xref: /dpdk/doc/guides/prog_guide/bbdev.rst (revision d629b7b5fe812f0040b83d27d2ada33b003aa918)
14935e1e9SAmr Mokhtar..  SPDX-License-Identifier: BSD-3-Clause
24935e1e9SAmr Mokhtar    Copyright(c) 2017 Intel Corporation
34935e1e9SAmr Mokhtar
44935e1e9SAmr MokhtarWireless Baseband Device Library
54935e1e9SAmr Mokhtar================================
64935e1e9SAmr Mokhtar
74935e1e9SAmr MokhtarThe Wireless Baseband library provides a common programming framework that
84935e1e9SAmr Mokhtarabstracts HW accelerators based on FPGA and/or Fixed Function Accelerators that
97273821fSKamil Chalupnikassist with 3GPP Physical Layer processing. Furthermore, it decouples the
104935e1e9SAmr Mokhtarapplication from the compute-intensive wireless functions by abstracting their
114935e1e9SAmr Mokhtaroptimized libraries to appear as virtual bbdev devices.
124935e1e9SAmr Mokhtar
134935e1e9SAmr MokhtarThe functional scope of the BBDEV library are those functions in relation to
147273821fSKamil Chalupnikthe 3GPP Layer 1 signal processing (channel coding, modulation, ...).
154935e1e9SAmr Mokhtar
164935e1e9SAmr MokhtarThe framework currently only supports Turbo Code FEC function.
174935e1e9SAmr Mokhtar
184935e1e9SAmr Mokhtar
194935e1e9SAmr MokhtarDesign Principles
204935e1e9SAmr Mokhtar-----------------
214935e1e9SAmr Mokhtar
224935e1e9SAmr MokhtarThe Wireless Baseband library follows the same ideology of DPDK's Ethernet
234935e1e9SAmr MokhtarDevice and Crypto Device frameworks. Wireless Baseband provides a generic
244935e1e9SAmr Mokhtaracceleration abstraction framework which supports both physical (hardware) and
254935e1e9SAmr Mokhtarvirtual (software) wireless acceleration functions.
264935e1e9SAmr Mokhtar
274935e1e9SAmr MokhtarDevice Management
284935e1e9SAmr Mokhtar-----------------
294935e1e9SAmr Mokhtar
304935e1e9SAmr MokhtarDevice Creation
314935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~
324935e1e9SAmr Mokhtar
334935e1e9SAmr MokhtarPhysical bbdev devices are discovered during the PCI probe/enumeration of the
344935e1e9SAmr MokhtarEAL function which is executed at DPDK initialization, based on
354935e1e9SAmr Mokhtartheir PCI device identifier, each unique PCI BDF (bus/bridge, device,
364935e1e9SAmr Mokhtarfunction).
374935e1e9SAmr Mokhtar
384935e1e9SAmr MokhtarVirtual devices can be created by two mechanisms, either using the EAL command
394935e1e9SAmr Mokhtarline options or from within the application using an EAL API directly.
404935e1e9SAmr Mokhtar
414935e1e9SAmr MokhtarFrom the command line using the --vdev EAL option
424935e1e9SAmr Mokhtar
434935e1e9SAmr Mokhtar.. code-block:: console
444935e1e9SAmr Mokhtar
457ce00bf3SKamil Chalupnik   --vdev 'baseband_turbo_sw,max_nb_queues=8,socket_id=0'
464935e1e9SAmr Mokhtar
474935e1e9SAmr MokhtarOur using the rte_vdev_init API within the application code.
484935e1e9SAmr Mokhtar
494935e1e9SAmr Mokhtar.. code-block:: c
504935e1e9SAmr Mokhtar
517ce00bf3SKamil Chalupnik    rte_vdev_init("baseband_turbo_sw", "max_nb_queues=2,socket_id=0")
524935e1e9SAmr Mokhtar
534935e1e9SAmr MokhtarAll virtual bbdev devices support the following initialization parameters:
544935e1e9SAmr Mokhtar
554935e1e9SAmr Mokhtar- ``max_nb_queues`` - maximum number of queues supported by the device.
564935e1e9SAmr Mokhtar
574935e1e9SAmr Mokhtar- ``socket_id`` - socket on which to allocate the device resources on.
584935e1e9SAmr Mokhtar
594935e1e9SAmr Mokhtar
604935e1e9SAmr MokhtarDevice Identification
614935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~~
624935e1e9SAmr Mokhtar
634935e1e9SAmr MokhtarEach device, whether virtual or physical is uniquely designated by two
644935e1e9SAmr Mokhtaridentifiers:
654935e1e9SAmr Mokhtar
664935e1e9SAmr Mokhtar- A unique device index used to designate the bbdev device in all functions
674935e1e9SAmr Mokhtar  exported by the bbdev API.
684935e1e9SAmr Mokhtar
694935e1e9SAmr Mokhtar- A device name used to designate the bbdev device in console messages, for
704935e1e9SAmr Mokhtar  administration or debugging purposes. For ease of use, the port name includes
714935e1e9SAmr Mokhtar  the port index.
724935e1e9SAmr Mokhtar
734935e1e9SAmr Mokhtar
744935e1e9SAmr MokhtarDevice Configuration
754935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~
764935e1e9SAmr Mokhtar
774935e1e9SAmr MokhtarFrom the application point of view, each instance of a bbdev device consists of
784935e1e9SAmr Mokhtarone or more queues identified by queue IDs. While different devices may have
794935e1e9SAmr Mokhtardifferent capabilities (e.g. support different operation types), all queues on
804935e1e9SAmr Mokhtara device support identical configuration possibilities. A queue is configured
81*d629b7b5SJohn McNamarafor only one type of operation and is configured at initialization time.
824935e1e9SAmr MokhtarWhen an operation is enqueued to a specific queue ID, the result is dequeued
834935e1e9SAmr Mokhtarfrom the same queue ID.
844935e1e9SAmr Mokhtar
854935e1e9SAmr MokhtarConfiguration of a device has two different levels: configuration that applies
864935e1e9SAmr Mokhtarto the whole device, and configuration that applies to a single queue.
874935e1e9SAmr Mokhtar
884935e1e9SAmr MokhtarDevice configuration is applied with
894935e1e9SAmr Mokhtar``rte_bbdev_setup_queues(dev_id,num_queues,socket_id)``
904935e1e9SAmr Mokhtarand queue configuration is applied with
914935e1e9SAmr Mokhtar``rte_bbdev_queue_configure(dev_id,queue_id,conf)``. Note that, although all
924935e1e9SAmr Mokhtarqueues on a device support same capabilities, they can be configured differently
934935e1e9SAmr Mokhtarand will then behave differently.
944935e1e9SAmr MokhtarDevices supporting interrupts can enable them by using
954935e1e9SAmr Mokhtar``rte_bbdev_intr_enable(dev_id)``.
964935e1e9SAmr Mokhtar
974935e1e9SAmr MokhtarThe configuration of each bbdev device includes the following operations:
984935e1e9SAmr Mokhtar
994935e1e9SAmr Mokhtar- Allocation of resources, including hardware resources if a physical device.
1004935e1e9SAmr Mokhtar- Resetting the device into a well-known default state.
1014935e1e9SAmr Mokhtar- Initialization of statistics counters.
1024935e1e9SAmr Mokhtar
1034935e1e9SAmr MokhtarThe ``rte_bbdev_setup_queues`` API is used to setup queues for a bbdev device.
1044935e1e9SAmr Mokhtar
1054935e1e9SAmr Mokhtar.. code-block:: c
1064935e1e9SAmr Mokhtar
1074935e1e9SAmr Mokhtar   int rte_bbdev_setup_queues(uint16_t dev_id, uint16_t num_queues,
1084935e1e9SAmr Mokhtar            int socket_id);
1094935e1e9SAmr Mokhtar
1104935e1e9SAmr Mokhtar- ``num_queues`` argument identifies the total number of queues to setup for
1114935e1e9SAmr Mokhtar  this device.
1124935e1e9SAmr Mokhtar
1134935e1e9SAmr Mokhtar- ``socket_id`` specifies which socket will be used to allocate the memory.
1144935e1e9SAmr Mokhtar
1154935e1e9SAmr Mokhtar
1164935e1e9SAmr MokhtarThe ``rte_bbdev_intr_enable`` API is used to enable interrupts for a bbdev
1174935e1e9SAmr Mokhtardevice, if supported by the driver. Should be called before starting the device.
1184935e1e9SAmr Mokhtar
1194935e1e9SAmr Mokhtar.. code-block:: c
1204935e1e9SAmr Mokhtar
1214935e1e9SAmr Mokhtar   int rte_bbdev_intr_enable(uint16_t dev_id);
1224935e1e9SAmr Mokhtar
1234935e1e9SAmr Mokhtar
1244935e1e9SAmr MokhtarQueues Configuration
1254935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~
1264935e1e9SAmr Mokhtar
1274935e1e9SAmr MokhtarEach bbdev devices queue is individually configured through the
1284935e1e9SAmr Mokhtar``rte_bbdev_queue_configure()`` API.
1294935e1e9SAmr MokhtarEach queue resources may be allocated on a specified socket.
1304935e1e9SAmr Mokhtar
1314935e1e9SAmr Mokhtar.. code-block:: c
1324935e1e9SAmr Mokhtar
1334935e1e9SAmr Mokhtar    struct rte_bbdev_queue_conf {
1344935e1e9SAmr Mokhtar        int socket;
1354935e1e9SAmr Mokhtar        uint32_t queue_size;
1364935e1e9SAmr Mokhtar        uint8_t priority;
1374935e1e9SAmr Mokhtar        bool deferred_start;
1384935e1e9SAmr Mokhtar        enum rte_bbdev_op_type op_type;
1394935e1e9SAmr Mokhtar    };
1404935e1e9SAmr Mokhtar
1414935e1e9SAmr MokhtarDevice & Queues Management
1424935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~~~~~~~
1434935e1e9SAmr Mokhtar
1444935e1e9SAmr MokhtarAfter initialization, devices are in a stopped state, so must be started by the
1454935e1e9SAmr Mokhtarapplication. If an application is finished using a device it can close the
1464935e1e9SAmr Mokhtardevice. Once closed, it cannot be restarted.
1474935e1e9SAmr Mokhtar
1484935e1e9SAmr Mokhtar.. code-block:: c
1494935e1e9SAmr Mokhtar
1504935e1e9SAmr Mokhtar    int rte_bbdev_start(uint16_t dev_id)
1514935e1e9SAmr Mokhtar    int rte_bbdev_stop(uint16_t dev_id)
1524935e1e9SAmr Mokhtar    int rte_bbdev_close(uint16_t dev_id)
1534935e1e9SAmr Mokhtar    int rte_bbdev_queue_start(uint16_t dev_id, uint16_t queue_id)
1544935e1e9SAmr Mokhtar    int rte_bbdev_queue_stop(uint16_t dev_id, uint16_t queue_id)
1554935e1e9SAmr Mokhtar
1564935e1e9SAmr Mokhtar
1574935e1e9SAmr MokhtarBy default, all queues are started when the device is started, but they can be
1584935e1e9SAmr Mokhtarstopped individually.
1594935e1e9SAmr Mokhtar
1604935e1e9SAmr Mokhtar.. code-block:: c
1614935e1e9SAmr Mokhtar
1624935e1e9SAmr Mokhtar    int rte_bbdev_queue_start(uint16_t dev_id, uint16_t queue_id)
1634935e1e9SAmr Mokhtar    int rte_bbdev_queue_stop(uint16_t dev_id, uint16_t queue_id)
1644935e1e9SAmr Mokhtar
1654935e1e9SAmr Mokhtar
1664935e1e9SAmr MokhtarLogical Cores, Memory and Queues Relationships
1674935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1684935e1e9SAmr Mokhtar
1694935e1e9SAmr MokhtarThe bbdev device Library as the Poll Mode Driver library support NUMA for when
1707273821fSKamil Chalupnika processor's logical cores and interfaces utilize its local memory. Therefore
1714935e1e9SAmr Mokhtarbaseband operations, the mbuf being operated on should be allocated from memory
1724935e1e9SAmr Mokhtarpools created in the local memory. The buffers should, if possible, remain on
1734935e1e9SAmr Mokhtarthe local processor to obtain the best performance results and buffer
1744935e1e9SAmr Mokhtardescriptors should be populated with mbufs allocated from a mempool allocated
1754935e1e9SAmr Mokhtarfrom local memory.
1764935e1e9SAmr Mokhtar
1774935e1e9SAmr MokhtarThe run-to-completion model also performs better, especially in the case of
1784935e1e9SAmr Mokhtarvirtual bbdev devices, if the baseband operation and data buffers are in local
1794935e1e9SAmr Mokhtarmemory instead of a remote processor's memory. This is also true for the
1804935e1e9SAmr Mokhtarpipe-line model provided all logical cores used are located on the same processor.
1814935e1e9SAmr Mokhtar
1824935e1e9SAmr MokhtarMultiple logical cores should never share the same queue for enqueuing
1834935e1e9SAmr Mokhtaroperations or dequeuing operations on the same bbdev device since this would
1844935e1e9SAmr Mokhtarrequire global locks and hinder performance. It is however possible to use a
1854935e1e9SAmr Mokhtardifferent logical core to dequeue an operation on a queue pair from the logical
1864935e1e9SAmr Mokhtarcore which it was enqueued on. This means that a baseband burst enqueue/dequeue
1874935e1e9SAmr MokhtarAPIs are a logical place to transition from one logical core to another in a
1884935e1e9SAmr Mokhtarpacket processing pipeline.
1894935e1e9SAmr Mokhtar
1904935e1e9SAmr Mokhtar
1914935e1e9SAmr MokhtarDevice Operation Capabilities
1924935e1e9SAmr Mokhtar-----------------------------
1934935e1e9SAmr Mokhtar
1944935e1e9SAmr MokhtarCapabilities (in terms of operations supported, max number of queues, etc.)
1954935e1e9SAmr Mokhtaridentify what a bbdev is capable of performing that differs from one device to
1964935e1e9SAmr Mokhtaranother. For the full scope of the bbdev capability see the definition of the
1974935e1e9SAmr Mokhtarstructure in the *DPDK API Reference*.
1984935e1e9SAmr Mokhtar
1994935e1e9SAmr Mokhtar.. code-block:: c
2004935e1e9SAmr Mokhtar
2014935e1e9SAmr Mokhtar   struct rte_bbdev_op_cap;
2024935e1e9SAmr Mokhtar
2034935e1e9SAmr MokhtarA device reports its capabilities when registering itself in the bbdev framework.
2044935e1e9SAmr MokhtarWith the aid of this capabilities mechanism, an application can query devices to
2057273821fSKamil Chalupnikdiscover which operations within the 3GPP physical layer they are capable of
2064935e1e9SAmr Mokhtarperforming. Below is an example of the capabilities for a PMD it supports in
2074935e1e9SAmr Mokhtarrelation to Turbo Encoding and Decoding operations.
2084935e1e9SAmr Mokhtar
2094935e1e9SAmr Mokhtar.. code-block:: c
2104935e1e9SAmr Mokhtar
2114935e1e9SAmr Mokhtar    static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
2124935e1e9SAmr Mokhtar        {
2134935e1e9SAmr Mokhtar            .type = RTE_BBDEV_OP_TURBO_DEC,
2144935e1e9SAmr Mokhtar            .cap.turbo_dec = {
2154935e1e9SAmr Mokhtar                .capability_flags =
2164935e1e9SAmr Mokhtar                    RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
2174935e1e9SAmr Mokhtar                    RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
2184935e1e9SAmr Mokhtar                    RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
2197273821fSKamil Chalupnik                    RTE_BBDEV_TURBO_CRC_TYPE_24B |
2207273821fSKamil Chalupnik                    RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
2217273821fSKamil Chalupnik                    RTE_BBDEV_TURBO_EARLY_TERMINATION,
2227273821fSKamil Chalupnik                .max_llr_modulus = 16,
2234935e1e9SAmr Mokhtar                .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
2244935e1e9SAmr Mokhtar                .num_buffers_hard_out =
2254935e1e9SAmr Mokhtar                        RTE_BBDEV_MAX_CODE_BLOCKS,
2264935e1e9SAmr Mokhtar                .num_buffers_soft_out = 0,
2274935e1e9SAmr Mokhtar            }
2284935e1e9SAmr Mokhtar        },
2294935e1e9SAmr Mokhtar        {
2304935e1e9SAmr Mokhtar            .type   = RTE_BBDEV_OP_TURBO_ENC,
2314935e1e9SAmr Mokhtar            .cap.turbo_enc = {
2324935e1e9SAmr Mokhtar                .capability_flags =
2334935e1e9SAmr Mokhtar                        RTE_BBDEV_TURBO_CRC_24B_ATTACH |
2347273821fSKamil Chalupnik                        RTE_BBDEV_TURBO_CRC_24A_ATTACH |
2354935e1e9SAmr Mokhtar                        RTE_BBDEV_TURBO_RATE_MATCH |
2364935e1e9SAmr Mokhtar                        RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
2374935e1e9SAmr Mokhtar                .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
2384935e1e9SAmr Mokhtar                .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
2394935e1e9SAmr Mokhtar            }
2404935e1e9SAmr Mokhtar        },
2414935e1e9SAmr Mokhtar        RTE_BBDEV_END_OF_CAPABILITIES_LIST()
2424935e1e9SAmr Mokhtar    };
2434935e1e9SAmr Mokhtar
2444935e1e9SAmr MokhtarCapabilities Discovery
2454935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~~~
2464935e1e9SAmr Mokhtar
2474935e1e9SAmr MokhtarDiscovering the features and capabilities of a bbdev device poll mode driver
2484935e1e9SAmr Mokhtaris achieved through the ``rte_bbdev_info_get()`` function.
2494935e1e9SAmr Mokhtar
2504935e1e9SAmr Mokhtar.. code-block:: c
2514935e1e9SAmr Mokhtar
2524935e1e9SAmr Mokhtar   int rte_bbdev_info_get(uint16_t dev_id, struct rte_bbdev_info *dev_info)
2534935e1e9SAmr Mokhtar
2544935e1e9SAmr MokhtarThis allows the user to query a specific bbdev PMD and get all the device
2554935e1e9SAmr Mokhtarcapabilities. The ``rte_bbdev_info`` structure provides two levels of
2564935e1e9SAmr Mokhtarinformation:
2574935e1e9SAmr Mokhtar
2584935e1e9SAmr Mokhtar- Device relevant information, like: name and related rte_bus.
2594935e1e9SAmr Mokhtar
2604935e1e9SAmr Mokhtar- Driver specific information, as defined by the ``struct rte_bbdev_driver_info``
2614935e1e9SAmr Mokhtar  structure, this is where capabilities reside along with other specifics like:
2624935e1e9SAmr Mokhtar  maximum queue sizes and priority level.
2634935e1e9SAmr Mokhtar
2644935e1e9SAmr Mokhtar.. code-block:: c
2654935e1e9SAmr Mokhtar
2664935e1e9SAmr Mokhtar    struct rte_bbdev_info {
2674935e1e9SAmr Mokhtar        int socket_id;
2684935e1e9SAmr Mokhtar        const char *dev_name;
2694935e1e9SAmr Mokhtar        const struct rte_bus *bus;
2704935e1e9SAmr Mokhtar        uint16_t num_queues;
2714935e1e9SAmr Mokhtar        bool started;
2724935e1e9SAmr Mokhtar        struct rte_bbdev_driver_info drv;
2734935e1e9SAmr Mokhtar    };
2744935e1e9SAmr Mokhtar
2754935e1e9SAmr MokhtarOperation Processing
2764935e1e9SAmr Mokhtar--------------------
2774935e1e9SAmr Mokhtar
2784935e1e9SAmr MokhtarScheduling of baseband operations on DPDK's application data path is
2794935e1e9SAmr Mokhtarperformed using a burst oriented asynchronous API set. A queue on a bbdev
2804935e1e9SAmr Mokhtardevice accepts a burst of baseband operations using enqueue burst API. On physical
2814935e1e9SAmr Mokhtarbbdev devices the enqueue burst API will place the operations to be processed
2824935e1e9SAmr Mokhtaron the device's hardware input queue, for virtual devices the processing of the
2834935e1e9SAmr Mokhtarbaseband operations is usually completed during the enqueue call to the bbdev
2844935e1e9SAmr Mokhtardevice. The dequeue burst API will retrieve any processed operations available
2854935e1e9SAmr Mokhtarfrom the queue on the bbdev device, from physical devices this is usually
2864935e1e9SAmr Mokhtardirectly from the device's processed queue, and for virtual device's from a
2874935e1e9SAmr Mokhtar``rte_ring`` where processed operations are place after being processed on the
2884935e1e9SAmr Mokhtarenqueue call.
2894935e1e9SAmr Mokhtar
2904935e1e9SAmr Mokhtar
2914935e1e9SAmr MokhtarEnqueue / Dequeue Burst APIs
2924935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2934935e1e9SAmr Mokhtar
2944935e1e9SAmr MokhtarThe burst enqueue API uses a bbdev device identifier and a queue
2954935e1e9SAmr Mokhtaridentifier to specify the bbdev device queue to schedule the processing on.
2964935e1e9SAmr MokhtarThe ``num_ops`` parameter is the number of operations to process which are
2974935e1e9SAmr Mokhtarsupplied in the ``ops`` array of ``rte_bbdev_*_op`` structures.
2984935e1e9SAmr MokhtarThe enqueue function returns the number of operations it actually enqueued for
2994935e1e9SAmr Mokhtarprocessing, a return value equal to ``num_ops`` means that all packets have been
3004935e1e9SAmr Mokhtarenqueued.
3014935e1e9SAmr Mokhtar
3024935e1e9SAmr Mokhtar.. code-block:: c
3034935e1e9SAmr Mokhtar
3044935e1e9SAmr Mokhtar    uint16_t rte_bbdev_enqueue_enc_ops(uint16_t dev_id, uint16_t queue_id,
3054935e1e9SAmr Mokhtar            struct rte_bbdev_enc_op **ops, uint16_t num_ops)
3064935e1e9SAmr Mokhtar
3074935e1e9SAmr Mokhtar    uint16_t rte_bbdev_enqueue_dec_ops(uint16_t dev_id, uint16_t queue_id,
3084935e1e9SAmr Mokhtar            struct rte_bbdev_dec_op **ops, uint16_t num_ops)
3094935e1e9SAmr Mokhtar
3104935e1e9SAmr MokhtarThe dequeue API uses the same format as the enqueue API of processed but
3114935e1e9SAmr Mokhtarthe ``num_ops`` and ``ops`` parameters are now used to specify the max processed
3124935e1e9SAmr Mokhtaroperations the user wishes to retrieve and the location in which to store them.
3134935e1e9SAmr MokhtarThe API call returns the actual number of processed operations returned, this
3144935e1e9SAmr Mokhtarcan never be larger than ``num_ops``.
3154935e1e9SAmr Mokhtar
3164935e1e9SAmr Mokhtar.. code-block:: c
3174935e1e9SAmr Mokhtar
3184935e1e9SAmr Mokhtar    uint16_t rte_bbdev_dequeue_enc_ops(uint16_t dev_id, uint16_t queue_id,
3194935e1e9SAmr Mokhtar            struct rte_bbdev_enc_op **ops, uint16_t num_ops)
3204935e1e9SAmr Mokhtar
3214935e1e9SAmr Mokhtar    uint16_t rte_bbdev_dequeue_dec_ops(uint16_t dev_id, uint16_t queue_id,
3224935e1e9SAmr Mokhtar            struct rte_bbdev_dec_op **ops, uint16_t num_ops)
3234935e1e9SAmr Mokhtar
3244935e1e9SAmr MokhtarOperation Representation
3254935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~~~~~
3264935e1e9SAmr Mokhtar
3274935e1e9SAmr MokhtarAn encode bbdev operation is represented by ``rte_bbdev_enc_op`` structure,
3284935e1e9SAmr Mokhtarand by ``rte_bbdev_dec_op`` for decode. These structures act as metadata
3294935e1e9SAmr Mokhtarcontainers for all necessary information required for the bbdev operation to be
3304935e1e9SAmr Mokhtarprocessed on a particular bbdev device poll mode driver.
3314935e1e9SAmr Mokhtar
3324935e1e9SAmr Mokhtar.. code-block:: c
3334935e1e9SAmr Mokhtar
3344935e1e9SAmr Mokhtar    struct rte_bbdev_enc_op {
3354935e1e9SAmr Mokhtar        int status;
3364935e1e9SAmr Mokhtar        struct rte_mempool *mempool;
3374935e1e9SAmr Mokhtar        void *opaque_data;
3384935e1e9SAmr Mokhtar        struct rte_bbdev_op_turbo_enc turbo_enc;
3394935e1e9SAmr Mokhtar    };
3404935e1e9SAmr Mokhtar
3414935e1e9SAmr Mokhtar    struct rte_bbdev_dec_op {
3424935e1e9SAmr Mokhtar        int status;
3434935e1e9SAmr Mokhtar        struct rte_mempool *mempool;
3444935e1e9SAmr Mokhtar        void *opaque_data;
3454935e1e9SAmr Mokhtar        struct rte_bbdev_op_turbo_dec turbo_dec;
3464935e1e9SAmr Mokhtar    };
3474935e1e9SAmr Mokhtar
3484935e1e9SAmr MokhtarThe operation structure by itself defines the operation type. It includes an
3494935e1e9SAmr Mokhtaroperation status, a reference to the operation specific data, which can vary in
3504935e1e9SAmr Mokhtarsize and content depending on the operation being provisioned. It also contains
3514935e1e9SAmr Mokhtarthe source mempool for the operation, if it is allocated from a mempool.
3524935e1e9SAmr Mokhtar
3534935e1e9SAmr MokhtarIf bbdev operations are allocated from a bbdev operation mempool, see next
3544935e1e9SAmr Mokhtarsection, there is also the ability to allocate private memory with the
3554935e1e9SAmr Mokhtaroperation for applications purposes.
3564935e1e9SAmr Mokhtar
3574935e1e9SAmr MokhtarApplication software is responsible for specifying all the operation specific
3584935e1e9SAmr Mokhtarfields in the ``rte_bbdev_*_op`` structure which are then used by the bbdev PMD
3594935e1e9SAmr Mokhtarto process the requested operation.
3604935e1e9SAmr Mokhtar
3614935e1e9SAmr Mokhtar
3624935e1e9SAmr MokhtarOperation Management and Allocation
3634935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3644935e1e9SAmr Mokhtar
3654935e1e9SAmr MokhtarThe bbdev library provides an API set for managing bbdev operations which
3664935e1e9SAmr Mokhtarutilize the Mempool Library to allocate operation buffers. Therefore, it ensures
3674935e1e9SAmr Mokhtarthat the bbdev operation is interleaved optimally across the channels and
3684935e1e9SAmr Mokhtarranks for optimal processing.
3694935e1e9SAmr Mokhtar
3704935e1e9SAmr Mokhtar.. code-block:: c
3714935e1e9SAmr Mokhtar
3724935e1e9SAmr Mokhtar    struct rte_mempool *
3734935e1e9SAmr Mokhtar    rte_bbdev_op_pool_create(const char *name, enum rte_bbdev_op_type type,
3744935e1e9SAmr Mokhtar            unsigned int num_elements, unsigned int cache_size,
3754935e1e9SAmr Mokhtar            int socket_id)
3764935e1e9SAmr Mokhtar
3774935e1e9SAmr Mokhtar``rte_bbdev_*_op_alloc_bulk()`` and ``rte_bbdev_*_op_free_bulk()`` are used to
3784935e1e9SAmr Mokhtarallocate bbdev operations of a specific type from a given bbdev operation mempool.
3794935e1e9SAmr Mokhtar
3804935e1e9SAmr Mokhtar.. code-block:: c
3814935e1e9SAmr Mokhtar
3824935e1e9SAmr Mokhtar    int rte_bbdev_enc_op_alloc_bulk(struct rte_mempool *mempool,
3834935e1e9SAmr Mokhtar            struct rte_bbdev_enc_op **ops, uint16_t num_ops)
3844935e1e9SAmr Mokhtar
3854935e1e9SAmr Mokhtar    int rte_bbdev_dec_op_alloc_bulk(struct rte_mempool *mempool,
3864935e1e9SAmr Mokhtar            struct rte_bbdev_dec_op **ops, uint16_t num_ops)
3874935e1e9SAmr Mokhtar
3884935e1e9SAmr Mokhtar``rte_bbdev_*_op_free_bulk()`` is called by the application to return an
3894935e1e9SAmr Mokhtaroperation to its allocating pool.
3904935e1e9SAmr Mokhtar
3914935e1e9SAmr Mokhtar.. code-block:: c
3924935e1e9SAmr Mokhtar
3934935e1e9SAmr Mokhtar    void rte_bbdev_dec_op_free_bulk(struct rte_bbdev_dec_op **ops,
3944935e1e9SAmr Mokhtar            unsigned int num_ops)
3954935e1e9SAmr Mokhtar    void rte_bbdev_enc_op_free_bulk(struct rte_bbdev_enc_op **ops,
3964935e1e9SAmr Mokhtar            unsigned int num_ops)
3974935e1e9SAmr Mokhtar
3987273821fSKamil ChalupnikBBDEV Inbound/Outbound Memory
3997273821fSKamil Chalupnik~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4004935e1e9SAmr Mokhtar
4014935e1e9SAmr MokhtarThe bbdev operation structure contains all the mutable data relating to
4027273821fSKamil Chalupnikperforming Turbo coding on a referenced mbuf data buffer. It is used for either
4037273821fSKamil Chalupnikencode or decode operations.
4044935e1e9SAmr Mokhtar
4054935e1e9SAmr MokhtarTurbo Encode operation accepts one input and one output.
4064935e1e9SAmr MokhtarTurbo Decode operation accepts one input and two outputs, called *hard-decision*
4074935e1e9SAmr Mokhtarand *soft-decision* outputs. *Soft-decision* output is optional.
4084935e1e9SAmr Mokhtar
4097273821fSKamil ChalupnikIt is expected that the application provides input and output mbuf pointers
4104935e1e9SAmr Mokhtarallocated and ready to use. The baseband framework supports turbo coding on
4114935e1e9SAmr MokhtarCode Blocks (CB) and Transport Blocks (TB).
4124935e1e9SAmr Mokhtar
4137273821fSKamil ChalupnikFor the output buffer(s), the application is required to provide an allocated
4147273821fSKamil Chalupnikand free mbuf, so that bbdev write back the resulting output.
4154935e1e9SAmr Mokhtar
4167273821fSKamil ChalupnikThe support of split "scattered" buffers is a driver-specific feature, so it is
4177273821fSKamil Chalupnikreported individually by the supporting driver as a capability.
4187273821fSKamil Chalupnik
4197273821fSKamil ChalupnikInput and output data buffers are identified by ``rte_bbdev_op_data`` structure,
4207273821fSKamil Chalupnikas follows:
4217273821fSKamil Chalupnik
4227273821fSKamil Chalupnik.. code-block:: c
4237273821fSKamil Chalupnik
4247273821fSKamil Chalupnik    struct rte_bbdev_op_data {
4257273821fSKamil Chalupnik        struct rte_mbuf *data;
4267273821fSKamil Chalupnik        uint32_t offset;
4277273821fSKamil Chalupnik        uint32_t length;
4287273821fSKamil Chalupnik    };
4297273821fSKamil Chalupnik
4307273821fSKamil Chalupnik
4317273821fSKamil ChalupnikThis structure has three elements:
4327273821fSKamil Chalupnik
4337273821fSKamil Chalupnik- ``data``: This is the mbuf data structure representing the data for BBDEV
4347273821fSKamil Chalupnik  operation.
4357273821fSKamil Chalupnik
4367273821fSKamil Chalupnik  This mbuf pointer can point to one Code Block (CB) data buffer or multiple CBs
4377273821fSKamil Chalupnik  contiguously located next to each other. A Transport Block (TB) represents a
4387273821fSKamil Chalupnik  whole piece of data that is divided into one or more CBs. Maximum number of
4397273821fSKamil Chalupnik  CBs can be contained in one TB is defined by ``RTE_BBDEV_MAX_CODE_BLOCKS``.
4407273821fSKamil Chalupnik
4417273821fSKamil Chalupnik  An mbuf data structure cannot represent more than one TB. The smallest piece
4427273821fSKamil Chalupnik  of data that can be contained in one mbuf is one CB.
4437273821fSKamil Chalupnik  An mbuf can include one contiguous CB, subset of contiguous CBs that are
4447273821fSKamil Chalupnik  belonging to one TB, or all contiguous CBs that are belonging to one TB.
4457273821fSKamil Chalupnik
4467273821fSKamil Chalupnik  If a BBDEV PMD supports the extended capability "Scatter-Gather", then it is
4477273821fSKamil Chalupnik  capable of collecting (gathering) non-contiguous (scattered) data from
4487273821fSKamil Chalupnik  multiple locations in the memory.
4497273821fSKamil Chalupnik  This capability is reported by the capability flags:
4507273821fSKamil Chalupnik
4517273821fSKamil Chalupnik  - ``RTE_BBDEV_TURBO_ENC_SCATTER_GATHER``, and
4527273821fSKamil Chalupnik
4537273821fSKamil Chalupnik  - ``RTE_BBDEV_TURBO_DEC_SCATTER_GATHER``.
4547273821fSKamil Chalupnik
4557273821fSKamil Chalupnik  Only if a BBDEV PMD supports this feature, chained mbuf data structures are
4567273821fSKamil Chalupnik  accepted. A chained mbuf can represent one non-contiguous CB or multiple
4577273821fSKamil Chalupnik  non-contiguous CBs.
4587273821fSKamil Chalupnik  The first mbuf segment in the given chained mbuf represents the first piece
4597273821fSKamil Chalupnik  of the CB. Offset is only applicable to the first segment. ``length`` is the
4607273821fSKamil Chalupnik  total length of the CB.
4617273821fSKamil Chalupnik
4627273821fSKamil Chalupnik  BBDEV driver is responsible for identifying where the split is and enqueue
4637273821fSKamil Chalupnik  the split data to its internal queues.
4647273821fSKamil Chalupnik
4657273821fSKamil Chalupnik  If BBDEV PMD does not support this feature, it will assume inbound mbuf data
4667273821fSKamil Chalupnik  contains one segment.
4677273821fSKamil Chalupnik
4687273821fSKamil Chalupnik  The output mbuf data though is always one segment, even if the input was a
4697273821fSKamil Chalupnik  chained mbuf.
4707273821fSKamil Chalupnik
4717273821fSKamil Chalupnik
4727273821fSKamil Chalupnik- ``offset``: This is the starting point of the BBDEV (encode/decode) operation,
4737273821fSKamil Chalupnik  in bytes.
4747273821fSKamil Chalupnik
4757273821fSKamil Chalupnik  BBDEV starts to read data past this offset.
4767273821fSKamil Chalupnik  In case of chained mbuf, this offset applies only to the first mbuf segment.
4777273821fSKamil Chalupnik
4787273821fSKamil Chalupnik
4797273821fSKamil Chalupnik- ``length``: This is the total data length to be processed in one operation,
4807273821fSKamil Chalupnik  in bytes.
4817273821fSKamil Chalupnik
4827273821fSKamil Chalupnik  In case the mbuf data is representing one CB, this is the length of the CB
4837273821fSKamil Chalupnik  undergoing the operation.
4847273821fSKamil Chalupnik  If it is for multiple CBs, this is the total length of those CBs undergoing
4857273821fSKamil Chalupnik  the operation.
4867273821fSKamil Chalupnik  If it is for one TB, this is the total length of the TB under operation.
4877273821fSKamil Chalupnik  In case of chained mbuf, this data length includes the lengths of the
4887273821fSKamil Chalupnik  "scattered" data segments undergoing the operation.
4897273821fSKamil Chalupnik
4907273821fSKamil Chalupnik
4917273821fSKamil ChalupnikBBDEV Turbo Encode Operation
4927273821fSKamil Chalupnik~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4934935e1e9SAmr Mokhtar
4944935e1e9SAmr Mokhtar.. code-block:: c
4954935e1e9SAmr Mokhtar
4964935e1e9SAmr Mokhtar    struct rte_bbdev_op_turbo_enc {
4974935e1e9SAmr Mokhtar        struct rte_bbdev_op_data input;
4984935e1e9SAmr Mokhtar        struct rte_bbdev_op_data output;
4994935e1e9SAmr Mokhtar
5004935e1e9SAmr Mokhtar        uint32_t op_flags;
5014935e1e9SAmr Mokhtar        uint8_t rv_index;
5024935e1e9SAmr Mokhtar        uint8_t code_block_mode;
5034935e1e9SAmr Mokhtar        union {
5044935e1e9SAmr Mokhtar            struct rte_bbdev_op_enc_cb_params cb_params;
5054935e1e9SAmr Mokhtar            struct rte_bbdev_op_enc_tb_params tb_params;
5064935e1e9SAmr Mokhtar        };
5074935e1e9SAmr Mokhtar    };
5084935e1e9SAmr Mokhtar
5097273821fSKamil ChalupnikThe Turbo encode structure is composed of the ``input`` and ``output`` mbuf
5107273821fSKamil Chalupnikdata pointers. The provided mbuf pointer of ``input`` needs to be big enough to
5117273821fSKamil Chalupnikstretch for extra CRC trailers.
5124935e1e9SAmr Mokhtar
5137273821fSKamil Chalupnik``op_flags`` parameter holds all operation related flags, like whether CRC24A is
5147273821fSKamil Chalupnikincluded by the application or not.
5157273821fSKamil Chalupnik
5167273821fSKamil Chalupnik``code_block_mode`` flag identifies the mode in which bbdev is operating in.
5177273821fSKamil Chalupnik
5187273821fSKamil ChalupnikThe encode interface works on both the code block (CB) and the transport block
5197273821fSKamil Chalupnik(TB). An operation executes in "CB-mode" when the CB is standalone. While
5207273821fSKamil Chalupnik"TB-mode" executes when an operation performs on one or multiple CBs that
5217273821fSKamil Chalupnikbelong to a TB. Therefore, a given data can be standalone CB, full-size TB or
5227273821fSKamil Chalupnikpartial TB. Partial TB means that only a subset of CBs belonging to a bigger TB
5237273821fSKamil Chalupnikare being enqueued.
5247273821fSKamil Chalupnik
5257273821fSKamil Chalupnik  **NOTE:** It is assumed that all enqueued ops in one ``rte_bbdev_enqueue_enc_ops()``
5267273821fSKamil Chalupnik  call belong to one mode, either CB-mode or TB-mode.
5277273821fSKamil Chalupnik
5287273821fSKamil ChalupnikIn case that the CB is smaller than Z (6144 bits), then effectively the TB = CB.
5297273821fSKamil ChalupnikCRC24A is appended to the tail of the CB. The application is responsible for
5307273821fSKamil Chalupnikcalculating and appending CRC24A before calling BBDEV in case that the
5317273821fSKamil Chalupnikunderlying driver does not support CRC24A generation.
5327273821fSKamil Chalupnik
5337273821fSKamil ChalupnikIn CB-mode, CRC24A/B is an optional operation.
5347273821fSKamil ChalupnikThe input ``k`` is the size of the CB (this maps to K as described in 3GPP TS
5357273821fSKamil Chalupnik36.212 section 5.1.2), this size is inclusive of CRC24A/B.
5367273821fSKamil ChalupnikThe ``length`` is inclusive of CRC24A/B and equals to ``k`` in this case.
5377273821fSKamil Chalupnik
5387273821fSKamil ChalupnikNot all BBDEV PMDs are capable of CRC24A/B calculation. Flags
5397273821fSKamil Chalupnik``RTE_BBDEV_TURBO_CRC_24A_ATTACH`` and ``RTE_BBDEV_TURBO_CRC_24B_ATTACH``
5407273821fSKamil Chalupnikinforms the application with relevant capability. These flags can be set in the
5417273821fSKamil Chalupnik``op_flags`` parameter to indicate BBDEV to calculate and append CRC24A to CB
5427273821fSKamil Chalupnikbefore going forward with Turbo encoding.
5437273821fSKamil Chalupnik
5447273821fSKamil ChalupnikOutput format of the CB encode will have the encoded CB in ``e`` size output
5457273821fSKamil Chalupnik(this maps to E described in 3GPP TS 36.212 section 5.1.4.1.2). The output mbuf
5467273821fSKamil Chalupnikbuffer size needs to be big enough to hold the encoded buffer of size ``e``.
5477273821fSKamil Chalupnik
5487273821fSKamil ChalupnikIn TB-mode, CRC24A is assumed to be pre-calculated and appended to the inbound
5497273821fSKamil ChalupnikTB mbuf data buffer.
5507273821fSKamil ChalupnikThe output mbuf data structure is expected to be allocated by the application
5517273821fSKamil Chalupnikwith enough room for the output data.
5527273821fSKamil Chalupnik
5537273821fSKamil ChalupnikThe difference between the partial and full-size TB is that we need to know the
5547273821fSKamil Chalupnikindex of the first CB in this group and the number of CBs contained within.
5557273821fSKamil ChalupnikThe first CB index is given by ``r`` but the number of the remaining CBs is
5567273821fSKamil Chalupnikcalculated automatically by BBDEV before passing down to the driver.
5577273821fSKamil Chalupnik
5587273821fSKamil ChalupnikThe number of remaining CBs should not be confused with ``c``. ``c`` is the
5597273821fSKamil Chalupniktotal number of CBs that composes the whole TB (this maps to C as
5607273821fSKamil Chalupnikdescribed in 3GPP TS 36.212 section 5.1.2).
5617273821fSKamil Chalupnik
5627273821fSKamil ChalupnikThe ``length`` is total size of the CBs inclusive of any CRC24A and CRC24B in
5637273821fSKamil Chalupnikcase they were appended by the application.
5647273821fSKamil Chalupnik
5657273821fSKamil ChalupnikThe case when one CB belongs to TB and is being enqueued individually to BBDEV,
5667273821fSKamil Chalupnikthis case is considered as a special case of partial TB where its number of CBs
5677273821fSKamil Chalupnikis 1. Therefore, it requires to get processed in TB-mode.
5687273821fSKamil Chalupnik
56954c4cbb6SAmr MokhtarThe figure below visualizes the encoding of CBs using BBDEV interface in
57054c4cbb6SAmr MokhtarTB-mode. CB-mode is a reduced version, where only one CB exists:
57154c4cbb6SAmr Mokhtar
57254c4cbb6SAmr Mokhtar.. _figure_turbo_tb_encode:
57354c4cbb6SAmr Mokhtar
574e90561ffSThomas Monjalon.. figure:: img/turbo_tb_encode.*
57554c4cbb6SAmr Mokhtar
57654c4cbb6SAmr Mokhtar    Turbo encoding of Code Blocks in mbuf structure
57754c4cbb6SAmr Mokhtar
5787273821fSKamil Chalupnik
5797273821fSKamil ChalupnikBBDEV Turbo Decode Operation
5807273821fSKamil Chalupnik~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5814935e1e9SAmr Mokhtar
5824935e1e9SAmr Mokhtar.. code-block:: c
5834935e1e9SAmr Mokhtar
5844935e1e9SAmr Mokhtar    struct rte_bbdev_op_turbo_dec {
5854935e1e9SAmr Mokhtar        struct rte_bbdev_op_data input;
5864935e1e9SAmr Mokhtar        struct rte_bbdev_op_data hard_output;
5874935e1e9SAmr Mokhtar        struct rte_bbdev_op_data soft_output;
5884935e1e9SAmr Mokhtar
5894935e1e9SAmr Mokhtar        uint32_t op_flags;
5904935e1e9SAmr Mokhtar        uint8_t rv_index;
5914935e1e9SAmr Mokhtar        uint8_t iter_min:4;
5924935e1e9SAmr Mokhtar        uint8_t iter_max:4;
5934935e1e9SAmr Mokhtar        uint8_t iter_count;
5944935e1e9SAmr Mokhtar        uint8_t ext_scale;
5954935e1e9SAmr Mokhtar        uint8_t num_maps;
5964935e1e9SAmr Mokhtar        uint8_t code_block_mode;
5974935e1e9SAmr Mokhtar        union {
5984935e1e9SAmr Mokhtar            struct rte_bbdev_op_dec_cb_params cb_params;
5994935e1e9SAmr Mokhtar            struct rte_bbdev_op_dec_tb_params tb_params;
6004935e1e9SAmr Mokhtar        };
6014935e1e9SAmr Mokhtar    };
6024935e1e9SAmr Mokhtar
6037273821fSKamil ChalupnikThe Turbo decode structure is composed of the ``input`` and ``output`` mbuf
6047273821fSKamil Chalupnikdata pointers.
6054935e1e9SAmr Mokhtar
6067273821fSKamil Chalupnik``op_flags`` parameter holds all operation related flags, like whether CRC24B is
6077273821fSKamil Chalupnikretained or not.
6084935e1e9SAmr Mokhtar
6097273821fSKamil Chalupnik``code_block_mode`` flag identifies the mode in which bbdev is operating in.
6104935e1e9SAmr Mokhtar
6117273821fSKamil ChalupnikSimilarly, the decode interface works on both the code block (CB) and the
6127273821fSKamil Chalupniktransport block (TB). An operation executes in "CB-mode" when the CB is
6137273821fSKamil Chalupnikstandalone. While "TB-mode" executes when an operation performs on one or
6147273821fSKamil Chalupnikmultiple CBs that belong to a TB. Therefore, a given data can be standalone CB,
6157273821fSKamil Chalupnikfull-size TB or partial TB. Partial TB means that only a subset of CBs belonging
6167273821fSKamil Chalupnikto a bigger TB are being enqueued.
6177273821fSKamil Chalupnik
6187273821fSKamil Chalupnik  **NOTE:** It is assumed that all enqueued ops in one ``rte_bbdev_enqueue_dec_ops()``
6197273821fSKamil Chalupnik  call belong to one mode, either CB-mode or TB-mode.
6207273821fSKamil Chalupnik
6217273821fSKamil ChalupnikThe input ``k`` is the size of the decoded CB (this maps to K as described in
6227273821fSKamil Chalupnik3GPP TS 36.212 section 5.1.2), this size is inclusive of CRC24A/B.
6237273821fSKamil ChalupnikThe ``length`` is inclusive of CRC24A/B and equals to ``k`` in this case.
6247273821fSKamil Chalupnik
6257273821fSKamil ChalupnikThe input encoded CB data is the Virtual Circular Buffer data stream, wk, with
6267273821fSKamil Chalupnikthe null padding included as described in 3GPP TS 36.212 section 5.1.4.1.2 and
6277273821fSKamil Chalupnikshown in 3GPP TS 36.212 section 5.1.4.1 Figure 5.1.4-1.
6287273821fSKamil ChalupnikThe size of the virtual circular buffer is 3*Kpi, where Kpi is the 32 byte
6297273821fSKamil Chalupnikaligned value of K, as specified in 3GPP TS 36.212 section 5.1.4.1.1.
6307273821fSKamil Chalupnik
6317273821fSKamil ChalupnikEach byte in the input circular buffer is the LLR value of each bit of the
6327273821fSKamil Chalupnikoriginal CB.
6337273821fSKamil Chalupnik
6347273821fSKamil Chalupnik``hard_output`` is a mandatory capability that all BBDEV PMDs support. This is
6357273821fSKamil Chalupnikthe decoded CBs of K sizes (CRC24A/B is the last 24-bit in each decoded CB).
6367273821fSKamil ChalupnikSoft output is an optional capability for BBDEV PMDs. Setting flag
6377273821fSKamil Chalupnik``RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP`` in ``op_flags`` directs BBDEV to retain
6387273821fSKamil ChalupnikCRC24B at the end of each CB. This might be useful for the application in debug
6397273821fSKamil Chalupnikmode.
6407273821fSKamil ChalupnikAn LLR rate matched output is computed in the ``soft_output`` buffer structure
6417273821fSKamil Chalupnikfor the given ``e`` size (this maps to E described in 3GPP TS 36.212 section
6427273821fSKamil Chalupnik5.1.4.1.2). The output mbuf buffer size needs to be big enough to hold the
6437273821fSKamil Chalupnikencoded buffer of size ``e``.
6447273821fSKamil Chalupnik
6457273821fSKamil ChalupnikThe first CB Virtual Circular Buffer (VCB) index is given by ``r`` but the
6467273821fSKamil Chalupniknumber of the remaining CB VCBs is calculated automatically by BBDEV before
6477273821fSKamil Chalupnikpassing down to the driver.
6487273821fSKamil Chalupnik
6497273821fSKamil ChalupnikThe number of remaining CB VCBs should not be confused with ``c``. ``c`` is the
6507273821fSKamil Chalupniktotal number of CBs that composes the whole TB (this maps to C as
6517273821fSKamil Chalupnikdescribed in 3GPP TS 36.212 section 5.1.2).
6527273821fSKamil Chalupnik
6537273821fSKamil ChalupnikThe ``length`` is total size of the CBs inclusive of any CRC24A and CRC24B in
6547273821fSKamil Chalupnikcase they were appended by the application.
6557273821fSKamil Chalupnik
6567273821fSKamil ChalupnikThe case when one CB belongs to TB and is being enqueued individually to BBDEV,
6577273821fSKamil Chalupnikthis case is considered as a special case of partial TB where its number of CBs
6587273821fSKamil Chalupnikis 1. Therefore, it requires to get processed in TB-mode.
6597273821fSKamil Chalupnik
6607273821fSKamil ChalupnikThe output mbuf data structure is expected to be allocated by the application
6617273821fSKamil Chalupnikwith enough room for the output data.
6627273821fSKamil Chalupnik
66354c4cbb6SAmr MokhtarThe figure below visualizes the decoding of CBs using BBDEV interface in
66454c4cbb6SAmr MokhtarTB-mode. CB-mode is a reduced version, where only one CB exists:
66554c4cbb6SAmr Mokhtar
66654c4cbb6SAmr Mokhtar.. _figure_turbo_tb_decode:
66754c4cbb6SAmr Mokhtar
668e90561ffSThomas Monjalon.. figure:: img/turbo_tb_decode.*
66954c4cbb6SAmr Mokhtar
67054c4cbb6SAmr Mokhtar    Turbo decoding of Code Blocks in mbuf structure
67154c4cbb6SAmr Mokhtar
6724935e1e9SAmr Mokhtar
6734935e1e9SAmr MokhtarSample code
6744935e1e9SAmr Mokhtar-----------
6754935e1e9SAmr Mokhtar
6764935e1e9SAmr MokhtarThe baseband device sample application gives an introduction on how to use the
6774935e1e9SAmr Mokhtarbbdev framework, by giving a sample code performing a loop-back operation with a
6784935e1e9SAmr Mokhtarbaseband processor capable of transceiving data packets.
6794935e1e9SAmr Mokhtar
6804935e1e9SAmr MokhtarThe following sample C-like pseudo-code shows the basic steps to encode several
681*d629b7b5SJohn McNamarabuffers using (**sw_turbo**) bbdev PMD.
6824935e1e9SAmr Mokhtar
6834935e1e9SAmr Mokhtar.. code-block:: c
6844935e1e9SAmr Mokhtar
6854935e1e9SAmr Mokhtar    /* EAL Init */
6864935e1e9SAmr Mokhtar    ret = rte_eal_init(argc, argv);
6874935e1e9SAmr Mokhtar    if (ret < 0)
6884935e1e9SAmr Mokhtar        rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
6894935e1e9SAmr Mokhtar
6904935e1e9SAmr Mokhtar    /* Get number of available bbdev devices */
6914935e1e9SAmr Mokhtar    nb_bbdevs = rte_bbdev_count();
6924935e1e9SAmr Mokhtar    if (nb_bbdevs == 0)
6934935e1e9SAmr Mokhtar        rte_exit(EXIT_FAILURE, "No bbdevs detected!\n");
6944935e1e9SAmr Mokhtar
6954935e1e9SAmr Mokhtar    /* Create bbdev op pools */
6964935e1e9SAmr Mokhtar    bbdev_op_pool[RTE_BBDEV_OP_TURBO_ENC] =
6974935e1e9SAmr Mokhtar            rte_bbdev_op_pool_create("bbdev_op_pool_enc",
6984935e1e9SAmr Mokhtar            RTE_BBDEV_OP_TURBO_ENC, NB_MBUF, 128, rte_socket_id());
6994935e1e9SAmr Mokhtar
7004935e1e9SAmr Mokhtar    /* Get information for this device */
7014935e1e9SAmr Mokhtar    rte_bbdev_info_get(dev_id, &info);
7024935e1e9SAmr Mokhtar
7034935e1e9SAmr Mokhtar    /* Setup BBDEV device queues */
7044935e1e9SAmr Mokhtar    ret = rte_bbdev_setup_queues(dev_id, qs_nb, info.socket_id);
7054935e1e9SAmr Mokhtar    if (ret < 0)
7064935e1e9SAmr Mokhtar        rte_exit(EXIT_FAILURE,
7074935e1e9SAmr Mokhtar                "ERROR(%d): BBDEV %u not configured properly\n",
7084935e1e9SAmr Mokhtar                ret, dev_id);
7094935e1e9SAmr Mokhtar
7104935e1e9SAmr Mokhtar    /* setup device queues */
7114935e1e9SAmr Mokhtar    qconf.socket = info.socket_id;
7124935e1e9SAmr Mokhtar    qconf.queue_size = info.drv.queue_size_lim;
7134935e1e9SAmr Mokhtar    qconf.op_type = RTE_BBDEV_OP_TURBO_ENC;
7144935e1e9SAmr Mokhtar
7154935e1e9SAmr Mokhtar    for (q_id = 0; q_id < qs_nb; q_id++) {
7164935e1e9SAmr Mokhtar        /* Configure all queues belonging to this bbdev device */
7174935e1e9SAmr Mokhtar        ret = rte_bbdev_queue_configure(dev_id, q_id, &qconf);
7184935e1e9SAmr Mokhtar        if (ret < 0)
7194935e1e9SAmr Mokhtar            rte_exit(EXIT_FAILURE,
7204935e1e9SAmr Mokhtar                    "ERROR(%d): BBDEV %u queue %u not configured properly\n",
7214935e1e9SAmr Mokhtar                    ret, dev_id, q_id);
7224935e1e9SAmr Mokhtar    }
7234935e1e9SAmr Mokhtar
7244935e1e9SAmr Mokhtar    /* Start bbdev device */
7254935e1e9SAmr Mokhtar    ret = rte_bbdev_start(dev_id);
7264935e1e9SAmr Mokhtar
7274935e1e9SAmr Mokhtar    /* Create the mbuf mempool for pkts */
7284935e1e9SAmr Mokhtar    mbuf_pool = rte_pktmbuf_pool_create("bbdev_mbuf_pool",
7294935e1e9SAmr Mokhtar            NB_MBUF, MEMPOOL_CACHE_SIZE, 0,
7304935e1e9SAmr Mokhtar            RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
7314935e1e9SAmr Mokhtar    if (mbuf_pool == NULL)
7324935e1e9SAmr Mokhtar        rte_exit(EXIT_FAILURE,
7334935e1e9SAmr Mokhtar                "Unable to create '%s' pool\n", pool_name);
7344935e1e9SAmr Mokhtar
7354935e1e9SAmr Mokhtar    while (!global_exit_flag) {
7364935e1e9SAmr Mokhtar
7374935e1e9SAmr Mokhtar        /* Allocate burst of op structures in preparation for enqueue */
7384935e1e9SAmr Mokhtar        if (rte_bbdev_enc_op_alloc_bulk(bbdev_op_pool[RTE_BBDEV_OP_TURBO_ENC],
7394935e1e9SAmr Mokhtar            ops_burst, op_num) != 0)
7404935e1e9SAmr Mokhtar            continue;
7414935e1e9SAmr Mokhtar
7424935e1e9SAmr Mokhtar        /* Allocate input mbuf pkts */
7434935e1e9SAmr Mokhtar        ret = rte_pktmbuf_alloc_bulk(mbuf_pool, input_pkts_burst, MAX_PKT_BURST);
7444935e1e9SAmr Mokhtar        if (ret < 0)
7454935e1e9SAmr Mokhtar            continue;
7464935e1e9SAmr Mokhtar
7474935e1e9SAmr Mokhtar        /* Allocate output mbuf pkts */
7484935e1e9SAmr Mokhtar        ret = rte_pktmbuf_alloc_bulk(mbuf_pool, output_pkts_burst, MAX_PKT_BURST);
7494935e1e9SAmr Mokhtar        if (ret < 0)
7504935e1e9SAmr Mokhtar            continue;
7514935e1e9SAmr Mokhtar
7524935e1e9SAmr Mokhtar        for (j = 0; j < op_num; j++) {
7534935e1e9SAmr Mokhtar            /* Append the size of the ethernet header */
7544935e1e9SAmr Mokhtar            rte_pktmbuf_append(input_pkts_burst[j],
7554935e1e9SAmr Mokhtar                    sizeof(struct ether_hdr));
7564935e1e9SAmr Mokhtar
7574935e1e9SAmr Mokhtar            /* set op */
7584935e1e9SAmr Mokhtar
7594935e1e9SAmr Mokhtar            ops_burst[j]->turbo_enc.input.offset =
7604935e1e9SAmr Mokhtar                sizeof(struct ether_hdr);
7614935e1e9SAmr Mokhtar
7624935e1e9SAmr Mokhtar            ops_burst[j]->turbo_enc->input.length =
7634935e1e9SAmr Mokhtar                rte_pktmbuf_pkt_len(bbdev_pkts[j]);
7644935e1e9SAmr Mokhtar
7654935e1e9SAmr Mokhtar            ops_burst[j]->turbo_enc->input.data =
7664935e1e9SAmr Mokhtar                input_pkts_burst[j];
7674935e1e9SAmr Mokhtar
7684935e1e9SAmr Mokhtar            ops_burst[j]->turbo_enc->output.offset =
7694935e1e9SAmr Mokhtar                sizeof(struct ether_hdr);
7704935e1e9SAmr Mokhtar
7714935e1e9SAmr Mokhtar            ops_burst[j]->turbo_enc->output.data =
7724935e1e9SAmr Mokhtar                    output_pkts_burst[j];
7734935e1e9SAmr Mokhtar        }
7744935e1e9SAmr Mokhtar
7754935e1e9SAmr Mokhtar        /* Enqueue packets on BBDEV device */
7764935e1e9SAmr Mokhtar        op_num = rte_bbdev_enqueue_enc_ops(qconf->bbdev_id,
7774935e1e9SAmr Mokhtar                qconf->bbdev_qs[q], ops_burst,
7784935e1e9SAmr Mokhtar                MAX_PKT_BURST);
7794935e1e9SAmr Mokhtar
7804935e1e9SAmr Mokhtar        /* Dequeue packets from BBDEV device*/
7814935e1e9SAmr Mokhtar        op_num = rte_bbdev_dequeue_enc_ops(qconf->bbdev_id,
7824935e1e9SAmr Mokhtar                qconf->bbdev_qs[q], ops_burst,
7834935e1e9SAmr Mokhtar                MAX_PKT_BURST);
7844935e1e9SAmr Mokhtar    }
7854935e1e9SAmr Mokhtar
7864935e1e9SAmr Mokhtar
7874935e1e9SAmr MokhtarBBDEV Device API
7884935e1e9SAmr Mokhtar~~~~~~~~~~~~~~~~
7894935e1e9SAmr Mokhtar
7904935e1e9SAmr MokhtarThe bbdev Library API is described in the *DPDK API Reference* document.
791