xref: /dpdk/doc/guides/bbdevs/fpga_lte_fec.rst (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1..  SPDX-License-Identifier: BSD-3-Clause
2    Copyright(c) 2019 Intel Corporation
3
4Intel(R) FPGA LTE FEC Poll Mode Driver
5======================================
6
7The BBDEV FPGA LTE FEC poll mode driver (PMD) supports an FPGA implementation of a VRAN
8Turbo Encode / Decode LTE wireless acceleration function, using Intel's PCI-e and FPGA
9based Vista Creek device.
10
11Features
12--------
13
14FPGA LTE FEC PMD supports the following features:
15
16- Turbo Encode in the DL with total throughput of 4.5 Gbits/s
17- Turbo Decode in the UL with total throughput of 1.5 Gbits/s assuming 8 decoder iterations
18- 8 VFs per PF (physical device)
19- Maximum of 32 UL queues per VF
20- Maximum of 32 DL queues per VF
21- PCIe Gen-3 x8 Interface
22- MSI-X
23- SR-IOV
24
25
26FPGA LTE FEC PMD supports the following BBDEV capabilities:
27
28* For the turbo encode operation:
29   - ``RTE_BBDEV_TURBO_CRC_24B_ATTACH`` :  set to attach CRC24B to CB(s)
30   - ``RTE_BBDEV_TURBO_RATE_MATCH`` :  if set then do not do Rate Match bypass
31   - ``RTE_BBDEV_TURBO_ENC_INTERRUPTS`` :  set for encoder dequeue interrupts
32
33
34* For the turbo decode operation:
35   - ``RTE_BBDEV_TURBO_CRC_TYPE_24B`` :  check CRC24B from CB(s)
36   - ``RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE`` :  perform subblock de-interleave
37   - ``RTE_BBDEV_TURBO_DEC_INTERRUPTS`` :  set for decoder dequeue interrupts
38   - ``RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN`` :  set if negative LLR encoder i/p is supported
39   - ``RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP`` :  keep CRC24B bits appended while decoding
40
41
42Limitations
43-----------
44
45FPGA LTE FEC does not support the following:
46
47- Scatter-Gather function
48
49
50Installation
51--------------
52
53Section 3 of the DPDK manual provides instructions on installing and compiling DPDK.
54
55DPDK requires hugepages to be configured as detailed in section 2 of the DPDK manual.
56The bbdev test application has been tested with a configuration 40 x 1GB hugepages. The
57hugepage configuration of a server may be examined using:
58
59.. code-block:: console
60
61   grep Huge* /proc/meminfo
62
63
64Initialization
65--------------
66
67When the device first powers up, its PCI Physical Functions (PF) can be listed through this command:
68
69.. code-block:: console
70
71  sudo lspci -vd1172:5052
72
73The physical and virtual functions are compatible with Linux UIO drivers:
74``vfio`` and ``igb_uio``. However, in order to work the FPGA LTE FEC device firstly needs
75to be bound to one of these linux drivers through DPDK.
76
77
78Bind PF UIO driver(s)
79~~~~~~~~~~~~~~~~~~~~~
80
81Install the DPDK igb_uio driver, bind it with the PF PCI device ID and use
82``lspci`` to confirm the PF device is under use by ``igb_uio`` DPDK UIO driver.
83
84The igb_uio driver may be bound to the PF PCI device using one of three methods:
85
86
871. PCI functions (physical or virtual, depending on the use case) can be bound to
88the UIO driver by repeating this command for every function.
89
90.. code-block:: console
91
92  insmod igb_uio.ko
93  echo "1172 5052" > /sys/bus/pci/drivers/igb_uio/new_id
94  lspci -vd1172:
95
96
972. Another way to bind PF with DPDK UIO driver is by using the ``dpdk-devbind.py`` tool
98
99.. code-block:: console
100
101  cd <dpdk-top-level-directory>
102  ./usertools/dpdk-devbind.py -b igb_uio 0000:06:00.0
103
104where the PCI device ID (example: 0000:06:00.0) is obtained using lspci -vd1172:
105
106
1073. A third way to bind is to use ``dpdk-setup.sh`` tool
108
109.. code-block:: console
110
111  cd <dpdk-top-level-directory>
112  ./usertools/dpdk-setup.sh
113
114  select 'Bind Ethernet/Crypto/Baseband device to IGB UIO module'
115  or
116  select 'Bind Ethernet/Crypto/Baseband device to VFIO module' depending on driver required
117  enter PCI device ID
118  select 'Display current Ethernet/Crypto/Baseband device settings' to confirm binding
119
120
121In the same way the FPGA LTE FEC PF can be bound with vfio, but vfio driver does not
122support SR-IOV configuration right out of the box, so it will need to be patched.
123
124
125Enable Virtual Functions
126~~~~~~~~~~~~~~~~~~~~~~~~
127
128Now, it should be visible in the printouts that PCI PF is under igb_uio control
129"``Kernel driver in use: igb_uio``"
130
131To show the number of available VFs on the device, read ``sriov_totalvfs`` file..
132
133.. code-block:: console
134
135  cat /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_totalvfs
136
137  where 0000\:<b>\:<d>.<f> is the PCI device ID
138
139
140To enable VFs via igb_uio, echo the number of virtual functions intended to
141enable to ``max_vfs`` file..
142
143.. code-block:: console
144
145  echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/max_vfs
146
147
148Afterwards, all VFs must be bound to appropriate UIO drivers as required, same
149way it was done with the physical function previously.
150
151Enabling SR-IOV via vfio driver is pretty much the same, except that the file
152name is different:
153
154.. code-block:: console
155
156  echo <num-of-vfs> > /sys/bus/pci/devices/0000\:<b>\:<d>.<f>/sriov_numvfs
157
158
159Configure the VFs through PF
160~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161
162The PCI virtual functions must be configured before working or getting assigned
163to VMs/Containers. The configuration involves allocating the number of hardware
164queues, priorities, load balance, bandwidth and other settings necessary for the
165device to perform FEC functions.
166
167This configuration needs to be executed at least once after reboot or PCI FLR and can
168be achieved by using the function ``rte_fpga_lte_fec_configure()``, which sets up the
169parameters defined in ``rte_fpga_lte_fec_conf`` structure:
170
171.. code-block:: c
172
173  struct rte_fpga_lte_fec_conf {
174      bool pf_mode_en;
175      uint8_t vf_ul_queues_number[FPGA_LTE_FEC_NUM_VFS];
176      uint8_t vf_dl_queues_number[FPGA_LTE_FEC_NUM_VFS];
177      uint8_t ul_bandwidth;
178      uint8_t dl_bandwidth;
179      uint8_t ul_load_balance;
180      uint8_t dl_load_balance;
181      uint16_t flr_time_out;
182  };
183
184- ``pf_mode_en``: identifies whether only PF is to be used, or the VFs. PF and
185  VFs are mutually exclusive and cannot run simultaneously.
186  Set to 1 for PF mode enabled.
187  If PF mode is enabled all queues available in the device are assigned
188  exclusively to PF and 0 queues given to VFs.
189
190- ``vf_*l_queues_number``: defines the hardware queue mapping for every VF.
191
192- ``*l_bandwidth``: in case of congestion on PCIe interface. The device
193  allocates different bandwidth to UL and DL. The weight is configured by this
194  setting. The unit of weight is 3 code blocks. For example, if the code block
195  cbps (code block per second) ratio between UL and DL is 12:1, then the
196  configuration value should be set to 36:3. The schedule algorithm is based
197  on code block regardless the length of each block.
198
199- ``*l_load_balance``: hardware queues are load-balanced in a round-robin
200  fashion. Queues get filled first-in first-out until they reach a pre-defined
201  watermark level, if exceeded, they won't get assigned new code blocks..
202  This watermark is defined by this setting.
203
204  If all hardware queues exceeds the watermark, no code blocks will be
205  streamed in from UL/DL code block FIFO.
206
207- ``flr_time_out``: specifies how many 16.384us to be FLR time out. The
208  time_out = flr_time_out x 16.384us. For instance, if you want to set 10ms for
209  the FLR time out then set this setting to 0x262=610.
210
211
212An example configuration code calling the function ``rte_fpga_lte_fec_configure()`` is shown
213below:
214
215.. code-block:: c
216
217  struct rte_fpga_lte_fec_conf conf;
218  unsigned int i;
219
220  memset(&conf, 0, sizeof(struct rte_fpga_lte_fec_conf));
221  conf.pf_mode_en = 1;
222
223  for (i = 0; i < FPGA_LTE_FEC_NUM_VFS; ++i) {
224      conf.vf_ul_queues_number[i] = 4;
225      conf.vf_dl_queues_number[i] = 4;
226  }
227  conf.ul_bandwidth = 12;
228  conf.dl_bandwidth = 5;
229  conf.dl_load_balance = 64;
230  conf.ul_load_balance = 64;
231
232  /* setup FPGA PF */
233  ret = rte_fpga_lte_fec_configure(info->dev_name, &conf);
234  TEST_ASSERT_SUCCESS(ret,
235      "Failed to configure 4G FPGA PF for bbdev %s",
236      info->dev_name);
237
238
239Test Application
240----------------
241
242BBDEV provides a test application, ``test-bbdev.py`` and range of test data for testing
243the functionality of FPGA LTE FEC turbo encode and turbo decode, depending on the device's
244capabilities. The test application is located under app->test-bbdev folder and has the
245following options:
246
247.. code-block:: console
248
249  "-p", "--testapp-path": specifies path to the bbdev test app.
250  "-e", "--eal-params"	: EAL arguments which are passed to the test app.
251  "-t", "--timeout"	: Timeout in seconds (default=300).
252  "-c", "--test-cases"	: Defines test cases to run. Run all if not specified.
253  "-v", "--test-vector"	: Test vector path (default=dpdk_path+/app/test-bbdev/test_vectors/bbdev_null.data).
254  "-n", "--num-ops"	: Number of operations to process on device (default=32).
255  "-b", "--burst-size"	: Operations enqueue/dequeue burst size (default=32).
256  "-l", "--num-lcores"	: Number of lcores to run (default=16).
257  "-i", "--init-device" : Initialise PF device with default values.
258
259
260To execute the test application tool using simple turbo decode or turbo encode data,
261type one of the following:
262
263.. code-block:: console
264
265  ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_dec_default.data
266  ./test-bbdev.py -c validation -n 64 -b 8 -v ./turbo_enc_default.data
267
268
269The test application ``test-bbdev.py``, supports the ability to configure the PF device with
270a default set of values, if the "-i" or "- -init-device" option is included. The default values
271are defined in test_bbdev_perf.c as:
272
273- VF_UL_QUEUE_VALUE 4
274- VF_DL_QUEUE_VALUE 4
275- UL_BANDWIDTH 3
276- DL_BANDWIDTH 3
277- UL_LOAD_BALANCE 128
278- DL_LOAD_BALANCE 128
279- FLR_TIMEOUT 610
280
281
282Test Vectors
283~~~~~~~~~~~~
284
285In addition to the simple turbo decoder and turbo encoder tests, bbdev also provides
286a range of additional tests under the test_vectors folder, which may be useful. The results
287of these tests will depend on the FPGA LTE FEC capabilities:
288
289* turbo decoder tests:
290   - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data``
291   - ``turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data``
292   - ``turbo_dec_c1_k6144_r0_e34560_negllr.data``
293   - ``turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data``
294   - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data``
295   - ``turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data``
296
297
298* turbo encoder tests:
299   - ``turbo_enc_c1_k40_r0_e1190_rm.data``
300   - ``turbo_enc_c1_k40_r0_e1194_rm.data``
301   - ``turbo_enc_c1_k40_r0_e1196_rm.data``
302   - ``turbo_enc_c1_k40_r0_e272_rm.data``
303   - ``turbo_enc_c1_k6144_r0_e18444.data``
304   - ``turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data``
305   - ``turbo_enc_c2_k5952_r0_e17868_crc24b.data``
306   - ``turbo_enc_c3_k4800_r2_e14412_crc24b.data``
307   - ``turbo_enc_c4_k4800_r2_e14412_crc24b.data``
308