to the ACL table, and replicates them per socket in use. 380 381Following are the configuration file syntax. 382 383General rule syntax 384^^^^^^^^^^^^^^^^^^^ 385 386The parse treats one line in the configuration file as one configuration 387item (unless the line concatenation symbol exists). Every configuration 388item shall follow the syntax of either SP, SA, Routing, Flow or Neighbour 389rules specified below. 390 391The configuration parser supports the following special symbols: 392 393 * Comment symbol **#**. Any character from this symbol to the end of 394 line is treated as comment and will not be parsed. 395 396 * Line concatenation symbol **\\**. This symbol shall be placed in the end 397 of the line to be concatenated to the line below. Multiple lines' 398 concatenation is supported. 399 400 401SP rule syntax 402^^^^^^^^^^^^^^ 403 404The SP rule syntax is shown as follows: 405 406.. code-block:: console 407 408 sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip> 409 <proto> <sport> <dport> 410 411 412where each options means: 413 414``<ip_ver>`` 415 416 * IP protocol version 417 418 * Optional: No 419 420 * Available options: 421 422 * *ipv4*: IP protocol version 4 423 * *ipv6*: IP protocol version 6 424 425``<dir>`` 426 427 * The traffic direction 428 429 * Optional: No 430 431 * Available options: 432 433 * *in*: inbound traffic 434 * *out*: outbound traffic 435 436``<action>`` 437 438 * IPsec action 439 440 * Optional: No 441 442 * Available options: 443 444 * *protect <SA_idx>*: the specified traffic is protected by SA rule 445 with id SA_idx 446 * *bypass*: the specified traffic traffic is bypassed 447 * *discard*: the specified traffic is discarded 448 449``<priority>`` 450 451 * Rule priority 452 453 * Optional: Yes, default priority 0 will be used 454 455 * Syntax: *pri <id>* 456 457``<src_ip>`` 458 459 * The source IP address and mask 460 461 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 462 463 * Syntax: 464 465 * *src X.X.X.X/Y* for IPv4 466 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 467 468``<dst_ip>`` 469 470 * The destination IP address and mask 471 472 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 473 474 * Syntax: 475 476 * *dst X.X.X.X/Y* for IPv4 477 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 478 479``<proto>`` 480 481 * The protocol start and end range 482 483 * Optional: yes, default range of 0 to 0 will be used 484 485 * Syntax: *proto X:Y* 486 487``<sport>`` 488 489 * The source port start and end range 490 491 * Optional: yes, default range of 0 to 0 will be used 492 493 * Syntax: *sport X:Y* 494 495``<dport>`` 496 497 * The destination port start and end range 498 499 * Optional: yes, default range of 0 to 0 will be used 500 501 * Syntax: *dport X:Y* 502 503Example SP rules: 504 505.. code-block:: console 506 507 sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \ 508 dport 0:65535 509 510 sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\ 511 0000:0000/96 sport 0:65535 dport 0:65535 512 513 514SA rule syntax 515^^^^^^^^^^^^^^ 516 517The successfully parsed SA rules will be stored in an array table. 518 519The SA rule syntax is shown as follows: 520 521.. code-block:: console 522 523 sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key> 524 <mode> <src_ip> <dst_ip> <action_type> <port_id> <fallback> 525 <flow-direction> <port_id> <queue_id> <udp-encap> 526 527where each options means: 528 529``<dir>`` 530 531 * The traffic direction 532 533 * Optional: No 534 535 * Available options: 536 537 * *in*: inbound traffic 538 * *out*: outbound traffic 539 540``<spi>`` 541 542 * The SPI number 543 544 * Optional: No 545 546 * Syntax: unsigned integer number 547 548``<cipher_algo>`` 549 550 * Cipher algorithm 551 552 * Optional: Yes, unless <aead_algo> is not used 553 554 * Available options: 555 556 * *null*: NULL algorithm 557 * *aes-128-cbc*: AES-CBC 128-bit algorithm 558 * *aes-192-cbc*: AES-CBC 192-bit algorithm 559 * *aes-256-cbc*: AES-CBC 256-bit algorithm 560 * *aes-128-ctr*: AES-CTR 128-bit algorithm 561 * *3des-cbc*: 3DES-CBC 192-bit algorithm 562 563 * Syntax: *cipher_algo <your algorithm>* 564 565``<cipher_key>`` 566 567 * Cipher key, NOT available when 'null' algorithm is used 568 569 * Optional: Yes, unless <aead_algo> is not used. 570 Must be followed by <cipher_algo> option 571 572 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 573 The number of bytes should be as same as the specified cipher algorithm 574 key size. 575 576 For example: *cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 577 A1:B2:C3:D4* 578 579``<auth_algo>`` 580 581 * Authentication algorithm 582 583 * Optional: Yes, unless <aead_algo> is not used 584 585 * Available options: 586 587 * *null*: NULL algorithm 588 * *sha1-hmac*: HMAC SHA1 algorithm 589 590``<auth_key>`` 591 592 * Authentication key, NOT available when 'null' or 'aes-128-gcm' algorithm 593 is used. 594 595 * Optional: Yes, unless <aead_algo> is not used. 596 Must be followed by <auth_algo> option 597 598 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 599 The number of bytes should be as same as the specified authentication 600 algorithm key size. 601 602 For example: *auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 603 A1:B2:C3:D4* 604 605``<aead_algo>`` 606 607 * AEAD algorithm 608 609 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used 610 611 * Available options: 612 613 * *aes-128-gcm*: AES-GCM 128-bit algorithm 614 * *aes-192-gcm*: AES-GCM 192-bit algorithm 615 * *aes-256-gcm*: AES-GCM 256-bit algorithm 616 617 * Syntax: *cipher_algo <your algorithm>* 618 619``<aead_key>`` 620 621 * Cipher key, NOT available when 'null' algorithm is used 622 623 * Optional: Yes, unless <cipher_algo> and <auth_algo> are not used. 624 Must be followed by <aead_algo> option 625 626 * Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ':'. 627 Last 4 bytes of the provided key will be used as 'salt' and so, the 628 number of bytes should be same as the sum of specified AEAD algorithm 629 key size and salt size (4 bytes). 630 631 For example: *aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: 632 A1:B2:C3:D4:A1:B2:C3:D4* 633 634``<mode>`` 635 636 * The operation mode 637 638 * Optional: No 639 640 * Available options: 641 642 * *ipv4-tunnel*: Tunnel mode for IPv4 packets 643 * *ipv6-tunnel*: Tunnel mode for IPv6 packets 644 * *transport*: transport mode 645 646 * Syntax: mode XXX 647 648``<src_ip>`` 649 650 * The source IP address. This option is not available when 651 transport mode is used 652 653 * Optional: Yes, default address 0.0.0.0 will be used 654 655 * Syntax: 656 657 * *src X.X.X.X* for IPv4 658 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6 659 660``<dst_ip>`` 661 662 * The destination IP address. This option is not available when 663 transport mode is used 664 665 * Optional: Yes, default address 0.0.0.0 will be used 666 667 * Syntax: 668 669 * *dst X.X.X.X* for IPv4 670 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX* for IPv6 671 672``<type>`` 673 674 * Action type to specify the security action. This option specify 675 the SA to be performed with look aside protocol offload to HW 676 accelerator or protocol offload on ethernet device or inline 677 crypto processing on the ethernet device during transmission. 678 679 * Optional: Yes, default type *no-offload* 680 681 * Available options: 682 683 * *lookaside-protocol-offload*: look aside protocol offload to HW accelerator 684 * *inline-protocol-offload*: inline protocol offload on ethernet device 685 * *inline-crypto-offload*: inline crypto processing on ethernet device 686 * *no-offload*: no offloading to hardware 687 688 ``<port_id>`` 689 690 * Port/device ID of the ethernet/crypto accelerator for which the SA is 691 configured. For *inline-crypto-offload* and *inline-protocol-offload*, this 692 port will be used for routing. The routing table will not be referred in 693 this case. 694 695 * Optional: No, if *type* is not *no-offload* 696 697 * Syntax: 698 699 * *port_id X* X is a valid device number in decimal 700 701 ``<fallback>`` 702 703 * Action type for ingress IPsec packets that inline processor failed to 704 process. Only a combination of *inline-crypto-offload* as a primary 705 session and *lookaside-none* as a fall-back session is supported at the 706 moment. 707 708 If used in conjunction with IPsec window, its width needs be increased 709 due to different processing times of inline and lookaside modes which 710 results in packet reordering. 711 712 * Optional: Yes. 713 714 * Available options: 715 716 * *lookaside-none*: use automatically chosen cryptodev to process packets 717 718 * Syntax: 719 720 * *fallback lookaside-none* 721 722``<flow-direction>`` 723 724 * Option for redirecting a specific inbound ipsec flow of a port to a specific 725 queue of that port. 726 727 * Optional: Yes. 728 729 * Available options: 730 731 * *port_id*: Port ID of the NIC for which the SA is configured. 732 * *queue_id*: Queue ID to which traffic should be redirected. 733 734 ``<udp-encap>`` 735 736 * Option to enable IPsec UDP encapsulation for NAT Traversal. 737 Only *lookaside-protocol-offload* and *inline-crypto-offload* modes are 738 supported at the moment. 739 740 * Optional: Yes, it is disabled by default 741 742 * Syntax: 743 744 * *udp-encap* 745 746 ``<mss>`` 747 748 * Maximum segment size for TSO offload, available for egress SAs only. 749 750 * Optional: Yes, TSO offload not set by default 751 752 * Syntax: 753 754 * *mss N* N is the segment size in bytes 755 756 757``<telemetry>`` 758 759 * Option to enable per SA telemetry. 760 Currently only supported with IPsec library path. 761 762 * Optional: Yes, it is disabled by default 763 764 * Syntax: 765 766 * *telemetry* 767 768 ``<esn>`` 769 770 * Enable ESN and set the initial ESN value. 771 772 * Optional: Yes, ESN not enabled by default 773 774 * Syntax: 775 776 * *esn N* N is the initial ESN value 777 778Example SA rules: 779 780.. code-block:: console 781 782 sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \ 783 src 172.16.1.5 dst 172.16.2.5 784 785 sa out 25 cipher_algo aes-128-cbc \ 786 cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \ 787 auth_algo sha1-hmac \ 788 auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \ 789 mode ipv6-tunnel \ 790 src 1111:1111:1111:1111:1111:1111:1111:5555 \ 791 dst 2222:2222:2222:2222:2222:2222:2222:5555 792 793 sa in 105 aead_algo aes-128-gcm \ 794 aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \ 795 mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 796 797 sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \ 798 auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \ 799 mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \ 800 type lookaside-protocol-offload port_id 4 801 802 sa in 35 aead_algo aes-128-gcm \ 803 aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \ 804 mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \ 805 type inline-crypto-offload port_id 0 806 807 sa in 117 cipher_algo null auth_algo null mode ipv4-tunnel src 172.16.2.7 \ 808 dst 172.16.1.7 flow-direction 0 2 809 810Routing rule syntax 811^^^^^^^^^^^^^^^^^^^ 812 813The Routing rule syntax is shown as follows: 814 815.. code-block:: console 816 817 rt <ip_ver> <src_ip> <dst_ip> <port> 818 819 820where each options means: 821 822``<ip_ver>`` 823 824 * IP protocol version 825 826 * Optional: No 827 828 * Available options: 829 830 * *ipv4*: IP protocol version 4 831 * *ipv6*: IP protocol version 6 832 833``<src_ip>`` 834 835 * The source IP address and mask 836 837 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 838 839 * Syntax: 840 841 * *src X.X.X.X/Y* for IPv4 842 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 843 844``<dst_ip>`` 845 846 * The destination IP address and mask 847 848 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 849 850 * Syntax: 851 852 * *dst X.X.X.X/Y* for IPv4 853 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 854 855``<port>`` 856 857 * The traffic output port id 858 859 * Optional: yes, default output port 0 will be used 860 861 * Syntax: *port X* 862 863Example SP rules: 864 865.. code-block:: console 866 867 rt ipv4 dst 172.16.1.5/32 port 0 868 869 rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0 870 871Flow rule syntax 872^^^^^^^^^^^^^^^^ 873 874Flow rule enables the usage of hardware classification capabilities to match specific 875ingress traffic and redirect the packets to the specified queue. This feature is 876optional and relies on hardware ``rte_flow`` support. 877 878The flow rule syntax is shown as follows: 879 880.. code-block:: console 881 882 flow <ip_ver> <src_ip> <dst_ip> <port> <queue> 883 884 885where each options means: 886 887``<ip_ver>`` 888 889 * IP protocol version 890 891 * Optional: No 892 893 * Available options: 894 895 * *ipv4*: IP protocol version 4 896 * *ipv6*: IP protocol version 6 897 898``<src_ip>`` 899 900 * The source IP address and mask 901 902 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 903 904 * Syntax: 905 906 * *src X.X.X.X/Y* for IPv4 907 * *src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 908 909``<dst_ip>`` 910 911 * The destination IP address and mask 912 913 * Optional: Yes, default address 0.0.0.0 and mask of 0 will be used 914 915 * Syntax: 916 917 * *dst X.X.X.X/Y* for IPv4 918 * *dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y* for IPv6 919 920``<port>`` 921 922 * The traffic input port id 923 924 * Optional: yes, default input port 0 will be used 925 926 * Syntax: *port X* 927 928``<queue>`` 929 930 * The traffic input queue id 931 932 * Optional: yes, default input queue 0 will be used 933 934 * Syntax: *queue X* 935 936Example flow rules: 937 938.. code-block:: console 939 940 flow ipv4 dst 172.16.1.5/32 port 0 queue 0 941 942 flow ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 1 queue 0 943 944 945Neighbour rule syntax 946^^^^^^^^^^^^^^^^^^^^^ 947 948The Neighbour rule syntax is shown as follows: 949 950.. code-block:: console 951 952 neigh <port> <dst_mac> 953 954 955where each options means: 956 957``<port>`` 958 959 * The output port id 960 961 * Optional: No 962 963 * Syntax: *port X* 964 965``<dst_mac>`` 966 967 * The destination ethernet address to use for that port 968 969 * Optional: No 970 971 * Syntax: 972 973 * XX:XX:XX:XX:XX:XX 974 975Example Neighbour rules: 976 977.. code-block:: console 978 979 neigh port 0 DE:AD:BE:EF:01:02 980 981Test directory 982-------------- 983 984The test directory contains scripts for testing the various encryption 985algorithms. 986 987The purpose of the scripts is to automate ipsec-secgw testing 988using another system running linux as a DUT. 989 990The user must setup the following environment variables: 991 992* ``SGW_PATH``: path to the ipsec-secgw binary to test. 993 994* ``REMOTE_HOST``: IP address/hostname of the DUT. 995 996* ``REMOTE_IFACE``: interface name for the test-port on the DUT. 997 998* ``ETH_DEV``: ethernet device to be used on the SUT by DPDK ('-a <pci-id>') 999 1000Also the user can optionally setup: 1001 1002* ``SGW_LCORE``: lcore to run ipsec-secgw on (default value is 0) 1003 1004* ``CRYPTO_DEV``: crypto device to be used ('-a <pci-id>'). If none specified 1005 appropriate vdevs will be created by the script 1006 1007Scripts can be used for multiple test scenarios. To check all available 1008options run: 1009 1010.. code-block:: console 1011 1012 /bin/bash run_test.sh -h 1013 1014Note that most of the tests require the appropriate crypto PMD/device to be 1015available. 1016 1017Server configuration 1018~~~~~~~~~~~~~~~~~~~~ 1019 1020Two servers are required for the tests, SUT and DUT. 1021 1022Make sure the user from the SUT can ssh to the DUT without entering the password. 1023To enable this feature keys must be setup on the DUT. 1024 1025``ssh-keygen`` will make a private & public key pair on the SUT. 1026 1027``ssh-copy-id`` <user name>@<target host name> on the SUT will copy the public 1028key to the DUT. It will ask for credentials so that it can upload the public key. 1029 1030The SUT and DUT are connected through at least 2 NIC ports. 1031 1032One NIC port is expected to be managed by linux on both machines and will be 1033used as a control path. 1034 1035The second NIC port (test-port) should be bound to DPDK on the SUT, and should 1036be managed by linux on the DUT. 1037 1038The script starts ``ipsec-secgw`` with 2 NIC devices: ``test-port`` and 1039``tap vdev``. 1040 1041It then configures the local tap interface and the remote interface and IPsec 1042policies in the following way: 1043 1044Traffic going over the test-port in both directions has to be protected by IPsec. 1045 1046Traffic going over the TAP port in both directions does not have to be protected. 1047 1048i.e: 1049 1050DUT OS(NIC1)--(IPsec)-->(NIC1)ipsec-secgw(TAP)--(plain)-->(TAP)SUT OS 1051 1052SUT OS(TAP)--(plain)-->(TAP)psec-secgw(NIC1)--(IPsec)-->(NIC1)DUT OS 1053 1054It then tries to perform some data transfer using the scheme described above. 1055 1056Usage 1057~~~~~ 1058 1059In the ipsec-secgw/test directory run 1060 1061/bin/bash run_test.sh <options> <ipsec_mode> 1062 1063Available options: 1064 1065* ``-4`` Perform tests with use of IPv4. One or both [-46] options needs to be 1066 selected. 1067 1068* ``-6`` Perform tests with use of IPv6. One or both [-46] options needs to be 1069 selected. 1070 1071* ``-m`` Add IPSec tunnel mixed IP version tests - outer IP version different 1072 than inner. Inner IP version will match selected option [-46]. 1073 1074* ``-i`` Run tests in inline mode. Regular tests will not be invoked. 1075 1076* ``-f`` Run tests for fallback mechanism. Regular tests will not be invoked. 1077 1078* ``-l`` Run tests in legacy mode only. It cannot be used with options [-fsc]. 1079 On default library mode is used. 1080 1081* ``-s`` Run all tests with reassembly support. On default only tests for 1082 fallback mechanism use reassembly support. 1083 1084* ``-c`` Run tests with use of cpu-crypto. For inline tests it will not be 1085 applied. On default lookaside-none is used. 1086 1087* ``-p`` Perform packet validation tests. Option [-46] is not required. 1088 1089* ``-h`` Show usage. 1090 1091If <ipsec_mode> is specified, only tests for that mode will be invoked. For the 1092list of available modes please refer to run_test.sh. 1093