xref: /dpdk/app/test/test_timer.c (revision edab33b1c01d508fdd934c06ee27f84250d2749a)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "test.h"
35 
36 /*
37  * Timer
38  * =====
39  *
40  * #. Stress test 1.
41  *
42  *    The objective of the timer stress tests is to check that there are no
43  *    race conditions in list and status management. This test launches,
44  *    resets and stops the timer very often on many cores at the same
45  *    time.
46  *
47  *    - Only one timer is used for this test.
48  *    - On each core, the rte_timer_manage() function is called from the main
49  *      loop every 3 microseconds.
50  *    - In the main loop, the timer may be reset (randomly, with a
51  *      probability of 0.5 %) 100 microseconds later on a random core, or
52  *      stopped (with a probability of 0.5 % also).
53  *    - In callback, the timer is can be reset (randomly, with a
54  *      probability of 0.5 %) 100 microseconds later on the same core or
55  *      on another core (same probability), or stopped (same
56  *      probability).
57  *
58  * # Stress test 2.
59  *
60  *    The objective of this test is similar to the first in that it attempts
61  *    to find if there are any race conditions in the timer library. However,
62  *    it is less complex in terms of operations performed and duration, as it
63  *    is designed to have a predictable outcome that can be tested.
64  *
65  *    - A set of timers is initialized for use by the test
66  *    - All cores then simultaneously are set to schedule all the timers at
67  *      the same time, so conflicts should occur.
68  *    - Then there is a delay while we wait for the timers to expire
69  *    - Then the master lcore calls timer_manage() and we check that all
70  *      timers have had their callbacks called exactly once - no more no less.
71  *    - Then we repeat the process, except after setting up the timers, we have
72  *      all cores randomly reschedule them.
73  *    - Again we check that the expected number of callbacks has occurred when
74  *      we call timer-manage.
75  *
76  * #. Basic test.
77  *
78  *    This test performs basic functional checks of the timers. The test
79  *    uses four different timers that are loaded and stopped under
80  *    specific conditions in specific contexts.
81  *
82  *    - Four timers are used for this test.
83  *    - On each core, the rte_timer_manage() function is called from main loop
84  *      every 3 microseconds.
85  *
86  *    The autotest python script checks that the behavior is correct:
87  *
88  *    - timer0
89  *
90  *      - At initialization, timer0 is loaded by the master core, on master core
91  *        in "single" mode (time = 1 second).
92  *      - In the first 19 callbacks, timer0 is reloaded on the same core,
93  *        then, it is explicitly stopped at the 20th call.
94  *      - At t=25s, timer0 is reloaded once by timer2.
95  *
96  *    - timer1
97  *
98  *      - At initialization, timer1 is loaded by the master core, on the
99  *        master core in "single" mode (time = 2 seconds).
100  *      - In the first 9 callbacks, timer1 is reloaded on another
101  *        core. After the 10th callback, timer1 is not reloaded anymore.
102  *
103  *    - timer2
104  *
105  *      - At initialization, timer2 is loaded by the master core, on the
106  *        master core in "periodical" mode (time = 1 second).
107  *      - In the callback, when t=25s, it stops timer3 and reloads timer0
108  *        on the current core.
109  *
110  *    - timer3
111  *
112  *      - At initialization, timer3 is loaded by the master core, on
113  *        another core in "periodical" mode (time = 1 second).
114  *      - It is stopped at t=25s by timer2.
115  */
116 
117 #include <stdio.h>
118 #include <stdarg.h>
119 #include <string.h>
120 #include <stdlib.h>
121 #include <stdint.h>
122 #include <inttypes.h>
123 #include <sys/queue.h>
124 #include <math.h>
125 
126 #include <rte_common.h>
127 #include <rte_log.h>
128 #include <rte_memory.h>
129 #include <rte_memzone.h>
130 #include <rte_launch.h>
131 #include <rte_cycles.h>
132 #include <rte_tailq.h>
133 #include <rte_eal.h>
134 #include <rte_per_lcore.h>
135 #include <rte_lcore.h>
136 #include <rte_atomic.h>
137 #include <rte_timer.h>
138 #include <rte_random.h>
139 #include <rte_malloc.h>
140 
141 
142 #define TEST_DURATION_S 20 /* in seconds */
143 #define NB_TIMER 4
144 
145 #define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
146 
147 static volatile uint64_t end_time;
148 
149 struct mytimerinfo {
150 	struct rte_timer tim;
151 	unsigned id;
152 	unsigned count;
153 };
154 
155 static struct mytimerinfo mytiminfo[NB_TIMER];
156 
157 static void timer_basic_cb(struct rte_timer *tim, void *arg);
158 
159 static void
160 mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
161 	      enum rte_timer_type type, unsigned tim_lcore,
162 	      rte_timer_cb_t fct)
163 {
164 	rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
165 			     fct, timinfo);
166 }
167 
168 /* timer callback for stress tests */
169 static void
170 timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
171 		__attribute__((unused)) void *arg)
172 {
173 	long r;
174 	unsigned lcore_id = rte_lcore_id();
175 	uint64_t hz = rte_get_timer_hz();
176 
177 	if (rte_timer_pending(tim))
178 		return;
179 
180 	r = rte_rand();
181 	if ((r & 0xff) == 0) {
182 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
183 			      timer_stress_cb);
184 	}
185 	else if ((r & 0xff) == 1) {
186 		mytimer_reset(&mytiminfo[0], hz, SINGLE,
187 			      rte_get_next_lcore(lcore_id, 0, 1),
188 			      timer_stress_cb);
189 	}
190 	else if ((r & 0xff) == 2) {
191 		rte_timer_stop(&mytiminfo[0].tim);
192 	}
193 }
194 
195 static int
196 timer_stress_main_loop(__attribute__((unused)) void *arg)
197 {
198 	uint64_t hz = rte_get_timer_hz();
199 	unsigned lcore_id = rte_lcore_id();
200 	uint64_t cur_time;
201 	int64_t diff = 0;
202 	long r;
203 
204 	while (diff >= 0) {
205 
206 		/* call the timer handler on each core */
207 		rte_timer_manage();
208 
209 		/* simulate the processing of a packet
210 		 * (1 us = 2000 cycles at 2 Ghz) */
211 		rte_delay_us(1);
212 
213 		/* randomly stop or reset timer */
214 		r = rte_rand();
215 		lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
216 		if ((r & 0xff) == 0) {
217 			/* 100 us */
218 			mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
219 				      timer_stress_cb);
220 		}
221 		else if ((r & 0xff) == 1) {
222 			rte_timer_stop_sync(&mytiminfo[0].tim);
223 		}
224 		cur_time = rte_get_timer_cycles();
225 		diff = end_time - cur_time;
226 	}
227 
228 	lcore_id = rte_lcore_id();
229 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
230 
231 	return 0;
232 }
233 
234 static volatile int cb_count = 0;
235 
236 /* callback for second stress test. will only be called
237  * on master lcore */
238 static void
239 timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
240 {
241 	cb_count++;
242 }
243 
244 #define NB_STRESS2_TIMERS 8192
245 
246 static int
247 timer_stress2_main_loop(__attribute__((unused)) void *arg)
248 {
249 	static struct rte_timer *timers;
250 	int i, ret;
251 	static volatile int ready = 0;
252 	uint64_t delay = rte_get_timer_hz() / 4;
253 	unsigned lcore_id = rte_lcore_id();
254 	int32_t my_collisions = 0;
255 	static rte_atomic32_t collisions = RTE_ATOMIC32_INIT(0);
256 
257 	if (lcore_id == rte_get_master_lcore()) {
258 		cb_count = 0;
259 		timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
260 		if (timers == NULL) {
261 			printf("Test Failed\n");
262 			printf("- Cannot allocate memory for timers\n" );
263 			return -1;
264 		}
265 		for (i = 0; i < NB_STRESS2_TIMERS; i++)
266 			rte_timer_init(&timers[i]);
267 		ready = 1;
268 	} else {
269 		while (!ready)
270 			rte_pause();
271 	}
272 
273 	/* have all cores schedule all timers on master lcore */
274 	for (i = 0; i < NB_STRESS2_TIMERS; i++) {
275 		ret = rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
276 				timer_stress2_cb, NULL);
277 		/* there will be collisions when multiple cores simultaneously
278 		 * configure the same timers */
279 		if (ret != 0)
280 			my_collisions++;
281 	}
282 	if (my_collisions != 0)
283 		rte_atomic32_add(&collisions, my_collisions);
284 
285 	ready = 0;
286 	rte_delay_ms(500);
287 
288 	/* now check that we get the right number of callbacks */
289 	if (lcore_id == rte_get_master_lcore()) {
290 		my_collisions = rte_atomic32_read(&collisions);
291 		if (my_collisions != 0)
292 			printf("- %d timer reset collisions (OK)\n", my_collisions);
293 		rte_timer_manage();
294 		if (cb_count != NB_STRESS2_TIMERS) {
295 			printf("Test Failed\n");
296 			printf("- Stress test 2, part 1 failed\n");
297 			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
298 					cb_count);
299 			return -1;
300 		}
301 		ready  = 1;
302 	} else {
303 		while (!ready)
304 			rte_pause();
305 	}
306 
307 	/* now test again, just stop and restart timers at random after init*/
308 	for (i = 0; i < NB_STRESS2_TIMERS; i++)
309 		rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
310 				timer_stress2_cb, NULL);
311 	cb_count = 0;
312 
313 	/* pick random timer to reset, stopping them first half the time */
314 	for (i = 0; i < 100000; i++) {
315 		int r = rand() % NB_STRESS2_TIMERS;
316 		if (i % 2)
317 			rte_timer_stop(&timers[r]);
318 		rte_timer_reset(&timers[r], delay, SINGLE, rte_get_master_lcore(),
319 				timer_stress2_cb, NULL);
320 	}
321 
322 	rte_delay_ms(500);
323 
324 	/* now check that we get the right number of callbacks */
325 	if (lcore_id == rte_get_master_lcore()) {
326 		rte_timer_manage();
327 
328 		/* clean up statics, in case we run again */
329 		rte_free(timers);
330 		timers = NULL;
331 		ready = 0;
332 		rte_atomic32_set(&collisions, 0);
333 
334 		if (cb_count != NB_STRESS2_TIMERS) {
335 			printf("Test Failed\n");
336 			printf("- Stress test 2, part 2 failed\n");
337 			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
338 					cb_count);
339 			return -1;
340 		}
341 		printf("Test OK\n");
342 	}
343 
344 	return 0;
345 }
346 
347 /* timer callback for basic tests */
348 static void
349 timer_basic_cb(struct rte_timer *tim, void *arg)
350 {
351 	struct mytimerinfo *timinfo = arg;
352 	uint64_t hz = rte_get_timer_hz();
353 	unsigned lcore_id = rte_lcore_id();
354 	uint64_t cur_time = rte_get_timer_cycles();
355 
356 	if (rte_timer_pending(tim))
357 		return;
358 
359 	timinfo->count ++;
360 
361 	RTE_LOG(INFO, TESTTIMER,
362 		"%"PRIu64": callback id=%u count=%u on core %u\n",
363 		cur_time, timinfo->id, timinfo->count, lcore_id);
364 
365 	/* reload timer 0 on same core */
366 	if (timinfo->id == 0 && timinfo->count < 20) {
367 		mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
368 		return;
369 	}
370 
371 	/* reload timer 1 on next core */
372 	if (timinfo->id == 1 && timinfo->count < 10) {
373 		mytimer_reset(timinfo, hz*2, SINGLE,
374 			      rte_get_next_lcore(lcore_id, 0, 1),
375 			      timer_basic_cb);
376 		return;
377 	}
378 
379 	/* Explicitelly stop timer 0. Once stop() called, we can even
380 	 * erase the content of the structure: it is not referenced
381 	 * anymore by any code (in case of dynamic structure, it can
382 	 * be freed) */
383 	if (timinfo->id == 0 && timinfo->count == 20) {
384 
385 		/* stop_sync() is not needed, because we know that the
386 		 * status of timer is only modified by this core */
387 		rte_timer_stop(tim);
388 		memset(tim, 0xAA, sizeof(struct rte_timer));
389 		return;
390 	}
391 
392 	/* stop timer3, and restart a new timer0 (it was removed 5
393 	 * seconds ago) for a single shot */
394 	if (timinfo->id == 2 && timinfo->count == 25) {
395 		rte_timer_stop_sync(&mytiminfo[3].tim);
396 
397 		/* need to reinit because structure was erased with 0xAA */
398 		rte_timer_init(&mytiminfo[0].tim);
399 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
400 			      timer_basic_cb);
401 	}
402 }
403 
404 static int
405 timer_basic_main_loop(__attribute__((unused)) void *arg)
406 {
407 	uint64_t hz = rte_get_timer_hz();
408 	unsigned lcore_id = rte_lcore_id();
409 	uint64_t cur_time;
410 	int64_t diff = 0;
411 
412 	/* launch all timers on core 0 */
413 	if (lcore_id == rte_get_master_lcore()) {
414 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
415 			      timer_basic_cb);
416 		mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
417 			      timer_basic_cb);
418 		mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
419 			      timer_basic_cb);
420 		mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
421 			      rte_get_next_lcore(lcore_id, 0, 1),
422 			      timer_basic_cb);
423 	}
424 
425 	while (diff >= 0) {
426 
427 		/* call the timer handler on each core */
428 		rte_timer_manage();
429 
430 		/* simulate the processing of a packet
431 		 * (3 us = 6000 cycles at 2 Ghz) */
432 		rte_delay_us(3);
433 
434 		cur_time = rte_get_timer_cycles();
435 		diff = end_time - cur_time;
436 	}
437 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
438 
439 	return 0;
440 }
441 
442 static int
443 timer_sanity_check(void)
444 {
445 #ifdef RTE_LIBEAL_USE_HPET
446 	if (eal_timer_source != EAL_TIMER_HPET) {
447 		printf("Not using HPET, can't sanity check timer sources\n");
448 		return 0;
449 	}
450 
451 	const uint64_t t_hz = rte_get_tsc_hz();
452 	const uint64_t h_hz = rte_get_hpet_hz();
453 	printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
454 
455 	const uint64_t tsc_start = rte_get_tsc_cycles();
456 	const uint64_t hpet_start = rte_get_hpet_cycles();
457 	rte_delay_ms(100); /* delay 1/10 second */
458 	const uint64_t tsc_end = rte_get_tsc_cycles();
459 	const uint64_t hpet_end = rte_get_hpet_cycles();
460 	printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
461 			tsc_end-tsc_start, hpet_end-hpet_start);
462 
463 	const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
464 	const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
465 	/* get the percentage that the times differ by */
466 	const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
467 	printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
468 
469 	printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
470 			time_diff);
471 	if (time_diff > 0.1) {
472 		printf("Error times differ by >0.1%%");
473 		return -1;
474 	}
475 #endif
476 	return 0;
477 }
478 
479 static int
480 test_timer(void)
481 {
482 	unsigned i;
483 	uint64_t cur_time;
484 	uint64_t hz;
485 
486 	/* sanity check our timer sources and timer config values */
487 	if (timer_sanity_check() < 0) {
488 		printf("Timer sanity checks failed\n");
489 		return -1;
490 	}
491 
492 	if (rte_lcore_count() < 2) {
493 		printf("not enough lcores for this test\n");
494 		return -1;
495 	}
496 
497 	/* init timer */
498 	for (i=0; i<NB_TIMER; i++) {
499 		memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
500 		mytiminfo[i].id = i;
501 		rte_timer_init(&mytiminfo[i].tim);
502 	}
503 
504 	/* calculate the "end of test" time */
505 	cur_time = rte_get_timer_cycles();
506 	hz = rte_get_timer_hz();
507 	end_time = cur_time + (hz * TEST_DURATION_S);
508 
509 	/* start other cores */
510 	printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
511 	rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
512 	rte_eal_mp_wait_lcore();
513 
514 	/* stop timer 0 used for stress test */
515 	rte_timer_stop_sync(&mytiminfo[0].tim);
516 
517 	/* run a second, slightly different set of stress tests */
518 	printf("Start timer stress tests 2\n");
519 	rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
520 	rte_eal_mp_wait_lcore();
521 
522 	/* calculate the "end of test" time */
523 	cur_time = rte_get_timer_cycles();
524 	hz = rte_get_timer_hz();
525 	end_time = cur_time + (hz * TEST_DURATION_S);
526 
527 	/* start other cores */
528 	printf("Start timer basic tests (%d seconds)\n", TEST_DURATION_S);
529 	rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
530 	rte_eal_mp_wait_lcore();
531 
532 	/* stop all timers */
533 	for (i=0; i<NB_TIMER; i++) {
534 		rte_timer_stop_sync(&mytiminfo[i].tim);
535 	}
536 
537 	rte_timer_dump_stats(stdout);
538 
539 	return 0;
540 }
541 
542 static struct test_command timer_cmd = {
543 	.command = "timer_autotest",
544 	.callback = test_timer,
545 };
546 REGISTER_TEST_COMMAND(timer_cmd);
547