xref: /dpdk/app/test/test_timer.c (revision ff708facfcbf42f3dcb3c62d82ecd93e7b8c2506)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "test.h"
35 
36 /*
37  * Timer
38  * =====
39  *
40  * #. Stress test 1.
41  *
42  *    The objective of the timer stress tests is to check that there are no
43  *    race conditions in list and status management. This test launches,
44  *    resets and stops the timer very often on many cores at the same
45  *    time.
46  *
47  *    - Only one timer is used for this test.
48  *    - On each core, the rte_timer_manage() function is called from the main
49  *      loop every 3 microseconds.
50  *    - In the main loop, the timer may be reset (randomly, with a
51  *      probability of 0.5 %) 100 microseconds later on a random core, or
52  *      stopped (with a probability of 0.5 % also).
53  *    - In callback, the timer is can be reset (randomly, with a
54  *      probability of 0.5 %) 100 microseconds later on the same core or
55  *      on another core (same probability), or stopped (same
56  *      probability).
57  *
58  * # Stress test 2.
59  *
60  *    The objective of this test is similar to the first in that it attempts
61  *    to find if there are any race conditions in the timer library. However,
62  *    it is less complex in terms of operations performed and duration, as it
63  *    is designed to have a predictable outcome that can be tested.
64  *
65  *    - A set of timers is initialized for use by the test
66  *    - All cores then simultaneously are set to schedule all the timers at
67  *      the same time, so conflicts should occur.
68  *    - Then there is a delay while we wait for the timers to expire
69  *    - Then the master lcore calls timer_manage() and we check that all
70  *      timers have had their callbacks called exactly once - no more no less.
71  *    - Then we repeat the process, except after setting up the timers, we have
72  *      all cores randomly reschedule them.
73  *    - Again we check that the expected number of callbacks has occurred when
74  *      we call timer-manage.
75  *
76  * #. Basic test.
77  *
78  *    This test performs basic functional checks of the timers. The test
79  *    uses four different timers that are loaded and stopped under
80  *    specific conditions in specific contexts.
81  *
82  *    - Four timers are used for this test.
83  *    - On each core, the rte_timer_manage() function is called from main loop
84  *      every 3 microseconds.
85  *
86  *    The autotest python script checks that the behavior is correct:
87  *
88  *    - timer0
89  *
90  *      - At initialization, timer0 is loaded by the master core, on master core
91  *        in "single" mode (time = 1 second).
92  *      - In the first 19 callbacks, timer0 is reloaded on the same core,
93  *        then, it is explicitly stopped at the 20th call.
94  *      - At t=25s, timer0 is reloaded once by timer2.
95  *
96  *    - timer1
97  *
98  *      - At initialization, timer1 is loaded by the master core, on the
99  *        master core in "single" mode (time = 2 seconds).
100  *      - In the first 9 callbacks, timer1 is reloaded on another
101  *        core. After the 10th callback, timer1 is not reloaded anymore.
102  *
103  *    - timer2
104  *
105  *      - At initialization, timer2 is loaded by the master core, on the
106  *        master core in "periodical" mode (time = 1 second).
107  *      - In the callback, when t=25s, it stops timer3 and reloads timer0
108  *        on the current core.
109  *
110  *    - timer3
111  *
112  *      - At initialization, timer3 is loaded by the master core, on
113  *        another core in "periodical" mode (time = 1 second).
114  *      - It is stopped at t=25s by timer2.
115  */
116 
117 #include <stdio.h>
118 #include <stdarg.h>
119 #include <string.h>
120 #include <stdlib.h>
121 #include <stdint.h>
122 #include <inttypes.h>
123 #include <sys/queue.h>
124 #include <math.h>
125 
126 #include <rte_common.h>
127 #include <rte_log.h>
128 #include <rte_memory.h>
129 #include <rte_memzone.h>
130 #include <rte_launch.h>
131 #include <rte_cycles.h>
132 #include <rte_eal.h>
133 #include <rte_per_lcore.h>
134 #include <rte_lcore.h>
135 #include <rte_atomic.h>
136 #include <rte_timer.h>
137 #include <rte_random.h>
138 #include <rte_malloc.h>
139 
140 
141 #define TEST_DURATION_S 20 /* in seconds */
142 #define NB_TIMER 4
143 
144 #define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
145 
146 static volatile uint64_t end_time;
147 
148 struct mytimerinfo {
149 	struct rte_timer tim;
150 	unsigned id;
151 	unsigned count;
152 };
153 
154 static struct mytimerinfo mytiminfo[NB_TIMER];
155 
156 static void timer_basic_cb(struct rte_timer *tim, void *arg);
157 
158 static void
159 mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
160 	      enum rte_timer_type type, unsigned tim_lcore,
161 	      rte_timer_cb_t fct)
162 {
163 	rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
164 			     fct, timinfo);
165 }
166 
167 /* timer callback for stress tests */
168 static void
169 timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
170 		__attribute__((unused)) void *arg)
171 {
172 	long r;
173 	unsigned lcore_id = rte_lcore_id();
174 	uint64_t hz = rte_get_timer_hz();
175 
176 	if (rte_timer_pending(tim))
177 		return;
178 
179 	r = rte_rand();
180 	if ((r & 0xff) == 0) {
181 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
182 			      timer_stress_cb);
183 	}
184 	else if ((r & 0xff) == 1) {
185 		mytimer_reset(&mytiminfo[0], hz, SINGLE,
186 			      rte_get_next_lcore(lcore_id, 0, 1),
187 			      timer_stress_cb);
188 	}
189 	else if ((r & 0xff) == 2) {
190 		rte_timer_stop(&mytiminfo[0].tim);
191 	}
192 }
193 
194 static int
195 timer_stress_main_loop(__attribute__((unused)) void *arg)
196 {
197 	uint64_t hz = rte_get_timer_hz();
198 	unsigned lcore_id = rte_lcore_id();
199 	uint64_t cur_time;
200 	int64_t diff = 0;
201 	long r;
202 
203 	while (diff >= 0) {
204 
205 		/* call the timer handler on each core */
206 		rte_timer_manage();
207 
208 		/* simulate the processing of a packet
209 		 * (1 us = 2000 cycles at 2 Ghz) */
210 		rte_delay_us(1);
211 
212 		/* randomly stop or reset timer */
213 		r = rte_rand();
214 		lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
215 		if ((r & 0xff) == 0) {
216 			/* 100 us */
217 			mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
218 				      timer_stress_cb);
219 		}
220 		else if ((r & 0xff) == 1) {
221 			rte_timer_stop_sync(&mytiminfo[0].tim);
222 		}
223 		cur_time = rte_get_timer_cycles();
224 		diff = end_time - cur_time;
225 	}
226 
227 	lcore_id = rte_lcore_id();
228 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
229 
230 	return 0;
231 }
232 
233 static volatile int cb_count = 0;
234 
235 /* callback for second stress test. will only be called
236  * on master lcore */
237 static void
238 timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
239 {
240 	cb_count++;
241 }
242 
243 #define NB_STRESS2_TIMERS 8192
244 
245 static int
246 timer_stress2_main_loop(__attribute__((unused)) void *arg)
247 {
248 	static struct rte_timer *timers;
249 	int i, ret;
250 	static volatile int ready = 0;
251 	uint64_t delay = rte_get_timer_hz() / 4;
252 	unsigned lcore_id = rte_lcore_id();
253 	int32_t my_collisions = 0;
254 	static rte_atomic32_t collisions = RTE_ATOMIC32_INIT(0);
255 
256 	if (lcore_id == rte_get_master_lcore()) {
257 		cb_count = 0;
258 		timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
259 		if (timers == NULL) {
260 			printf("Test Failed\n");
261 			printf("- Cannot allocate memory for timers\n" );
262 			return -1;
263 		}
264 		for (i = 0; i < NB_STRESS2_TIMERS; i++)
265 			rte_timer_init(&timers[i]);
266 		ready = 1;
267 	} else {
268 		while (!ready)
269 			rte_pause();
270 	}
271 
272 	/* have all cores schedule all timers on master lcore */
273 	for (i = 0; i < NB_STRESS2_TIMERS; i++) {
274 		ret = rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
275 				timer_stress2_cb, NULL);
276 		/* there will be collisions when multiple cores simultaneously
277 		 * configure the same timers */
278 		if (ret != 0)
279 			my_collisions++;
280 	}
281 	if (my_collisions != 0)
282 		rte_atomic32_add(&collisions, my_collisions);
283 
284 	ready = 0;
285 	rte_delay_ms(500);
286 
287 	/* now check that we get the right number of callbacks */
288 	if (lcore_id == rte_get_master_lcore()) {
289 		my_collisions = rte_atomic32_read(&collisions);
290 		if (my_collisions != 0)
291 			printf("- %d timer reset collisions (OK)\n", my_collisions);
292 		rte_timer_manage();
293 		if (cb_count != NB_STRESS2_TIMERS) {
294 			printf("Test Failed\n");
295 			printf("- Stress test 2, part 1 failed\n");
296 			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
297 					cb_count);
298 			return -1;
299 		}
300 		ready  = 1;
301 	} else {
302 		while (!ready)
303 			rte_pause();
304 	}
305 
306 	/* now test again, just stop and restart timers at random after init*/
307 	for (i = 0; i < NB_STRESS2_TIMERS; i++)
308 		rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
309 				timer_stress2_cb, NULL);
310 	cb_count = 0;
311 
312 	/* pick random timer to reset, stopping them first half the time */
313 	for (i = 0; i < 100000; i++) {
314 		int r = rand() % NB_STRESS2_TIMERS;
315 		if (i % 2)
316 			rte_timer_stop(&timers[r]);
317 		rte_timer_reset(&timers[r], delay, SINGLE, rte_get_master_lcore(),
318 				timer_stress2_cb, NULL);
319 	}
320 
321 	rte_delay_ms(500);
322 
323 	/* now check that we get the right number of callbacks */
324 	if (lcore_id == rte_get_master_lcore()) {
325 		rte_timer_manage();
326 
327 		/* clean up statics, in case we run again */
328 		rte_free(timers);
329 		timers = NULL;
330 		ready = 0;
331 		rte_atomic32_set(&collisions, 0);
332 
333 		if (cb_count != NB_STRESS2_TIMERS) {
334 			printf("Test Failed\n");
335 			printf("- Stress test 2, part 2 failed\n");
336 			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
337 					cb_count);
338 			return -1;
339 		}
340 		printf("Test OK\n");
341 	}
342 
343 	return 0;
344 }
345 
346 /* timer callback for basic tests */
347 static void
348 timer_basic_cb(struct rte_timer *tim, void *arg)
349 {
350 	struct mytimerinfo *timinfo = arg;
351 	uint64_t hz = rte_get_timer_hz();
352 	unsigned lcore_id = rte_lcore_id();
353 	uint64_t cur_time = rte_get_timer_cycles();
354 
355 	if (rte_timer_pending(tim))
356 		return;
357 
358 	timinfo->count ++;
359 
360 	RTE_LOG(INFO, TESTTIMER,
361 		"%"PRIu64": callback id=%u count=%u on core %u\n",
362 		cur_time, timinfo->id, timinfo->count, lcore_id);
363 
364 	/* reload timer 0 on same core */
365 	if (timinfo->id == 0 && timinfo->count < 20) {
366 		mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
367 		return;
368 	}
369 
370 	/* reload timer 1 on next core */
371 	if (timinfo->id == 1 && timinfo->count < 10) {
372 		mytimer_reset(timinfo, hz*2, SINGLE,
373 			      rte_get_next_lcore(lcore_id, 0, 1),
374 			      timer_basic_cb);
375 		return;
376 	}
377 
378 	/* Explicitelly stop timer 0. Once stop() called, we can even
379 	 * erase the content of the structure: it is not referenced
380 	 * anymore by any code (in case of dynamic structure, it can
381 	 * be freed) */
382 	if (timinfo->id == 0 && timinfo->count == 20) {
383 
384 		/* stop_sync() is not needed, because we know that the
385 		 * status of timer is only modified by this core */
386 		rte_timer_stop(tim);
387 		memset(tim, 0xAA, sizeof(struct rte_timer));
388 		return;
389 	}
390 
391 	/* stop timer3, and restart a new timer0 (it was removed 5
392 	 * seconds ago) for a single shot */
393 	if (timinfo->id == 2 && timinfo->count == 25) {
394 		rte_timer_stop_sync(&mytiminfo[3].tim);
395 
396 		/* need to reinit because structure was erased with 0xAA */
397 		rte_timer_init(&mytiminfo[0].tim);
398 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
399 			      timer_basic_cb);
400 	}
401 }
402 
403 static int
404 timer_basic_main_loop(__attribute__((unused)) void *arg)
405 {
406 	uint64_t hz = rte_get_timer_hz();
407 	unsigned lcore_id = rte_lcore_id();
408 	uint64_t cur_time;
409 	int64_t diff = 0;
410 
411 	/* launch all timers on core 0 */
412 	if (lcore_id == rte_get_master_lcore()) {
413 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
414 			      timer_basic_cb);
415 		mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
416 			      timer_basic_cb);
417 		mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
418 			      timer_basic_cb);
419 		mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
420 			      rte_get_next_lcore(lcore_id, 0, 1),
421 			      timer_basic_cb);
422 	}
423 
424 	while (diff >= 0) {
425 
426 		/* call the timer handler on each core */
427 		rte_timer_manage();
428 
429 		/* simulate the processing of a packet
430 		 * (3 us = 6000 cycles at 2 Ghz) */
431 		rte_delay_us(3);
432 
433 		cur_time = rte_get_timer_cycles();
434 		diff = end_time - cur_time;
435 	}
436 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
437 
438 	return 0;
439 }
440 
441 static int
442 timer_sanity_check(void)
443 {
444 #ifdef RTE_LIBEAL_USE_HPET
445 	if (eal_timer_source != EAL_TIMER_HPET) {
446 		printf("Not using HPET, can't sanity check timer sources\n");
447 		return 0;
448 	}
449 
450 	const uint64_t t_hz = rte_get_tsc_hz();
451 	const uint64_t h_hz = rte_get_hpet_hz();
452 	printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
453 
454 	const uint64_t tsc_start = rte_get_tsc_cycles();
455 	const uint64_t hpet_start = rte_get_hpet_cycles();
456 	rte_delay_ms(100); /* delay 1/10 second */
457 	const uint64_t tsc_end = rte_get_tsc_cycles();
458 	const uint64_t hpet_end = rte_get_hpet_cycles();
459 	printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
460 			tsc_end-tsc_start, hpet_end-hpet_start);
461 
462 	const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
463 	const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
464 	/* get the percentage that the times differ by */
465 	const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
466 	printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
467 
468 	printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
469 			time_diff);
470 	if (time_diff > 0.1) {
471 		printf("Error times differ by >0.1%%");
472 		return -1;
473 	}
474 #endif
475 	return 0;
476 }
477 
478 static int
479 test_timer(void)
480 {
481 	unsigned i;
482 	uint64_t cur_time;
483 	uint64_t hz;
484 
485 	/* sanity check our timer sources and timer config values */
486 	if (timer_sanity_check() < 0) {
487 		printf("Timer sanity checks failed\n");
488 		return -1;
489 	}
490 
491 	if (rte_lcore_count() < 2) {
492 		printf("not enough lcores for this test\n");
493 		return -1;
494 	}
495 
496 	/* init timer */
497 	for (i=0; i<NB_TIMER; i++) {
498 		memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
499 		mytiminfo[i].id = i;
500 		rte_timer_init(&mytiminfo[i].tim);
501 	}
502 
503 	/* calculate the "end of test" time */
504 	cur_time = rte_get_timer_cycles();
505 	hz = rte_get_timer_hz();
506 	end_time = cur_time + (hz * TEST_DURATION_S);
507 
508 	/* start other cores */
509 	printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
510 	rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
511 	rte_eal_mp_wait_lcore();
512 
513 	/* stop timer 0 used for stress test */
514 	rte_timer_stop_sync(&mytiminfo[0].tim);
515 
516 	/* run a second, slightly different set of stress tests */
517 	printf("Start timer stress tests 2\n");
518 	rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
519 	rte_eal_mp_wait_lcore();
520 
521 	/* calculate the "end of test" time */
522 	cur_time = rte_get_timer_cycles();
523 	hz = rte_get_timer_hz();
524 	end_time = cur_time + (hz * TEST_DURATION_S);
525 
526 	/* start other cores */
527 	printf("Start timer basic tests (%d seconds)\n", TEST_DURATION_S);
528 	rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
529 	rte_eal_mp_wait_lcore();
530 
531 	/* stop all timers */
532 	for (i=0; i<NB_TIMER; i++) {
533 		rte_timer_stop_sync(&mytiminfo[i].tim);
534 	}
535 
536 	rte_timer_dump_stats(stdout);
537 
538 	return 0;
539 }
540 
541 static struct test_command timer_cmd = {
542 	.command = "timer_autotest",
543 	.callback = test_timer,
544 };
545 REGISTER_TEST_COMMAND(timer_cmd);
546