xref: /dpdk/app/test/test_timer.c (revision fc1f2750a3ec6da919e3c86e59d56f34ec97154b)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "test.h"
35 
36 /*
37  * Timer
38  * =====
39  *
40  * #. Stress test 1.
41  *
42  *    The objective of the timer stress tests is to check that there are no
43  *    race conditions in list and status management. This test launches,
44  *    resets and stops the timer very often on many cores at the same
45  *    time.
46  *
47  *    - Only one timer is used for this test.
48  *    - On each core, the rte_timer_manage() function is called from the main
49  *      loop every 3 microseconds.
50  *    - In the main loop, the timer may be reset (randomly, with a
51  *      probability of 0.5 %) 100 microseconds later on a random core, or
52  *      stopped (with a probability of 0.5 % also).
53  *    - In callback, the timer is can be reset (randomly, with a
54  *      probability of 0.5 %) 100 microseconds later on the same core or
55  *      on another core (same probability), or stopped (same
56  *      probability).
57  *
58  * # Stress test 2.
59  *
60  *    The objective of this test is similar to the first in that it attempts
61  *    to find if there are any race conditions in the timer library. However,
62  *    it is less complex in terms of operations performed and duration, as it
63  *    is designed to have a predictable outcome that can be tested.
64  *
65  *    - A set of timers is initialized for use by the test
66  *    - All cores then simultaneously are set to schedule all the timers at
67  *      the same time, so conflicts should occur.
68  *    - Then there is a delay while we wait for the timers to expire
69  *    - Then the master lcore calls timer_manage() and we check that all
70  *      timers have had their callbacks called exactly once - no more no less.
71  *    - Then we repeat the process, except after setting up the timers, we have
72  *      all cores randomly reschedule them.
73  *    - Again we check that the expected number of callbacks has occurred when
74  *      we call timer-manage.
75  *
76  * #. Basic test.
77  *
78  *    This test performs basic functional checks of the timers. The test
79  *    uses four different timers that are loaded and stopped under
80  *    specific conditions in specific contexts.
81  *
82  *    - Four timers are used for this test.
83  *    - On each core, the rte_timer_manage() function is called from main loop
84  *      every 3 microseconds.
85  *
86  *    The autotest python script checks that the behavior is correct:
87  *
88  *    - timer0
89  *
90  *      - At initialization, timer0 is loaded by the master core, on master core
91  *        in "single" mode (time = 1 second).
92  *      - In the first 19 callbacks, timer0 is reloaded on the same core,
93  *        then, it is explicitly stopped at the 20th call.
94  *      - At t=25s, timer0 is reloaded once by timer2.
95  *
96  *    - timer1
97  *
98  *      - At initialization, timer1 is loaded by the master core, on the
99  *        master core in "single" mode (time = 2 seconds).
100  *      - In the first 9 callbacks, timer1 is reloaded on another
101  *        core. After the 10th callback, timer1 is not reloaded anymore.
102  *
103  *    - timer2
104  *
105  *      - At initialization, timer2 is loaded by the master core, on the
106  *        master core in "periodical" mode (time = 1 second).
107  *      - In the callback, when t=25s, it stops timer3 and reloads timer0
108  *        on the current core.
109  *
110  *    - timer3
111  *
112  *      - At initialization, timer3 is loaded by the master core, on
113  *        another core in "periodical" mode (time = 1 second).
114  *      - It is stopped at t=25s by timer2.
115  */
116 
117 #include <stdio.h>
118 #include <stdarg.h>
119 #include <string.h>
120 #include <stdlib.h>
121 #include <stdint.h>
122 #include <inttypes.h>
123 #include <sys/queue.h>
124 #include <math.h>
125 
126 #include <rte_common.h>
127 #include <rte_log.h>
128 #include <rte_memory.h>
129 #include <rte_memzone.h>
130 #include <rte_launch.h>
131 #include <rte_cycles.h>
132 #include <rte_tailq.h>
133 #include <rte_eal.h>
134 #include <rte_per_lcore.h>
135 #include <rte_lcore.h>
136 #include <rte_atomic.h>
137 #include <rte_timer.h>
138 #include <rte_random.h>
139 #include <rte_malloc.h>
140 
141 
142 #define TEST_DURATION_S 20 /* in seconds */
143 #define NB_TIMER 4
144 
145 #define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
146 
147 static volatile uint64_t end_time;
148 
149 struct mytimerinfo {
150 	struct rte_timer tim;
151 	unsigned id;
152 	unsigned count;
153 };
154 
155 static struct mytimerinfo mytiminfo[NB_TIMER];
156 
157 static void timer_basic_cb(struct rte_timer *tim, void *arg);
158 
159 static void
160 mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
161 	      enum rte_timer_type type, unsigned tim_lcore,
162 	      rte_timer_cb_t fct)
163 {
164 	rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
165 			     fct, timinfo);
166 }
167 
168 /* timer callback for stress tests */
169 static void
170 timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
171 		__attribute__((unused)) void *arg)
172 {
173 	long r;
174 	unsigned lcore_id = rte_lcore_id();
175 	uint64_t hz = rte_get_timer_hz();
176 
177 	if (rte_timer_pending(tim))
178 		return;
179 
180 	r = rte_rand();
181 	if ((r & 0xff) == 0) {
182 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
183 			      timer_stress_cb);
184 	}
185 	else if ((r & 0xff) == 1) {
186 		mytimer_reset(&mytiminfo[0], hz, SINGLE,
187 			      rte_get_next_lcore(lcore_id, 0, 1),
188 			      timer_stress_cb);
189 	}
190 	else if ((r & 0xff) == 2) {
191 		rte_timer_stop(&mytiminfo[0].tim);
192 	}
193 }
194 
195 static int
196 timer_stress_main_loop(__attribute__((unused)) void *arg)
197 {
198 	uint64_t hz = rte_get_timer_hz();
199 	unsigned lcore_id = rte_lcore_id();
200 	uint64_t cur_time;
201 	int64_t diff = 0;
202 	long r;
203 
204 	while (diff >= 0) {
205 
206 		/* call the timer handler on each core */
207 		rte_timer_manage();
208 
209 		/* simulate the processing of a packet
210 		 * (1 us = 2000 cycles at 2 Ghz) */
211 		rte_delay_us(1);
212 
213 		/* randomly stop or reset timer */
214 		r = rte_rand();
215 		lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
216 		if ((r & 0xff) == 0) {
217 			/* 100 us */
218 			mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
219 				      timer_stress_cb);
220 		}
221 		else if ((r & 0xff) == 1) {
222 			rte_timer_stop_sync(&mytiminfo[0].tim);
223 		}
224 		cur_time = rte_get_timer_cycles();
225 		diff = end_time - cur_time;
226 	}
227 
228 	lcore_id = rte_lcore_id();
229 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
230 
231 	return 0;
232 }
233 
234 static volatile int cb_count = 0;
235 
236 /* callback for second stress test. will only be called
237  * on master lcore */
238 static void
239 timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
240 {
241 	cb_count++;
242 }
243 
244 #define NB_STRESS2_TIMERS 8192
245 
246 static int
247 timer_stress2_main_loop(__attribute__((unused)) void *arg)
248 {
249 	static struct rte_timer *timers;
250 	int i;
251 	static volatile int ready = 0;
252 	uint64_t delay = rte_get_timer_hz() / 4;
253 	unsigned lcore_id = rte_lcore_id();
254 
255 	if (lcore_id == rte_get_master_lcore()) {
256 		timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
257 		if (timers == NULL) {
258 			printf("Test Failed\n");
259 			printf("- Cannot allocate memory for timers\n" );
260 			return -1;
261 		}
262 		for (i = 0; i < NB_STRESS2_TIMERS; i++)
263 			rte_timer_init(&timers[i]);
264 		ready = 1;
265 	} else {
266 		while (!ready)
267 			rte_pause();
268 	}
269 
270 	/* have all cores schedule all timers on master lcore */
271 	for (i = 0; i < NB_STRESS2_TIMERS; i++)
272 		rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
273 				timer_stress2_cb, NULL);
274 
275 	ready = 0;
276 	rte_delay_ms(500);
277 
278 	/* now check that we get the right number of callbacks */
279 	if (lcore_id == rte_get_master_lcore()) {
280 		rte_timer_manage();
281 		if (cb_count != NB_STRESS2_TIMERS) {
282 			printf("Test Failed\n");
283 			printf("- Stress test 2, part 1 failed\n");
284 			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
285 					cb_count);
286 			return -1;
287 		}
288 		ready  = 1;
289 	} else {
290 		while (!ready)
291 			rte_pause();
292 	}
293 
294 	/* now test again, just stop and restart timers at random after init*/
295 	for (i = 0; i < NB_STRESS2_TIMERS; i++)
296 		rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
297 				timer_stress2_cb, NULL);
298 	cb_count = 0;
299 
300 	/* pick random timer to reset, stopping them first half the time */
301 	for (i = 0; i < 100000; i++) {
302 		int r = rand() % NB_STRESS2_TIMERS;
303 		if (i % 2)
304 			rte_timer_stop(&timers[r]);
305 		rte_timer_reset(&timers[r], delay, SINGLE, rte_get_master_lcore(),
306 				timer_stress2_cb, NULL);
307 	}
308 
309 	rte_delay_ms(500);
310 
311 	/* now check that we get the right number of callbacks */
312 	if (lcore_id == rte_get_master_lcore()) {
313 		rte_timer_manage();
314 		if (cb_count != NB_STRESS2_TIMERS) {
315 			printf("Test Failed\n");
316 			printf("- Stress test 2, part 2 failed\n");
317 			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
318 					cb_count);
319 			return -1;
320 		}
321 		printf("Test OK\n");
322 	}
323 
324 	return 0;
325 }
326 
327 /* timer callback for basic tests */
328 static void
329 timer_basic_cb(struct rte_timer *tim, void *arg)
330 {
331 	struct mytimerinfo *timinfo = arg;
332 	uint64_t hz = rte_get_timer_hz();
333 	unsigned lcore_id = rte_lcore_id();
334 	uint64_t cur_time = rte_get_timer_cycles();
335 
336 	if (rte_timer_pending(tim))
337 		return;
338 
339 	timinfo->count ++;
340 
341 	RTE_LOG(INFO, TESTTIMER,
342 		"%"PRIu64": callback id=%u count=%u on core %u\n",
343 		cur_time, timinfo->id, timinfo->count, lcore_id);
344 
345 	/* reload timer 0 on same core */
346 	if (timinfo->id == 0 && timinfo->count < 20) {
347 		mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
348 		return;
349 	}
350 
351 	/* reload timer 1 on next core */
352 	if (timinfo->id == 1 && timinfo->count < 10) {
353 		mytimer_reset(timinfo, hz*2, SINGLE,
354 			      rte_get_next_lcore(lcore_id, 0, 1),
355 			      timer_basic_cb);
356 		return;
357 	}
358 
359 	/* Explicitelly stop timer 0. Once stop() called, we can even
360 	 * erase the content of the structure: it is not referenced
361 	 * anymore by any code (in case of dynamic structure, it can
362 	 * be freed) */
363 	if (timinfo->id == 0 && timinfo->count == 20) {
364 
365 		/* stop_sync() is not needed, because we know that the
366 		 * status of timer is only modified by this core */
367 		rte_timer_stop(tim);
368 		memset(tim, 0xAA, sizeof(struct rte_timer));
369 		return;
370 	}
371 
372 	/* stop timer3, and restart a new timer0 (it was removed 5
373 	 * seconds ago) for a single shot */
374 	if (timinfo->id == 2 && timinfo->count == 25) {
375 		rte_timer_stop_sync(&mytiminfo[3].tim);
376 
377 		/* need to reinit because structure was erased with 0xAA */
378 		rte_timer_init(&mytiminfo[0].tim);
379 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
380 			      timer_basic_cb);
381 	}
382 }
383 
384 static int
385 timer_basic_main_loop(__attribute__((unused)) void *arg)
386 {
387 	uint64_t hz = rte_get_timer_hz();
388 	unsigned lcore_id = rte_lcore_id();
389 	uint64_t cur_time;
390 	int64_t diff = 0;
391 
392 	/* launch all timers on core 0 */
393 	if (lcore_id == rte_get_master_lcore()) {
394 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
395 			      timer_basic_cb);
396 		mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
397 			      timer_basic_cb);
398 		mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
399 			      timer_basic_cb);
400 		mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
401 			      rte_get_next_lcore(lcore_id, 0, 1),
402 			      timer_basic_cb);
403 	}
404 
405 	while (diff >= 0) {
406 
407 		/* call the timer handler on each core */
408 		rte_timer_manage();
409 
410 		/* simulate the processing of a packet
411 		 * (3 us = 6000 cycles at 2 Ghz) */
412 		rte_delay_us(3);
413 
414 		cur_time = rte_get_timer_cycles();
415 		diff = end_time - cur_time;
416 	}
417 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
418 
419 	return 0;
420 }
421 
422 static int
423 timer_sanity_check(void)
424 {
425 #ifdef RTE_LIBEAL_USE_HPET
426 	if (eal_timer_source != EAL_TIMER_HPET) {
427 		printf("Not using HPET, can't sanity check timer sources\n");
428 		return 0;
429 	}
430 
431 	const uint64_t t_hz = rte_get_tsc_hz();
432 	const uint64_t h_hz = rte_get_hpet_hz();
433 	printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
434 
435 	const uint64_t tsc_start = rte_get_tsc_cycles();
436 	const uint64_t hpet_start = rte_get_hpet_cycles();
437 	rte_delay_ms(100); /* delay 1/10 second */
438 	const uint64_t tsc_end = rte_get_tsc_cycles();
439 	const uint64_t hpet_end = rte_get_hpet_cycles();
440 	printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
441 			tsc_end-tsc_start, hpet_end-hpet_start);
442 
443 	const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
444 	const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
445 	/* get the percentage that the times differ by */
446 	const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
447 	printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
448 
449 	printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
450 			time_diff);
451 	if (time_diff > 0.1) {
452 		printf("Error times differ by >0.1%%");
453 		return -1;
454 	}
455 #endif
456 	return 0;
457 }
458 
459 static int
460 test_timer(void)
461 {
462 	unsigned i;
463 	uint64_t cur_time;
464 	uint64_t hz;
465 
466 	/* sanity check our timer sources and timer config values */
467 	if (timer_sanity_check() < 0) {
468 		printf("Timer sanity checks failed\n");
469 		return -1;
470 	}
471 
472 	if (rte_lcore_count() < 2) {
473 		printf("not enough lcores for this test\n");
474 		return -1;
475 	}
476 
477 	/* init timer */
478 	for (i=0; i<NB_TIMER; i++) {
479 		memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
480 		mytiminfo[i].id = i;
481 		rte_timer_init(&mytiminfo[i].tim);
482 	}
483 
484 	/* calculate the "end of test" time */
485 	cur_time = rte_get_timer_cycles();
486 	hz = rte_get_timer_hz();
487 	end_time = cur_time + (hz * TEST_DURATION_S);
488 
489 	/* start other cores */
490 	printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
491 	rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
492 	rte_eal_mp_wait_lcore();
493 
494 	/* stop timer 0 used for stress test */
495 	rte_timer_stop_sync(&mytiminfo[0].tim);
496 
497 	/* run a second, slightly different set of stress tests */
498 	printf("Start timer stress tests 2\n");
499 	rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
500 	rte_eal_mp_wait_lcore();
501 
502 	/* calculate the "end of test" time */
503 	cur_time = rte_get_timer_cycles();
504 	hz = rte_get_timer_hz();
505 	end_time = cur_time + (hz * TEST_DURATION_S);
506 
507 	/* start other cores */
508 	printf("Start timer basic tests (%d seconds)\n", TEST_DURATION_S);
509 	rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
510 	rte_eal_mp_wait_lcore();
511 
512 	/* stop all timers */
513 	for (i=0; i<NB_TIMER; i++) {
514 		rte_timer_stop_sync(&mytiminfo[i].tim);
515 	}
516 
517 	rte_timer_dump_stats(stdout);
518 
519 	return 0;
520 }
521 
522 static struct test_command timer_cmd = {
523 	.command = "timer_autotest",
524 	.callback = test_timer,
525 };
526 REGISTER_TEST_COMMAND(timer_cmd);
527