xref: /dpdk/app/test/test_timer.c (revision e9d48c0072d36eb6423b45fba4ec49d0def6c36f)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Timer
36  * =====
37  *
38  * #. Stress test 1.
39  *
40  *    The objective of the timer stress tests is to check that there are no
41  *    race conditions in list and status management. This test launches,
42  *    resets and stops the timer very often on many cores at the same
43  *    time.
44  *
45  *    - Only one timer is used for this test.
46  *    - On each core, the rte_timer_manage() function is called from the main
47  *      loop every 3 microseconds.
48  *    - In the main loop, the timer may be reset (randomly, with a
49  *      probability of 0.5 %) 100 microseconds later on a random core, or
50  *      stopped (with a probability of 0.5 % also).
51  *    - In callback, the timer is can be reset (randomly, with a
52  *      probability of 0.5 %) 100 microseconds later on the same core or
53  *      on another core (same probability), or stopped (same
54  *      probability).
55  *
56  * # Stress test 2.
57  *
58  *    The objective of this test is similar to the first in that it attempts
59  *    to find if there are any race conditions in the timer library. However,
60  *    it is less complex in terms of operations performed and duration, as it
61  *    is designed to have a predictable outcome that can be tested.
62  *
63  *    - A set of timers is initialized for use by the test
64  *    - All cores then simultaneously are set to schedule all the timers at
65  *      the same time, so conflicts should occur.
66  *    - Then there is a delay while we wait for the timers to expire
67  *    - Then the master lcore calls timer_manage() and we check that all
68  *      timers have had their callbacks called exactly once - no more no less.
69  *    - Then we repeat the process, except after setting up the timers, we have
70  *      all cores randomly reschedule them.
71  *    - Again we check that the expected number of callbacks has occurred when
72  *      we call timer-manage.
73  *
74  * #. Basic test.
75  *
76  *    This test performs basic functional checks of the timers. The test
77  *    uses four different timers that are loaded and stopped under
78  *    specific conditions in specific contexts.
79  *
80  *    - Four timers are used for this test.
81  *    - On each core, the rte_timer_manage() function is called from main loop
82  *      every 3 microseconds.
83  *
84  *    The autotest python script checks that the behavior is correct:
85  *
86  *    - timer0
87  *
88  *      - At initialization, timer0 is loaded by the master core, on master core
89  *        in "single" mode (time = 1 second).
90  *      - In the first 19 callbacks, timer0 is reloaded on the same core,
91  *        then, it is explicitly stopped at the 20th call.
92  *      - At t=25s, timer0 is reloaded once by timer2.
93  *
94  *    - timer1
95  *
96  *      - At initialization, timer1 is loaded by the master core, on the
97  *        master core in "single" mode (time = 2 seconds).
98  *      - In the first 9 callbacks, timer1 is reloaded on another
99  *        core. After the 10th callback, timer1 is not reloaded anymore.
100  *
101  *    - timer2
102  *
103  *      - At initialization, timer2 is loaded by the master core, on the
104  *        master core in "periodical" mode (time = 1 second).
105  *      - In the callback, when t=25s, it stops timer3 and reloads timer0
106  *        on the current core.
107  *
108  *    - timer3
109  *
110  *      - At initialization, timer3 is loaded by the master core, on
111  *        another core in "periodical" mode (time = 1 second).
112  *      - It is stopped at t=25s by timer2.
113  */
114 
115 #include <stdio.h>
116 #include <stdarg.h>
117 #include <string.h>
118 #include <stdlib.h>
119 #include <stdint.h>
120 #include <inttypes.h>
121 #include <sys/queue.h>
122 #include <math.h>
123 
124 #include <cmdline_parse.h>
125 
126 #include <rte_common.h>
127 #include <rte_log.h>
128 #include <rte_memory.h>
129 #include <rte_memzone.h>
130 #include <rte_launch.h>
131 #include <rte_cycles.h>
132 #include <rte_tailq.h>
133 #include <rte_eal.h>
134 #include <rte_per_lcore.h>
135 #include <rte_lcore.h>
136 #include <rte_atomic.h>
137 #include <rte_timer.h>
138 #include <rte_random.h>
139 #include <rte_malloc.h>
140 
141 #include "test.h"
142 
143 #define TEST_DURATION_S 20 /* in seconds */
144 #define NB_TIMER 4
145 
146 #define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
147 
148 static volatile uint64_t end_time;
149 
150 struct mytimerinfo {
151 	struct rte_timer tim;
152 	unsigned id;
153 	unsigned count;
154 };
155 
156 static struct mytimerinfo mytiminfo[NB_TIMER];
157 
158 static void timer_basic_cb(struct rte_timer *tim, void *arg);
159 
160 static void
161 mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
162 	      enum rte_timer_type type, unsigned tim_lcore,
163 	      rte_timer_cb_t fct)
164 {
165 	rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
166 			     fct, timinfo);
167 }
168 
169 /* timer callback for stress tests */
170 static void
171 timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
172 		__attribute__((unused)) void *arg)
173 {
174 	long r;
175 	unsigned lcore_id = rte_lcore_id();
176 	uint64_t hz = rte_get_timer_hz();
177 
178 	if (rte_timer_pending(tim))
179 		return;
180 
181 	r = rte_rand();
182 	if ((r & 0xff) == 0) {
183 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
184 			      timer_stress_cb);
185 	}
186 	else if ((r & 0xff) == 1) {
187 		mytimer_reset(&mytiminfo[0], hz, SINGLE,
188 			      rte_get_next_lcore(lcore_id, 0, 1),
189 			      timer_stress_cb);
190 	}
191 	else if ((r & 0xff) == 2) {
192 		rte_timer_stop(&mytiminfo[0].tim);
193 	}
194 }
195 
196 static int
197 timer_stress_main_loop(__attribute__((unused)) void *arg)
198 {
199 	uint64_t hz = rte_get_timer_hz();
200 	unsigned lcore_id = rte_lcore_id();
201 	uint64_t cur_time;
202 	int64_t diff = 0;
203 	long r;
204 
205 	while (diff >= 0) {
206 
207 		/* call the timer handler on each core */
208 		rte_timer_manage();
209 
210 		/* simulate the processing of a packet
211 		 * (1 us = 2000 cycles at 2 Ghz) */
212 		rte_delay_us(1);
213 
214 		/* randomly stop or reset timer */
215 		r = rte_rand();
216 		lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
217 		if ((r & 0xff) == 0) {
218 			/* 100 us */
219 			mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
220 				      timer_stress_cb);
221 		}
222 		else if ((r & 0xff) == 1) {
223 			rte_timer_stop_sync(&mytiminfo[0].tim);
224 		}
225 		cur_time = rte_get_timer_cycles();
226 		diff = end_time - cur_time;
227 	}
228 
229 	lcore_id = rte_lcore_id();
230 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
231 
232 	return 0;
233 }
234 
235 static volatile int cb_count = 0;
236 
237 /* callback for second stress test. will only be called
238  * on master lcore */
239 static void
240 timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
241 {
242 	cb_count++;
243 }
244 
245 #define NB_STRESS2_TIMERS 8192
246 
247 static int
248 timer_stress2_main_loop(__attribute__((unused)) void *arg)
249 {
250 	static struct rte_timer *timers;
251 	int i;
252 	static volatile int ready = 0;
253 	uint64_t delay = rte_get_timer_hz() / 4;
254 	unsigned lcore_id = rte_lcore_id();
255 
256 	if (lcore_id == rte_get_master_lcore()) {
257 		timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
258 		if (timers == NULL) {
259 			printf("Test Failed\n");
260 			printf("- Cannot allocate memory for timers\n" );
261 			return -1;
262 		}
263 		for (i = 0; i < NB_STRESS2_TIMERS; i++)
264 			rte_timer_init(&timers[i]);
265 		ready = 1;
266 	} else {
267 		while (!ready)
268 			rte_pause();
269 	}
270 
271 	/* have all cores schedule all timers on master lcore */
272 	for (i = 0; i < NB_STRESS2_TIMERS; i++)
273 		rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
274 				timer_stress2_cb, NULL);
275 
276 	ready = 0;
277 	rte_delay_ms(500);
278 
279 	/* now check that we get the right number of callbacks */
280 	if (lcore_id == rte_get_master_lcore()) {
281 		rte_timer_manage();
282 		if (cb_count != NB_STRESS2_TIMERS) {
283 			printf("Test Failed\n");
284 			printf("- Stress test 2, part 1 failed\n");
285 			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
286 					cb_count);
287 			return -1;
288 		}
289 		ready  = 1;
290 	} else {
291 		while (!ready)
292 			rte_pause();
293 	}
294 
295 	/* now test again, just stop and restart timers at random after init*/
296 	for (i = 0; i < NB_STRESS2_TIMERS; i++)
297 		rte_timer_reset(&timers[i], delay, SINGLE, rte_get_master_lcore(),
298 				timer_stress2_cb, NULL);
299 	cb_count = 0;
300 
301 	/* pick random timer to reset, stopping them first half the time */
302 	for (i = 0; i < 100000; i++) {
303 		int r = rand() % NB_STRESS2_TIMERS;
304 		if (i % 2)
305 			rte_timer_stop(&timers[r]);
306 		rte_timer_reset(&timers[r], delay, SINGLE, rte_get_master_lcore(),
307 				timer_stress2_cb, NULL);
308 	}
309 
310 	rte_delay_ms(500);
311 
312 	/* now check that we get the right number of callbacks */
313 	if (lcore_id == rte_get_master_lcore()) {
314 		rte_timer_manage();
315 		if (cb_count != NB_STRESS2_TIMERS) {
316 			printf("Test Failed\n");
317 			printf("- Stress test 2, part 2 failed\n");
318 			printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
319 					cb_count);
320 			return -1;
321 		}
322 		printf("Test OK\n");
323 	}
324 
325 	return 0;
326 }
327 
328 /* timer callback for basic tests */
329 static void
330 timer_basic_cb(struct rte_timer *tim, void *arg)
331 {
332 	struct mytimerinfo *timinfo = arg;
333 	uint64_t hz = rte_get_timer_hz();
334 	unsigned lcore_id = rte_lcore_id();
335 	uint64_t cur_time = rte_get_timer_cycles();
336 
337 	if (rte_timer_pending(tim))
338 		return;
339 
340 	timinfo->count ++;
341 
342 	RTE_LOG(INFO, TESTTIMER,
343 		"%"PRIu64": callback id=%u count=%u on core %u\n",
344 		cur_time, timinfo->id, timinfo->count, lcore_id);
345 
346 	/* reload timer 0 on same core */
347 	if (timinfo->id == 0 && timinfo->count < 20) {
348 		mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
349 		return;
350 	}
351 
352 	/* reload timer 1 on next core */
353 	if (timinfo->id == 1 && timinfo->count < 10) {
354 		mytimer_reset(timinfo, hz*2, SINGLE,
355 			      rte_get_next_lcore(lcore_id, 0, 1),
356 			      timer_basic_cb);
357 		return;
358 	}
359 
360 	/* Explicitelly stop timer 0. Once stop() called, we can even
361 	 * erase the content of the structure: it is not referenced
362 	 * anymore by any code (in case of dynamic structure, it can
363 	 * be freed) */
364 	if (timinfo->id == 0 && timinfo->count == 20) {
365 
366 		/* stop_sync() is not needed, because we know that the
367 		 * status of timer is only modified by this core */
368 		rte_timer_stop(tim);
369 		memset(tim, 0xAA, sizeof(struct rte_timer));
370 		return;
371 	}
372 
373 	/* stop timer3, and restart a new timer0 (it was removed 5
374 	 * seconds ago) for a single shot */
375 	if (timinfo->id == 2 && timinfo->count == 25) {
376 		rte_timer_stop_sync(&mytiminfo[3].tim);
377 
378 		/* need to reinit because structure was erased with 0xAA */
379 		rte_timer_init(&mytiminfo[0].tim);
380 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
381 			      timer_basic_cb);
382 	}
383 }
384 
385 static int
386 timer_basic_main_loop(__attribute__((unused)) void *arg)
387 {
388 	uint64_t hz = rte_get_timer_hz();
389 	unsigned lcore_id = rte_lcore_id();
390 	uint64_t cur_time;
391 	int64_t diff = 0;
392 
393 	/* launch all timers on core 0 */
394 	if (lcore_id == rte_get_master_lcore()) {
395 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
396 			      timer_basic_cb);
397 		mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
398 			      timer_basic_cb);
399 		mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
400 			      timer_basic_cb);
401 		mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
402 			      rte_get_next_lcore(lcore_id, 0, 1),
403 			      timer_basic_cb);
404 	}
405 
406 	while (diff >= 0) {
407 
408 		/* call the timer handler on each core */
409 		rte_timer_manage();
410 
411 		/* simulate the processing of a packet
412 		 * (3 us = 6000 cycles at 2 Ghz) */
413 		rte_delay_us(3);
414 
415 		cur_time = rte_get_timer_cycles();
416 		diff = end_time - cur_time;
417 	}
418 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
419 
420 	return 0;
421 }
422 
423 static int
424 timer_sanity_check(void)
425 {
426 #ifdef RTE_LIBEAL_USE_HPET
427 	if (eal_timer_source != EAL_TIMER_HPET) {
428 		printf("Not using HPET, can't sanity check timer sources\n");
429 		return 0;
430 	}
431 
432 	const uint64_t t_hz = rte_get_tsc_hz();
433 	const uint64_t h_hz = rte_get_hpet_hz();
434 	printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
435 
436 	const uint64_t tsc_start = rte_get_tsc_cycles();
437 	const uint64_t hpet_start = rte_get_hpet_cycles();
438 	rte_delay_ms(100); /* delay 1/10 second */
439 	const uint64_t tsc_end = rte_get_tsc_cycles();
440 	const uint64_t hpet_end = rte_get_hpet_cycles();
441 	printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
442 			tsc_end-tsc_start, hpet_end-hpet_start);
443 
444 	const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
445 	const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
446 	/* get the percentage that the times differ by */
447 	const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
448 	printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
449 
450 	printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
451 			time_diff);
452 	if (time_diff > 0.1) {
453 		printf("Error times differ by >0.1%%");
454 		return -1;
455 	}
456 #endif
457 	return 0;
458 }
459 
460 int
461 test_timer(void)
462 {
463 	unsigned i;
464 	uint64_t cur_time;
465 	uint64_t hz;
466 
467 	/* sanity check our timer sources and timer config values */
468 	if (timer_sanity_check() < 0) {
469 		printf("Timer sanity checks failed\n");
470 		return -1;
471 	}
472 
473 	if (rte_lcore_count() < 2) {
474 		printf("not enough lcores for this test\n");
475 		return -1;
476 	}
477 
478 	/* init timer */
479 	for (i=0; i<NB_TIMER; i++) {
480 		memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
481 		mytiminfo[i].id = i;
482 		rte_timer_init(&mytiminfo[i].tim);
483 	}
484 
485 	/* calculate the "end of test" time */
486 	cur_time = rte_get_timer_cycles();
487 	hz = rte_get_timer_hz();
488 	end_time = cur_time + (hz * TEST_DURATION_S);
489 
490 	/* start other cores */
491 	printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
492 	rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
493 	rte_eal_mp_wait_lcore();
494 
495 	/* stop timer 0 used for stress test */
496 	rte_timer_stop_sync(&mytiminfo[0].tim);
497 
498 	/* run a second, slightly different set of stress tests */
499 	printf("Start timer stress tests 2\n");
500 	rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
501 	rte_eal_mp_wait_lcore();
502 
503 	/* calculate the "end of test" time */
504 	cur_time = rte_get_timer_cycles();
505 	hz = rte_get_timer_hz();
506 	end_time = cur_time + (hz * TEST_DURATION_S);
507 
508 	/* start other cores */
509 	printf("Start timer basic tests (%d seconds)\n", TEST_DURATION_S);
510 	rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
511 	rte_eal_mp_wait_lcore();
512 
513 	/* stop all timers */
514 	for (i=0; i<NB_TIMER; i++) {
515 		rte_timer_stop_sync(&mytiminfo[i].tim);
516 	}
517 
518 	rte_timer_dump_stats();
519 
520 	return 0;
521 }
522