xref: /dpdk/app/test/test_timer.c (revision e987449c9fce2ec6210be3d8bad680d08d68c9dc)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  */
34 
35 /*
36  * Timer
37  * =====
38  *
39  * #. Stress tests.
40  *
41  *    The objective of the timer stress tests is to check that there are no
42  *    race conditions in list and status management. This test launches,
43  *    resets and stops the timer very often on many cores at the same
44  *    time.
45  *
46  *    - Only one timer is used for this test.
47  *    - On each core, the rte_timer_manage() function is called from the main
48  *      loop every 3 microseconds.
49  *    - In the main loop, the timer may be reset (randomly, with a
50  *      probability of 0.5 %) 100 microseconds later on a random core, or
51  *      stopped (with a probability of 0.5 % also).
52  *    - In callback, the timer is can be reset (randomly, with a
53  *      probability of 0.5 %) 100 microseconds later on the same core or
54  *      on another core (same probability), or stopped (same
55  *      probability).
56  *
57  *
58  * #. Basic test.
59  *
60  *    This test performs basic functional checks of the timers. The test
61  *    uses four different timers that are loaded and stopped under
62  *    specific conditions in specific contexts.
63  *
64  *    - Four timers are used for this test.
65  *    - On each core, the rte_timer_manage() function is called from main loop
66  *      every 3 microseconds.
67  *
68  *    The autotest python script checks that the behavior is correct:
69  *
70  *    - timer0
71  *
72  *      - At initialization, timer0 is loaded by the master core, on master core
73  *        in "single" mode (time = 1 second).
74  *      - In the first 19 callbacks, timer0 is reloaded on the same core,
75  *        then, it is explicitly stopped at the 20th call.
76  *      - At t=25s, timer0 is reloaded once by timer2.
77  *
78  *    - timer1
79  *
80  *      - At initialization, timer1 is loaded by the master core, on the
81  *        master core in "single" mode (time = 2 seconds).
82  *      - In the first 9 callbacks, timer1 is reloaded on another
83  *        core. After the 10th callback, timer1 is not reloaded anymore.
84  *
85  *    - timer2
86  *
87  *      - At initialization, timer2 is loaded by the master core, on the
88  *        master core in "periodical" mode (time = 1 second).
89  *      - In the callback, when t=25s, it stops timer3 and reloads timer0
90  *        on the current core.
91  *
92  *    - timer3
93  *
94  *      - At initialization, timer3 is loaded by the master core, on
95  *        another core in "periodical" mode (time = 1 second).
96  *      - It is stopped at t=25s by timer2.
97  */
98 
99 #include <stdio.h>
100 #include <stdarg.h>
101 #include <string.h>
102 #include <stdlib.h>
103 #include <stdint.h>
104 #include <inttypes.h>
105 #include <sys/queue.h>
106 #include <math.h>
107 
108 #include <cmdline_parse.h>
109 
110 #include <rte_common.h>
111 #include <rte_log.h>
112 #include <rte_memory.h>
113 #include <rte_memzone.h>
114 #include <rte_launch.h>
115 #include <rte_cycles.h>
116 #include <rte_tailq.h>
117 #include <rte_eal.h>
118 #include <rte_per_lcore.h>
119 #include <rte_lcore.h>
120 #include <rte_atomic.h>
121 #include <rte_timer.h>
122 #include <rte_random.h>
123 
124 #include "test.h"
125 
126 #define TEST_DURATION_S 20 /* in seconds */
127 #define NB_TIMER 4
128 
129 #define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
130 
131 static volatile uint64_t end_time;
132 
133 struct mytimerinfo {
134 	struct rte_timer tim;
135 	unsigned id;
136 	unsigned count;
137 };
138 
139 static struct mytimerinfo mytiminfo[NB_TIMER];
140 
141 static void timer_basic_cb(struct rte_timer *tim, void *arg);
142 
143 static void
144 mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
145 	      enum rte_timer_type type, unsigned tim_lcore,
146 	      rte_timer_cb_t fct)
147 {
148 	rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
149 			     fct, timinfo);
150 }
151 
152 /* timer callback for stress tests */
153 static void
154 timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
155 		__attribute__((unused)) void *arg)
156 {
157 	long r;
158 	unsigned lcore_id = rte_lcore_id();
159 	uint64_t hz = rte_get_timer_hz();
160 
161 	if (rte_timer_pending(tim))
162 		return;
163 
164 	r = rte_rand();
165 	if ((r & 0xff) == 0) {
166 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
167 			      timer_stress_cb);
168 	}
169 	else if ((r & 0xff) == 1) {
170 		mytimer_reset(&mytiminfo[0], hz, SINGLE,
171 			      rte_get_next_lcore(lcore_id, 0, 1),
172 			      timer_stress_cb);
173 	}
174 	else if ((r & 0xff) == 2) {
175 		rte_timer_stop(&mytiminfo[0].tim);
176 	}
177 }
178 
179 static int
180 timer_stress_main_loop(__attribute__((unused)) void *arg)
181 {
182 	uint64_t hz = rte_get_timer_hz();
183 	unsigned lcore_id = rte_lcore_id();
184 	uint64_t cur_time;
185 	int64_t diff = 0;
186 	long r;
187 
188 	while (diff >= 0) {
189 
190 		/* call the timer handler on each core */
191 		rte_timer_manage();
192 
193 		/* simulate the processing of a packet
194 		 * (3 us = 6000 cycles at 2 Ghz) */
195 		rte_delay_us(3);
196 
197 		/* randomly stop or reset timer */
198 		r = rte_rand();
199 		lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
200 		if ((r & 0xff) == 0) {
201 			/* 100 us */
202 			mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
203 				      timer_stress_cb);
204 		}
205 		else if ((r & 0xff) == 1) {
206 			rte_timer_stop_sync(&mytiminfo[0].tim);
207 		}
208 		cur_time = rte_get_timer_cycles();
209 		diff = end_time - cur_time;
210 	}
211 
212 	lcore_id = rte_lcore_id();
213 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
214 
215 	return 0;
216 }
217 
218 /* timer callback for basic tests */
219 static void
220 timer_basic_cb(struct rte_timer *tim, void *arg)
221 {
222 	struct mytimerinfo *timinfo = arg;
223 	uint64_t hz = rte_get_timer_hz();
224 	unsigned lcore_id = rte_lcore_id();
225 	uint64_t cur_time = rte_get_timer_cycles();
226 
227 	if (rte_timer_pending(tim))
228 		return;
229 
230 	timinfo->count ++;
231 
232 	RTE_LOG(INFO, TESTTIMER,
233 		"%"PRIu64": callback id=%u count=%u on core %u\n",
234 		cur_time, timinfo->id, timinfo->count, lcore_id);
235 
236 	/* reload timer 0 on same core */
237 	if (timinfo->id == 0 && timinfo->count < 20) {
238 		mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
239 		return;
240 	}
241 
242 	/* reload timer 1 on next core */
243 	if (timinfo->id == 1 && timinfo->count < 10) {
244 		mytimer_reset(timinfo, hz*2, SINGLE,
245 			      rte_get_next_lcore(lcore_id, 0, 1),
246 			      timer_basic_cb);
247 		return;
248 	}
249 
250 	/* Explicitelly stop timer 0. Once stop() called, we can even
251 	 * erase the content of the structure: it is not referenced
252 	 * anymore by any code (in case of dynamic structure, it can
253 	 * be freed) */
254 	if (timinfo->id == 0 && timinfo->count == 20) {
255 
256 		/* stop_sync() is not needed, because we know that the
257 		 * status of timer is only modified by this core */
258 		rte_timer_stop(tim);
259 		memset(tim, 0xAA, sizeof(struct rte_timer));
260 		return;
261 	}
262 
263 	/* stop timer3, and restart a new timer0 (it was removed 5
264 	 * seconds ago) for a single shot */
265 	if (timinfo->id == 2 && timinfo->count == 25) {
266 		rte_timer_stop_sync(&mytiminfo[3].tim);
267 
268 		/* need to reinit because structure was erased with 0xAA */
269 		rte_timer_init(&mytiminfo[0].tim);
270 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
271 			      timer_basic_cb);
272 	}
273 }
274 
275 static int
276 timer_basic_main_loop(__attribute__((unused)) void *arg)
277 {
278 	uint64_t hz = rte_get_timer_hz();
279 	unsigned lcore_id = rte_lcore_id();
280 	uint64_t cur_time;
281 	int64_t diff = 0;
282 
283 	/* launch all timers on core 0 */
284 	if (lcore_id == rte_get_master_lcore()) {
285 		mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
286 			      timer_basic_cb);
287 		mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id,
288 			      timer_basic_cb);
289 		mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id,
290 			      timer_basic_cb);
291 		mytimer_reset(&mytiminfo[3], hz, PERIODICAL,
292 			      rte_get_next_lcore(lcore_id, 0, 1),
293 			      timer_basic_cb);
294 	}
295 
296 	while (diff >= 0) {
297 
298 		/* call the timer handler on each core */
299 		rte_timer_manage();
300 
301 		/* simulate the processing of a packet
302 		 * (3 us = 6000 cycles at 2 Ghz) */
303 		rte_delay_us(3);
304 
305 		cur_time = rte_get_timer_cycles();
306 		diff = end_time - cur_time;
307 	}
308 	RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
309 
310 	return 0;
311 }
312 
313 static int
314 timer_sanity_check(void)
315 {
316 #ifdef RTE_LIBEAL_USE_HPET
317 	if (eal_timer_source != EAL_TIMER_HPET) {
318 		printf("Not using HPET, can't sanity check timer sources\n");
319 		return 0;
320 	}
321 
322 	const uint64_t t_hz = rte_get_tsc_hz();
323 	const uint64_t h_hz = rte_get_hpet_hz();
324 	printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
325 
326 	const uint64_t tsc_start = rte_get_tsc_cycles();
327 	const uint64_t hpet_start = rte_get_hpet_cycles();
328 	rte_delay_ms(100); /* delay 1/10 second */
329 	const uint64_t tsc_end = rte_get_tsc_cycles();
330 	const uint64_t hpet_end = rte_get_hpet_cycles();
331 	printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
332 			tsc_end-tsc_start, hpet_end-hpet_start);
333 
334 	const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
335 	const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
336 	/* get the percentage that the times differ by */
337 	const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
338 	printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
339 
340 	printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
341 			time_diff);
342 	if (time_diff > 0.1) {
343 		printf("Error times differ by >0.1%%");
344 		return -1;
345 	}
346 #endif
347 	return 0;
348 }
349 
350 int
351 test_timer(void)
352 {
353 	unsigned i;
354 	uint64_t cur_time;
355 	uint64_t hz;
356 
357 	/* sanity check our timer sources and timer config values */
358 	if (timer_sanity_check() < 0) {
359 		printf("Timer sanity checks failed\n");
360 		return -1;
361 	}
362 
363 	if (rte_lcore_count() < 2) {
364 		printf("not enough lcores for this test\n");
365 		return -1;
366 	}
367 
368 	/* init timer */
369 	for (i=0; i<NB_TIMER; i++) {
370 		memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
371 		mytiminfo[i].id = i;
372 		rte_timer_init(&mytiminfo[i].tim);
373 	}
374 
375 	/* calculate the "end of test" time */
376 	cur_time = rte_get_timer_cycles();
377 	hz = rte_get_timer_hz();
378 	end_time = cur_time + (hz * TEST_DURATION_S);
379 
380 	/* start other cores */
381 	printf("Start timer stress tests (%d seconds)\n", TEST_DURATION_S);
382 	rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
383 	rte_eal_mp_wait_lcore();
384 
385 	/* stop timer 0 used for stress test */
386 	rte_timer_stop_sync(&mytiminfo[0].tim);
387 
388 	/* calculate the "end of test" time */
389 	cur_time = rte_get_timer_cycles();
390 	hz = rte_get_timer_hz();
391 	end_time = cur_time + (hz * TEST_DURATION_S);
392 
393 	/* start other cores */
394 	printf("Start timer basic tests (%d seconds)\n", TEST_DURATION_S);
395 	rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
396 	rte_eal_mp_wait_lcore();
397 
398 	/* stop all timers */
399 	for (i=0; i<NB_TIMER; i++) {
400 		rte_timer_stop_sync(&mytiminfo[i].tim);
401 	}
402 
403 	rte_timer_dump_stats();
404 
405 	return 0;
406 }
407