1.. SPDX-License-Identifier: BSD-3-Clause 2 Copyright(c) 2019 Intel Corporation 3 4Intel(R) FPGA LTE FEC Poll Mode Driver 5====================================== 6 7The BBDEV FPGA LTE FEC poll mode driver (PMD) supports an FPGA implementation of a VRAN 8Turbo Encode / Decode LTE wireless acceleration function, using Intel's PCI-e and FPGA 9based Vista Creek device. 10 11Features 12-------- 13 14FPGA LTE FEC PMD supports the following features: 15 16- Turbo Encode in the DL with total throughput of 4.5 Gbits/s 17- Turbo Decode in the UL with total throughput of 1.5 Gbits/s assuming 8 decoder iterations 18- 8 VFs per PF (physical device) 19- Maximum of 32 UL queues per VF 20- Maximum of 32 DL queues per VF 21- PCIe Gen-3 x8 Interface 22- MSI-X 23- SR-IOV 24 25 26FPGA LTE FEC PMD supports the following BBDEV capabilities: 27 28* For the turbo encode operation: 29 - ``RTE_BBDEV_TURBO_CRC_24B_ATTACH`` : set to attach CRC24B to CB(s) 30 - ``RTE_BBDEV_TURBO_RATE_MATCH`` : if set then do not do Rate Match bypass 31 - ``RTE_BBDEV_TURBO_ENC_INTERRUPTS`` : set for encoder dequeue interrupts 32 33 34* For the turbo decode operation: 35 - ``RTE_BBDEV_TURBO_CRC_TYPE_24B`` : check CRC24B from CB(s) 36 - ``RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE`` : perform subblock de-interleave 37 - ``RTE_BBDEV_TURBO_DEC_INTERRUPTS`` : set for decoder dequeue interrupts 38 - ``RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN`` : set if negative LLR encoder i/p is supported 39 - ``RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP`` : keep CRC24B bits appended while decoding 40 41 42Limitations 43----------- 44 45FPGA LTE FEC does not support the following: 46 47- Scatter-Gather function 48 49 50Installation 51-------------- 52 53Section 3 of the DPDK manual provides instructions on installing and compiling DPDK. 54 55DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual. 56The bbdev test application has been tested with a configuration 40 x 1GB hugepages. The 57hugepage configuration of a server may be examined using: 58 59.. code-block:: console 60 61 grep Huge* /proc/meminfo 62 63 64Initialization 65-------------- 66 67When the device first powers up, its PCI Physical Functions (PF) can be listed through this command: 68 69.. code-block:: console 70 71 sudo lspci -vd1172:5052 72 73The physical and virtual functions are compatible with Linux UIO drivers: 74``vfio`` and ``igb_uio``. However, in order to work the FPGA LTE FEC device firstly needs 75to be bound to one of these linux drivers through DPDK. 76 77 78Bind PF UIO driver(s) 79~~~~~~~~~~~~~~~~~~~~~ 80 81Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use 82``lspci`` to confirm the PF device is under use by ``igb_uio`` DPDK UIO driver. 83 84The igb_uio driver may be bound to the PF PCI device using one of three methods: 85 86 871. PCI functions (physical or virtual, depending on the use case) can be bound to 88the UIO driver by repeating this command for every function. 89 90.. code-block:: console 91 92 insmod igb_uio.ko 93 echo "1172 5052" > /sys/bus/pci/drivers/igb_uio/new_id 94 lspci -vd1172: 95 96 972. Another way to bind PF with DPDK UIO driver is by using the ``dpdk-devbind.py`` tool 98 99.. code-block:: console 100 101 cd <dpdk-top-level-directory> 102 ./usertools/dpdk-devbind.py -b igb_uio 0000:06:00.0 103 104where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd1172: 105 106 1073. A third way to bind is to use ``dpdk-setup.sh`` tool 108 109.. code-block:: console 110 111 cd <dpdk-top-level-directory> 112 ./usertools/dpdk-setup.sh 113 114 select 'Bind Ethernet/Crypto/Baseband device to IGB UIO module' 115 or 116 select 'Bind Ethernet/Crypto/Baseband device to VFIO module' depending on driver required 117 enter PCI device ID 118 select 'Display current Ethernet/Crypto/Baseband device settings' to confirm binding 119 120 121In the same way the FPGA LTE FEC PF can be bound with vfio, but vfio driver does not 122support SR-IOV configuration right out of the box, so it will need to be patched. 123 124 125Enable Virtual Functions 126~~~~~~~~~~~~~~~~~~~~~~~~ 127 128Now, it should be visible in the printouts that PCI PF is under igb_uio control 129"``Kernel driver in use: igb_uio``" 130 131To show the number of available VFs on the device, read ``sriov_totalvfs`` file.. 132 133.. code-block:: console 134 135 cat /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_totalvfs 136 137 where 0000\:<b>\:<d>.<f> is the PCI device ID 138 139 140To enable VFs via igb_uio, echo the number of virtual functions intended to 141enable to ``max_vfs`` file.. 142 143.. code-block:: console 144 145 echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/max_vfs 146 147 148Afterwards, all VFs must be bound to appropriate UIO drivers as required, same 149way it was done with the physical function previously. 150 151Enabling SR-IOV via vfio driver is pretty much the same, except that the file 152name is different: 153 154.. code-block:: console 155 156 echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_numvfs 157 158 159Configure the VFs through PF 160~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 162The PCI virtual functions must be configured before working or getting assigned 163to VMs/Containers. The configuration involves allocating the number of hardware 164queues, priorities, load balance, bandwidth and other settings necessary for the 165device to perform FEC functions. 166 167This configuration needs to be executed at least once after reboot or PCI FLR and can 168be achieved by using the function ``rte_fpga_lte_fec_configure()``, which sets up the 169parameters defined in ``rte_fpga_lte_fec_conf`` structure: 170 171.. code-block:: c 172 173 struct rte_fpga_lte_fec_conf { 174 bool pf_mode_en; 175 uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS]; 176 uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS]; 177 uint8_t ul_bandwidth; 178 uint8_t dl_bandwidth; 179 uint8_t ul_load_balance; 180 uint8_t dl_load_balance; 181 uint16_t flr_time_out; 182 }; 183 184- ``pf_mode_en``: identifies whether only PF is to be used, or the VFs. PF and 185 VFs are mutually exclusive and cannot run simultaneously. 186 Set to 1 for PF mode enabled. 187 If PF mode is enabled all queues available in the device are assigned 188 exclusively to PF and 0 queues given to VFs. 189 190- ``vf_*l_queues_number``: defines the hardware queue mapping for every VF. 191 192- ``*l_bandwidth``: in case of congestion on PCIe interface. The device 193 allocates different bandwidth to UL and DL. The weight is configured by this 194 setting. The unit of weight is 3 code blocks. For example, if the code block 195 cbps (code block per second) ratio between UL and DL is 12:1, then the 196 configuration value should be set to 36:3. The schedule algorithm is based 197 on code block regardless the length of each block. 198 199- ``*l_load_balance``: hardware queues are load-balanced in a round-robin 200 fashion. Queues get filled first-in first-out until they reach a pre-defined 201 watermark level, if exceeded, they won't get assigned new code blocks.. 202 This watermark is defined by this setting. 203 204 If all hardware queues exceeds the watermark, no code blocks will be 205 streamed in from UL/DL code block FIFO. 206 207- ``flr_time_out``: specifies how many 16.384us to be FLR time out. The 208 time_out = flr_time_out x 16.384us. For instance, if you want to set 10ms for 209 the FLR time out then set this setting to 0x262=610. 210 211 212An example configuration code calling the function ``rte_fpga_lte_fec_configure()`` is shown 213below: 214 215.. code-block:: c 216 217 struct rte_fpga_lte_fec_conf conf; 218 unsigned int i; 219 220 memset(&conf, 0, sizeof(struct rte_fpga_lte_fec_conf)); 221 conf.pf_mode_en = 1; 222 223 for (i = 0; i < FPGA_LTE_FEC_NUM_VFS; ++i) { 224 conf.vf_ul_queues_number[i] = 4; 225 conf.vf_dl_queues_number[i] = 4; 226 } 227 conf.ul_bandwidth = 12; 228 conf.dl_bandwidth = 5; 229 conf.dl_load_balance = 64; 230 conf.ul_load_balance = 64; 231 232 /* setup FPGA PF */ 233 ret = rte_fpga_lte_fec_configure(info->dev_name, &conf); 234 TEST_ASSERT_SUCCESS(ret, 235 "Failed to configure 4G FPGA PF for bbdev %s", 236 info->dev_name); 237 238 239Test Application 240---------------- 241 242BBDEV provides a test application, ``test-bbdev.py`` and range of test data for testing 243the functionality of FPGA LTE FEC turbo encode and turbo decode, depending on the device's 244capabilities. The test application is located under app->test-bbdev folder and has the 245following options: 246 247.. code-block:: console 248 249 "-p", "--testapp-path": specifies path to the bbdev test app. 250 "-e", "--eal-params" : EAL arguments which are passed to the test app. 251 "-t", "--timeout" : Timeout in seconds (default=300). 252 "-c", "--test-cases" : Defines test cases to run. Run all if not specified. 253 "-v", "--test-vector" : Test vector path (default=dpdk_path+/app/test-bbdev/test_vectors/bbdev_null.data). 254 "-n", "--num-ops" : Number of operations to process on device (default=32). 255 "-b", "--burst-size" : Operations enqueue/dequeue burst size (default=32). 256 "-l", "--num-lcores" : Number of lcores to run (default=16). 257 "-i", "--init-device" : Initialise PF device with default values. 258 259 260To execute the test application tool using simple turbo decode or turbo encode data, 261type one of the following: 262 263.. code-block:: console 264 265 ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_dec_default.data 266 ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_enc_default.data 267 268 269The test application ``test-bbdev.py``, supports the ability to configure the PF device with 270a default set of values, if the "-i" or "- -init-device" option is included. The default values 271are defined in test_bbdev_perf.c as: 272 273- VF_UL_QUEUE_VALUE 4 274- VF_DL_QUEUE_VALUE 4 275- UL_BANDWIDTH 3 276- DL_BANDWIDTH 3 277- UL_LOAD_BALANCE 128 278- DL_LOAD_BALANCE 128 279- FLR_TIMEOUT 610 280 281 282Test Vectors 283~~~~~~~~~~~~ 284 285In addition to the simple turbo decoder and turbo encoder tests, bbdev also provides 286a range of additional tests under the test_vectors folder, which may be useful. The results 287of these tests will depend on the FPGA LTE FEC capabilities: 288 289* turbo decoder tests: 290 - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data`` 291 - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data`` 292 - ``turbo_dec_c1_k6144_r0_e34560_negllr.data`` 293 - ``turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data`` 294 - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data`` 295 - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data`` 296 297 298* turbo encoder tests: 299 - ``turbo_enc_c1_k40_r0_e1190_rm.data`` 300 - ``turbo_enc_c1_k40_r0_e1194_rm.data`` 301 - ``turbo_enc_c1_k40_r0_e1196_rm.data`` 302 - ``turbo_enc_c1_k40_r0_e272_rm.data`` 303 - ``turbo_enc_c1_k6144_r0_e18444.data`` 304 - ``turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data`` 305 - ``turbo_enc_c2_k5952_r0_e17868_crc24b.data`` 306 - ``turbo_enc_c3_k4800_r2_e14412_crc24b.data`` 307 - ``turbo_enc_c4_k4800_r2_e14412_crc24b.data`` 308