xref: /dpdk/app/test/test_ipfrag.c (revision b53d106d34b5c638f5a2cbdfee0da5bd42d4383f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2020 Red Hat, Inc.
3  */
4 
5 #include <time.h>
6 
7 #include <rte_common.h>
8 #include <rte_cycles.h>
9 #include <rte_hexdump.h>
10 #include <rte_ip.h>
11 #include <rte_ip_frag.h>
12 #include <rte_mbuf.h>
13 #include <rte_memcpy.h>
14 #include <rte_random.h>
15 
16 #include "test.h"
17 
18 #define NUM_MBUFS 128
19 #define BURST 32
20 
21 static struct rte_mempool *pkt_pool,
22 			  *direct_pool,
23 			  *indirect_pool;
24 
25 static int
26 setup_buf_pool(void)
27 {
28 	pkt_pool = rte_pktmbuf_pool_create("FRAG_MBUF_POOL",
29 					   NUM_MBUFS, BURST, 0,
30 					   RTE_MBUF_DEFAULT_BUF_SIZE,
31 					   SOCKET_ID_ANY);
32 	if (pkt_pool == NULL) {
33 		printf("%s: Error creating pkt mempool\n", __func__);
34 		goto bad_setup;
35 	}
36 
37 	direct_pool = rte_pktmbuf_pool_create("FRAG_D_MBUF_POOL",
38 					      NUM_MBUFS, BURST, 0,
39 					      RTE_MBUF_DEFAULT_BUF_SIZE,
40 					      SOCKET_ID_ANY);
41 	if (direct_pool == NULL) {
42 		printf("%s: Error creating direct mempool\n", __func__);
43 		goto bad_setup;
44 	}
45 
46 	indirect_pool = rte_pktmbuf_pool_create("FRAG_I_MBUF_POOL",
47 						NUM_MBUFS, BURST, 0,
48 						0, SOCKET_ID_ANY);
49 	if (indirect_pool == NULL) {
50 		printf("%s: Error creating indirect mempool\n", __func__);
51 		goto bad_setup;
52 	}
53 
54 	return TEST_SUCCESS;
55 
56 bad_setup:
57 	rte_mempool_free(pkt_pool);
58 	pkt_pool = NULL;
59 
60 	rte_mempool_free(direct_pool);
61 	direct_pool = NULL;
62 
63 	return TEST_FAILED;
64 }
65 
66 static int testsuite_setup(void)
67 {
68 	return setup_buf_pool();
69 }
70 
71 static void testsuite_teardown(void)
72 {
73 	rte_mempool_free(pkt_pool);
74 	rte_mempool_free(direct_pool);
75 	rte_mempool_free(indirect_pool);
76 
77 	pkt_pool = NULL;
78 	direct_pool = NULL;
79 	indirect_pool = NULL;
80 }
81 
82 static int ut_setup(void)
83 {
84 	return TEST_SUCCESS;
85 }
86 
87 static void ut_teardown(void)
88 {
89 }
90 
91 static void
92 v4_allocate_packet_of(struct rte_mbuf *b, int fill,
93 		      size_t s, int df, uint8_t mf, uint16_t off,
94 		      uint8_t ttl, uint8_t proto, uint16_t pktid)
95 {
96 	/* Create a packet, 2k bytes long */
97 	b->data_off = 0;
98 	char *data = rte_pktmbuf_mtod(b, char *);
99 	rte_be16_t fragment_offset = 0;	/**< fragmentation offset */
100 
101 	memset(data, fill, sizeof(struct rte_ipv4_hdr) + s);
102 
103 	struct rte_ipv4_hdr *hdr = (struct rte_ipv4_hdr *)data;
104 
105 	hdr->version_ihl = 0x45; /* standard IP header... */
106 	hdr->type_of_service = 0;
107 	b->pkt_len = s + sizeof(struct rte_ipv4_hdr);
108 	b->data_len = b->pkt_len;
109 	hdr->total_length = rte_cpu_to_be_16(b->pkt_len);
110 	hdr->packet_id = rte_cpu_to_be_16(pktid);
111 
112 	if (df)
113 		fragment_offset |= 0x4000;
114 
115 	if (mf)
116 		fragment_offset |= 0x2000;
117 
118 	if (off)
119 		fragment_offset |= off;
120 
121 	hdr->fragment_offset = rte_cpu_to_be_16(fragment_offset);
122 
123 	if (!ttl)
124 		ttl = 64; /* default to 64 */
125 
126 	if (!proto)
127 		proto = 1; /* icmp */
128 
129 	hdr->time_to_live = ttl;
130 	hdr->next_proto_id = proto;
131 	hdr->hdr_checksum = 0;
132 	hdr->src_addr = rte_cpu_to_be_32(0x8080808);
133 	hdr->dst_addr = rte_cpu_to_be_32(0x8080404);
134 }
135 
136 static void
137 v6_allocate_packet_of(struct rte_mbuf *b, int fill, size_t s, uint8_t ttl,
138 		      uint8_t proto, uint16_t pktid)
139 {
140 	/* Create a packet, 2k bytes long */
141 	b->data_off = 0;
142 	char *data = rte_pktmbuf_mtod(b, char *);
143 
144 	memset(data, fill, sizeof(struct rte_ipv6_hdr) + s);
145 
146 	struct rte_ipv6_hdr *hdr = (struct rte_ipv6_hdr *)data;
147 	b->pkt_len = s + sizeof(struct rte_ipv6_hdr);
148 	b->data_len = b->pkt_len;
149 
150 	/* basic v6 header */
151 	hdr->vtc_flow = rte_cpu_to_be_32(0x60 << 24 | pktid);
152 	hdr->payload_len = rte_cpu_to_be_16(b->pkt_len);
153 	hdr->proto = proto;
154 	hdr->hop_limits = ttl;
155 
156 	memset(hdr->src_addr, 0x08, sizeof(hdr->src_addr));
157 	memset(hdr->dst_addr, 0x04, sizeof(hdr->src_addr));
158 }
159 
160 static inline void
161 test_free_fragments(struct rte_mbuf *mb[], uint32_t num)
162 {
163 	uint32_t i;
164 	for (i = 0; i < num; i++)
165 		rte_pktmbuf_free(mb[i]);
166 }
167 
168 static inline void
169 test_get_offset(struct rte_mbuf **mb, int32_t len,
170 	uint16_t *offset, int ipv)
171 {
172 	int32_t i;
173 
174 	for (i = 0; i < len; i++) {
175 		if (ipv == 4) {
176 			struct rte_ipv4_hdr *iph =
177 			    rte_pktmbuf_mtod(mb[i], struct rte_ipv4_hdr *);
178 			offset[i] = iph->fragment_offset;
179 		} else if (ipv == 6) {
180 			struct ipv6_extension_fragment *fh =
181 			    rte_pktmbuf_mtod_offset(
182 					mb[i],
183 					struct ipv6_extension_fragment *,
184 					sizeof(struct rte_ipv6_hdr));
185 			offset[i] = fh->frag_data;
186 		}
187 	}
188 }
189 
190 static int
191 test_ip_frag(void)
192 {
193 	static const uint16_t RND_ID = UINT16_MAX;
194 	int result = TEST_SUCCESS;
195 	size_t i, j;
196 
197 	struct test_ip_frags {
198 		int      ipv;
199 		size_t   mtu_size;
200 		size_t   pkt_size;
201 		int      set_df;
202 		uint8_t  set_mf;
203 		uint16_t set_of;
204 		uint8_t  ttl;
205 		uint8_t  proto;
206 		uint16_t pkt_id;
207 		int      expected_frags;
208 		uint16_t expected_fragment_offset[BURST];
209 	} tests[] = {
210 		 {4, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID,       2,
211 		  {0x2000, 0x009D}},
212 		 {4, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, 0,            2,
213 		  {0x2000, 0x009D}},
214 		 {4,  600, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID,       3,
215 		  {0x2000, 0x2048, 0x0090}},
216 		 {4, 4, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID,    -EINVAL},
217 		 {4, 600, 1400, 1, 0, 0, 64, IPPROTO_ICMP, RND_ID, -ENOTSUP},
218 		 {4, 600, 1400, 0, 0, 0, 0, IPPROTO_ICMP, RND_ID,         3,
219 		  {0x2000, 0x2048, 0x0090}},
220 		 {4, 68, 104, 0, 1, 13, 0, IPPROTO_ICMP, RND_ID,          3,
221 		  {0x200D, 0x2013, 0x2019}},
222 
223 		 {6, 1280, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID,       2,
224 		  {0x0001, 0x04D0}},
225 		 {6, 1300, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID,       2,
226 		  {0x0001, 0x04E0}},
227 		 {6, 4, 1400, 0, 0, 0, 64, IPPROTO_ICMP, RND_ID,    -EINVAL},
228 		 {6, 1300, 1400, 0, 0, 0, 0, IPPROTO_ICMP, RND_ID,        2,
229 		  {0x0001, 0x04E0}},
230 	};
231 
232 	for (i = 0; i < RTE_DIM(tests); i++) {
233 		int32_t len = 0;
234 		uint16_t fragment_offset[BURST];
235 		uint16_t pktid = tests[i].pkt_id;
236 		struct rte_mbuf *pkts_out[BURST];
237 		struct rte_mbuf *b = rte_pktmbuf_alloc(pkt_pool);
238 
239 		RTE_TEST_ASSERT_NOT_EQUAL(b, NULL,
240 					  "Failed to allocate pkt.");
241 
242 		if (tests[i].pkt_id == RND_ID)
243 			pktid = rte_rand_max(UINT16_MAX);
244 
245 		if (tests[i].ipv == 4) {
246 			v4_allocate_packet_of(b, 0x41414141,
247 					      tests[i].pkt_size,
248 					      tests[i].set_df,
249 					      tests[i].set_mf,
250 					      tests[i].set_of,
251 					      tests[i].ttl,
252 					      tests[i].proto,
253 					      pktid);
254 		} else if (tests[i].ipv == 6) {
255 			v6_allocate_packet_of(b, 0x41414141,
256 					      tests[i].pkt_size,
257 					      tests[i].ttl,
258 					      tests[i].proto,
259 					      pktid);
260 		}
261 
262 		if (tests[i].ipv == 4)
263 			len = rte_ipv4_fragment_packet(b, pkts_out, BURST,
264 						       tests[i].mtu_size,
265 						       direct_pool,
266 						       indirect_pool);
267 		else if (tests[i].ipv == 6)
268 			len = rte_ipv6_fragment_packet(b, pkts_out, BURST,
269 						       tests[i].mtu_size,
270 						       direct_pool,
271 						       indirect_pool);
272 
273 		rte_pktmbuf_free(b);
274 
275 		if (len > 0) {
276 			test_get_offset(pkts_out, len,
277 			    fragment_offset, tests[i].ipv);
278 			test_free_fragments(pkts_out, len);
279 		}
280 
281 		printf("%zd: checking %d with %d\n", i, len,
282 		       tests[i].expected_frags);
283 		RTE_TEST_ASSERT_EQUAL(len, tests[i].expected_frags,
284 				      "Failed case %zd.\n", i);
285 
286 		if (len > 0) {
287 			for (j = 0; j < (size_t)len; j++) {
288 				printf("%zd-%zd: checking %d with %d\n",
289 				    i, j, fragment_offset[j],
290 				    rte_cpu_to_be_16(
291 					tests[i].expected_fragment_offset[j]));
292 				RTE_TEST_ASSERT_EQUAL(fragment_offset[j],
293 				    rte_cpu_to_be_16(
294 					tests[i].expected_fragment_offset[j]),
295 				    "Failed case %zd.\n", i);
296 			}
297 		}
298 
299 	}
300 
301 	return result;
302 }
303 
304 static struct unit_test_suite ipfrag_testsuite  = {
305 	.suite_name = "IP Frag Unit Test Suite",
306 	.setup = testsuite_setup,
307 	.teardown = testsuite_teardown,
308 	.unit_test_cases = {
309 		TEST_CASE_ST(ut_setup, ut_teardown,
310 			     test_ip_frag),
311 
312 		TEST_CASES_END() /**< NULL terminate unit test array */
313 	}
314 };
315 
316 static int
317 test_ipfrag(void)
318 {
319 	rte_log_set_global_level(RTE_LOG_DEBUG);
320 	rte_log_set_level(RTE_LOGTYPE_EAL, RTE_LOG_DEBUG);
321 
322 	return unit_test_suite_runner(&ipfrag_testsuite);
323 }
324 
325 REGISTER_TEST_COMMAND(ipfrag_autotest, test_ipfrag);
326