xref: /dpdk/app/test/test_cryptodev_security_ipsec.c (revision 30a1de105a5f40d77b344a891c4a68f79e815c43)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(C) 2021 Marvell.
3  */
4 
5 #ifndef RTE_EXEC_ENV_WINDOWS
6 
7 #include <rte_common.h>
8 #include <rte_cryptodev.h>
9 #include <rte_esp.h>
10 #include <rte_ip.h>
11 #include <rte_security.h>
12 #include <rte_tcp.h>
13 #include <rte_udp.h>
14 
15 #include "test.h"
16 #include "test_cryptodev_security_ipsec.h"
17 
18 #define IV_LEN_MAX 16
19 
20 struct crypto_param_comb alg_list[RTE_DIM(aead_list) +
21 				  (RTE_DIM(cipher_list) *
22 				   RTE_DIM(auth_list))];
23 
24 static bool
25 is_valid_ipv4_pkt(const struct rte_ipv4_hdr *pkt)
26 {
27 	/* The IP version number must be 4 */
28 	if (((pkt->version_ihl) >> 4) != 4)
29 		return false;
30 	/*
31 	 * The IP header length field must be large enough to hold the
32 	 * minimum length legal IP datagram (20 bytes = 5 words).
33 	 */
34 	if ((pkt->version_ihl & 0xf) < 5)
35 		return false;
36 
37 	/*
38 	 * The IP total length field must be large enough to hold the IP
39 	 * datagram header, whose length is specified in the IP header length
40 	 * field.
41 	 */
42 	if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct rte_ipv4_hdr))
43 		return false;
44 
45 	return true;
46 }
47 
48 static bool
49 is_valid_ipv6_pkt(const struct rte_ipv6_hdr *pkt)
50 {
51 	/* The IP version number must be 6 */
52 	if ((rte_be_to_cpu_32((pkt->vtc_flow)) >> 28) != 6)
53 		return false;
54 
55 	return true;
56 }
57 
58 void
59 test_ipsec_alg_list_populate(void)
60 {
61 	unsigned long i, j, index = 0;
62 
63 	for (i = 0; i < RTE_DIM(aead_list); i++) {
64 		alg_list[index].param1 = &aead_list[i];
65 		alg_list[index].param2 = NULL;
66 		index++;
67 	}
68 
69 	for (i = 0; i < RTE_DIM(cipher_list); i++) {
70 		for (j = 0; j < RTE_DIM(auth_list); j++) {
71 			alg_list[index].param1 = &cipher_list[i];
72 			alg_list[index].param2 = &auth_list[j];
73 			index++;
74 		}
75 	}
76 }
77 
78 int
79 test_ipsec_sec_caps_verify(struct rte_security_ipsec_xform *ipsec_xform,
80 			   const struct rte_security_capability *sec_cap,
81 			   bool silent)
82 {
83 	/* Verify security capabilities */
84 
85 	if (ipsec_xform->options.esn == 1 && sec_cap->ipsec.options.esn == 0) {
86 		if (!silent)
87 			RTE_LOG(INFO, USER1, "ESN is not supported\n");
88 		return -ENOTSUP;
89 	}
90 
91 	if (ipsec_xform->options.udp_encap == 1 &&
92 	    sec_cap->ipsec.options.udp_encap == 0) {
93 		if (!silent)
94 			RTE_LOG(INFO, USER1, "UDP encapsulation is not supported\n");
95 		return -ENOTSUP;
96 	}
97 
98 	if (ipsec_xform->options.udp_ports_verify == 1 &&
99 	    sec_cap->ipsec.options.udp_ports_verify == 0) {
100 		if (!silent)
101 			RTE_LOG(INFO, USER1, "UDP encapsulation ports "
102 				"verification is not supported\n");
103 		return -ENOTSUP;
104 	}
105 
106 	if (ipsec_xform->options.copy_dscp == 1 &&
107 	    sec_cap->ipsec.options.copy_dscp == 0) {
108 		if (!silent)
109 			RTE_LOG(INFO, USER1, "Copy DSCP is not supported\n");
110 		return -ENOTSUP;
111 	}
112 
113 	if (ipsec_xform->options.copy_flabel == 1 &&
114 	    sec_cap->ipsec.options.copy_flabel == 0) {
115 		if (!silent)
116 			RTE_LOG(INFO, USER1, "Copy Flow Label is not supported\n");
117 		return -ENOTSUP;
118 	}
119 
120 	if (ipsec_xform->options.copy_df == 1 &&
121 	    sec_cap->ipsec.options.copy_df == 0) {
122 		if (!silent)
123 			RTE_LOG(INFO, USER1, "Copy DP bit is not supported\n");
124 		return -ENOTSUP;
125 	}
126 
127 	if (ipsec_xform->options.dec_ttl == 1 &&
128 	    sec_cap->ipsec.options.dec_ttl == 0) {
129 		if (!silent)
130 			RTE_LOG(INFO, USER1, "Decrement TTL is not supported\n");
131 		return -ENOTSUP;
132 	}
133 
134 	if (ipsec_xform->options.ecn == 1 && sec_cap->ipsec.options.ecn == 0) {
135 		if (!silent)
136 			RTE_LOG(INFO, USER1, "ECN is not supported\n");
137 		return -ENOTSUP;
138 	}
139 
140 	if (ipsec_xform->options.stats == 1 &&
141 	    sec_cap->ipsec.options.stats == 0) {
142 		if (!silent)
143 			RTE_LOG(INFO, USER1, "Stats is not supported\n");
144 		return -ENOTSUP;
145 	}
146 
147 	if ((ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) &&
148 	    (ipsec_xform->options.iv_gen_disable == 1) &&
149 	    (sec_cap->ipsec.options.iv_gen_disable != 1)) {
150 		if (!silent)
151 			RTE_LOG(INFO, USER1,
152 				"Application provided IV is not supported\n");
153 		return -ENOTSUP;
154 	}
155 
156 	if ((ipsec_xform->direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
157 	    (ipsec_xform->options.tunnel_hdr_verify >
158 	    sec_cap->ipsec.options.tunnel_hdr_verify)) {
159 		if (!silent)
160 			RTE_LOG(INFO, USER1,
161 				"Tunnel header verify is not supported\n");
162 		return -ENOTSUP;
163 	}
164 
165 	if (ipsec_xform->options.ip_csum_enable == 1 &&
166 	    sec_cap->ipsec.options.ip_csum_enable == 0) {
167 		if (!silent)
168 			RTE_LOG(INFO, USER1,
169 				"Inner IP checksum is not supported\n");
170 		return -ENOTSUP;
171 	}
172 
173 	if (ipsec_xform->options.l4_csum_enable == 1 &&
174 	    sec_cap->ipsec.options.l4_csum_enable == 0) {
175 		if (!silent)
176 			RTE_LOG(INFO, USER1,
177 				"Inner L4 checksum is not supported\n");
178 		return -ENOTSUP;
179 	}
180 
181 	return 0;
182 }
183 
184 int
185 test_ipsec_crypto_caps_aead_verify(
186 		const struct rte_security_capability *sec_cap,
187 		struct rte_crypto_sym_xform *aead)
188 {
189 	const struct rte_cryptodev_symmetric_capability *sym_cap;
190 	const struct rte_cryptodev_capabilities *crypto_cap;
191 	int j = 0;
192 
193 	while ((crypto_cap = &sec_cap->crypto_capabilities[j++])->op !=
194 			RTE_CRYPTO_OP_TYPE_UNDEFINED) {
195 		if (crypto_cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
196 				crypto_cap->sym.xform_type == aead->type &&
197 				crypto_cap->sym.aead.algo == aead->aead.algo) {
198 			sym_cap = &crypto_cap->sym;
199 			if (rte_cryptodev_sym_capability_check_aead(sym_cap,
200 					aead->aead.key.length,
201 					aead->aead.digest_length,
202 					aead->aead.aad_length,
203 					aead->aead.iv.length) == 0)
204 				return 0;
205 		}
206 	}
207 
208 	return -ENOTSUP;
209 }
210 
211 int
212 test_ipsec_crypto_caps_cipher_verify(
213 		const struct rte_security_capability *sec_cap,
214 		struct rte_crypto_sym_xform *cipher)
215 {
216 	const struct rte_cryptodev_symmetric_capability *sym_cap;
217 	const struct rte_cryptodev_capabilities *cap;
218 	int j = 0;
219 
220 	while ((cap = &sec_cap->crypto_capabilities[j++])->op !=
221 			RTE_CRYPTO_OP_TYPE_UNDEFINED) {
222 		if (cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
223 				cap->sym.xform_type == cipher->type &&
224 				cap->sym.cipher.algo == cipher->cipher.algo) {
225 			sym_cap = &cap->sym;
226 			if (rte_cryptodev_sym_capability_check_cipher(sym_cap,
227 					cipher->cipher.key.length,
228 					cipher->cipher.iv.length) == 0)
229 				return 0;
230 		}
231 	}
232 
233 	return -ENOTSUP;
234 }
235 
236 int
237 test_ipsec_crypto_caps_auth_verify(
238 		const struct rte_security_capability *sec_cap,
239 		struct rte_crypto_sym_xform *auth)
240 {
241 	const struct rte_cryptodev_symmetric_capability *sym_cap;
242 	const struct rte_cryptodev_capabilities *cap;
243 	int j = 0;
244 
245 	while ((cap = &sec_cap->crypto_capabilities[j++])->op !=
246 			RTE_CRYPTO_OP_TYPE_UNDEFINED) {
247 		if (cap->op == RTE_CRYPTO_OP_TYPE_SYMMETRIC &&
248 				cap->sym.xform_type == auth->type &&
249 				cap->sym.auth.algo == auth->auth.algo) {
250 			sym_cap = &cap->sym;
251 			if (rte_cryptodev_sym_capability_check_auth(sym_cap,
252 					auth->auth.key.length,
253 					auth->auth.digest_length,
254 					auth->auth.iv.length) == 0)
255 				return 0;
256 		}
257 	}
258 
259 	return -ENOTSUP;
260 }
261 
262 void
263 test_ipsec_td_in_from_out(const struct ipsec_test_data *td_out,
264 			  struct ipsec_test_data *td_in)
265 {
266 	memcpy(td_in, td_out, sizeof(*td_in));
267 
268 	/* Populate output text of td_in with input text of td_out */
269 	memcpy(td_in->output_text.data, td_out->input_text.data,
270 	       td_out->input_text.len);
271 	td_in->output_text.len = td_out->input_text.len;
272 
273 	/* Populate input text of td_in with output text of td_out */
274 	memcpy(td_in->input_text.data, td_out->output_text.data,
275 	       td_out->output_text.len);
276 	td_in->input_text.len = td_out->output_text.len;
277 
278 	td_in->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
279 
280 	if (td_in->aead) {
281 		td_in->xform.aead.aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT;
282 	} else {
283 		td_in->xform.chain.auth.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
284 		td_in->xform.chain.cipher.cipher.op =
285 				RTE_CRYPTO_CIPHER_OP_DECRYPT;
286 	}
287 }
288 
289 static bool
290 is_ipv4(void *ip)
291 {
292 	struct rte_ipv4_hdr *ipv4 = ip;
293 	uint8_t ip_ver;
294 
295 	ip_ver = (ipv4->version_ihl & 0xf0) >> RTE_IPV4_IHL_MULTIPLIER;
296 	if (ip_ver == IPVERSION)
297 		return true;
298 	else
299 		return false;
300 }
301 
302 static void
303 test_ipsec_csum_init(void *ip, bool l3, bool l4)
304 {
305 	struct rte_ipv4_hdr *ipv4;
306 	struct rte_tcp_hdr *tcp;
307 	struct rte_udp_hdr *udp;
308 	uint8_t next_proto;
309 	uint8_t size;
310 
311 	if (is_ipv4(ip)) {
312 		ipv4 = ip;
313 		size = sizeof(struct rte_ipv4_hdr);
314 		next_proto = ipv4->next_proto_id;
315 
316 		if (l3)
317 			ipv4->hdr_checksum = 0;
318 	} else {
319 		size = sizeof(struct rte_ipv6_hdr);
320 		next_proto = ((struct rte_ipv6_hdr *)ip)->proto;
321 	}
322 
323 	if (l4) {
324 		switch (next_proto) {
325 		case IPPROTO_TCP:
326 			tcp = (struct rte_tcp_hdr *)RTE_PTR_ADD(ip, size);
327 			tcp->cksum = 0;
328 			break;
329 		case IPPROTO_UDP:
330 			udp = (struct rte_udp_hdr *)RTE_PTR_ADD(ip, size);
331 			udp->dgram_cksum = 0;
332 			break;
333 		default:
334 			return;
335 		}
336 	}
337 }
338 
339 void
340 test_ipsec_td_prepare(const struct crypto_param *param1,
341 		      const struct crypto_param *param2,
342 		      const struct ipsec_test_flags *flags,
343 		      struct ipsec_test_data *td_array,
344 		      int nb_td)
345 
346 {
347 	struct ipsec_test_data *td;
348 	int i;
349 
350 	memset(td_array, 0, nb_td * sizeof(*td));
351 
352 	for (i = 0; i < nb_td; i++) {
353 		td = &td_array[i];
354 
355 		/* Prepare fields based on param */
356 
357 		if (param1->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
358 			/* Copy template for packet & key fields */
359 			if (flags->ipv6)
360 				memcpy(td, &pkt_aes_256_gcm_v6, sizeof(*td));
361 			else
362 				memcpy(td, &pkt_aes_256_gcm, sizeof(*td));
363 
364 			td->aead = true;
365 			td->xform.aead.aead.algo = param1->alg.aead;
366 			td->xform.aead.aead.key.length = param1->key_length;
367 		} else {
368 			/* Copy template for packet & key fields */
369 			if (flags->ipv6)
370 				memcpy(td, &pkt_aes_128_cbc_hmac_sha256_v6,
371 					sizeof(*td));
372 			else
373 				memcpy(td, &pkt_aes_128_cbc_hmac_sha256,
374 					sizeof(*td));
375 
376 			td->aead = false;
377 			td->xform.chain.cipher.cipher.algo = param1->alg.cipher;
378 			td->xform.chain.cipher.cipher.key.length =
379 					param1->key_length;
380 			td->xform.chain.cipher.cipher.iv.length =
381 					param1->iv_length;
382 			td->xform.chain.auth.auth.algo = param2->alg.auth;
383 			td->xform.chain.auth.auth.key.length =
384 					param2->key_length;
385 			td->xform.chain.auth.auth.digest_length =
386 					param2->digest_length;
387 
388 		}
389 
390 		if (flags->iv_gen)
391 			td->ipsec_xform.options.iv_gen_disable = 0;
392 
393 		if (flags->sa_expiry_pkts_soft)
394 			td->ipsec_xform.life.packets_soft_limit =
395 					IPSEC_TEST_PACKETS_MAX - 1;
396 
397 		if (flags->ip_csum) {
398 			td->ipsec_xform.options.ip_csum_enable = 1;
399 			test_ipsec_csum_init(&td->input_text.data, true, false);
400 		}
401 
402 		if (flags->l4_csum) {
403 			td->ipsec_xform.options.l4_csum_enable = 1;
404 			test_ipsec_csum_init(&td->input_text.data, false, true);
405 		}
406 
407 		if (flags->transport) {
408 			td->ipsec_xform.mode =
409 					RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT;
410 		} else {
411 			td->ipsec_xform.mode =
412 					RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
413 
414 			if (flags->tunnel_ipv6)
415 				td->ipsec_xform.tunnel.type =
416 						RTE_SECURITY_IPSEC_TUNNEL_IPV6;
417 			else
418 				td->ipsec_xform.tunnel.type =
419 						RTE_SECURITY_IPSEC_TUNNEL_IPV4;
420 		}
421 
422 		if (flags->stats_success)
423 			td->ipsec_xform.options.stats = 1;
424 
425 		if (flags->fragment) {
426 			struct rte_ipv4_hdr *ip;
427 			ip = (struct rte_ipv4_hdr *)&td->input_text.data;
428 			ip->fragment_offset = 4;
429 			ip->hdr_checksum = rte_ipv4_cksum(ip);
430 		}
431 
432 		if (flags->df == TEST_IPSEC_COPY_DF_INNER_0 ||
433 		    flags->df == TEST_IPSEC_COPY_DF_INNER_1)
434 			td->ipsec_xform.options.copy_df = 1;
435 	}
436 }
437 
438 void
439 test_ipsec_td_update(struct ipsec_test_data td_inb[],
440 		     const struct ipsec_test_data td_outb[],
441 		     int nb_td,
442 		     const struct ipsec_test_flags *flags)
443 {
444 	int i;
445 
446 	for (i = 0; i < nb_td; i++) {
447 		memcpy(td_inb[i].output_text.data, td_outb[i].input_text.data,
448 		       td_outb[i].input_text.len);
449 		td_inb[i].output_text.len = td_outb->input_text.len;
450 
451 		if (flags->icv_corrupt) {
452 			int icv_pos = td_inb[i].input_text.len - 4;
453 			td_inb[i].input_text.data[icv_pos] += 1;
454 		}
455 
456 		if (flags->sa_expiry_pkts_hard)
457 			td_inb[i].ipsec_xform.life.packets_hard_limit =
458 					IPSEC_TEST_PACKETS_MAX - 1;
459 
460 		if (flags->udp_encap)
461 			td_inb[i].ipsec_xform.options.udp_encap = 1;
462 
463 		if (flags->udp_ports_verify)
464 			td_inb[i].ipsec_xform.options.udp_ports_verify = 1;
465 
466 		td_inb[i].ipsec_xform.options.tunnel_hdr_verify =
467 			flags->tunnel_hdr_verify;
468 
469 		if (flags->ip_csum)
470 			td_inb[i].ipsec_xform.options.ip_csum_enable = 1;
471 
472 		if (flags->l4_csum)
473 			td_inb[i].ipsec_xform.options.l4_csum_enable = 1;
474 
475 		/* Clear outbound specific flags */
476 		td_inb[i].ipsec_xform.options.iv_gen_disable = 0;
477 	}
478 }
479 
480 void
481 test_ipsec_display_alg(const struct crypto_param *param1,
482 		       const struct crypto_param *param2)
483 {
484 	if (param1->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
485 		printf("\t%s [%d]",
486 		       rte_crypto_aead_algorithm_strings[param1->alg.aead],
487 		       param1->key_length * 8);
488 	} else {
489 		printf("\t%s",
490 		       rte_crypto_cipher_algorithm_strings[param1->alg.cipher]);
491 		if (param1->alg.cipher != RTE_CRYPTO_CIPHER_NULL)
492 			printf(" [%d]", param1->key_length * 8);
493 		printf(" %s",
494 		       rte_crypto_auth_algorithm_strings[param2->alg.auth]);
495 		if (param2->alg.auth != RTE_CRYPTO_AUTH_NULL)
496 			printf(" [%dB ICV]", param2->digest_length);
497 	}
498 	printf("\n");
499 }
500 
501 static int
502 test_ipsec_tunnel_hdr_len_get(const struct ipsec_test_data *td)
503 {
504 	int len = 0;
505 
506 	if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
507 		if (td->ipsec_xform.mode == RTE_SECURITY_IPSEC_SA_MODE_TUNNEL) {
508 			if (td->ipsec_xform.tunnel.type ==
509 					RTE_SECURITY_IPSEC_TUNNEL_IPV4)
510 				len += sizeof(struct rte_ipv4_hdr);
511 			else
512 				len += sizeof(struct rte_ipv6_hdr);
513 		}
514 	}
515 
516 	return len;
517 }
518 
519 static int
520 test_ipsec_iv_verify_push(struct rte_mbuf *m, const struct ipsec_test_data *td)
521 {
522 	static uint8_t iv_queue[IV_LEN_MAX * IPSEC_TEST_PACKETS_MAX];
523 	uint8_t *iv_tmp, *output_text = rte_pktmbuf_mtod(m, uint8_t *);
524 	int i, iv_pos, iv_len;
525 	static int index;
526 
527 	if (td->aead)
528 		iv_len = td->xform.aead.aead.iv.length - td->salt.len;
529 	else
530 		iv_len = td->xform.chain.cipher.cipher.iv.length;
531 
532 	iv_pos = test_ipsec_tunnel_hdr_len_get(td) + sizeof(struct rte_esp_hdr);
533 	output_text += iv_pos;
534 
535 	TEST_ASSERT(iv_len <= IV_LEN_MAX, "IV length greater than supported");
536 
537 	/* Compare against previous values */
538 	for (i = 0; i < index; i++) {
539 		iv_tmp = &iv_queue[i * IV_LEN_MAX];
540 
541 		if (memcmp(output_text, iv_tmp, iv_len) == 0) {
542 			printf("IV repeated");
543 			return TEST_FAILED;
544 		}
545 	}
546 
547 	/* Save IV for future comparisons */
548 
549 	iv_tmp = &iv_queue[index * IV_LEN_MAX];
550 	memcpy(iv_tmp, output_text, iv_len);
551 	index++;
552 
553 	if (index == IPSEC_TEST_PACKETS_MAX)
554 		index = 0;
555 
556 	return TEST_SUCCESS;
557 }
558 
559 static int
560 test_ipsec_l3_csum_verify(struct rte_mbuf *m)
561 {
562 	uint16_t actual_cksum, expected_cksum;
563 	struct rte_ipv4_hdr *ip;
564 
565 	ip = rte_pktmbuf_mtod(m, struct rte_ipv4_hdr *);
566 
567 	if (!is_ipv4((void *)ip))
568 		return TEST_SKIPPED;
569 
570 	actual_cksum = ip->hdr_checksum;
571 
572 	ip->hdr_checksum = 0;
573 
574 	expected_cksum = rte_ipv4_cksum(ip);
575 
576 	if (actual_cksum != expected_cksum)
577 		return TEST_FAILED;
578 
579 	return TEST_SUCCESS;
580 }
581 
582 static int
583 test_ipsec_l4_csum_verify(struct rte_mbuf *m)
584 {
585 	uint16_t actual_cksum = 0, expected_cksum = 0;
586 	struct rte_ipv4_hdr *ipv4;
587 	struct rte_ipv6_hdr *ipv6;
588 	struct rte_tcp_hdr *tcp;
589 	struct rte_udp_hdr *udp;
590 	void *ip, *l4;
591 
592 	ip = rte_pktmbuf_mtod(m, void *);
593 
594 	if (is_ipv4(ip)) {
595 		ipv4 = ip;
596 		l4 = RTE_PTR_ADD(ipv4, sizeof(struct rte_ipv4_hdr));
597 
598 		switch (ipv4->next_proto_id) {
599 		case IPPROTO_TCP:
600 			tcp = (struct rte_tcp_hdr *)l4;
601 			actual_cksum = tcp->cksum;
602 			tcp->cksum = 0;
603 			expected_cksum = rte_ipv4_udptcp_cksum(ipv4, l4);
604 			break;
605 		case IPPROTO_UDP:
606 			udp = (struct rte_udp_hdr *)l4;
607 			actual_cksum = udp->dgram_cksum;
608 			udp->dgram_cksum = 0;
609 			expected_cksum = rte_ipv4_udptcp_cksum(ipv4, l4);
610 			break;
611 		default:
612 			break;
613 		}
614 	} else {
615 		ipv6 = ip;
616 		l4 = RTE_PTR_ADD(ipv6, sizeof(struct rte_ipv6_hdr));
617 
618 		switch (ipv6->proto) {
619 		case IPPROTO_TCP:
620 			tcp = (struct rte_tcp_hdr *)l4;
621 			actual_cksum = tcp->cksum;
622 			tcp->cksum = 0;
623 			expected_cksum = rte_ipv6_udptcp_cksum(ipv6, l4);
624 			break;
625 		case IPPROTO_UDP:
626 			udp = (struct rte_udp_hdr *)l4;
627 			actual_cksum = udp->dgram_cksum;
628 			udp->dgram_cksum = 0;
629 			expected_cksum = rte_ipv6_udptcp_cksum(ipv6, l4);
630 			break;
631 		default:
632 			break;
633 		}
634 	}
635 
636 	if (actual_cksum != expected_cksum)
637 		return TEST_FAILED;
638 
639 	return TEST_SUCCESS;
640 }
641 
642 static int
643 test_ipsec_td_verify(struct rte_mbuf *m, const struct ipsec_test_data *td,
644 		     bool silent, const struct ipsec_test_flags *flags)
645 {
646 	uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
647 	uint32_t skip, len = rte_pktmbuf_pkt_len(m);
648 	uint8_t td_output_text[4096];
649 	int ret;
650 
651 	/* For tests with status as error for test success, skip verification */
652 	if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS &&
653 	    (flags->icv_corrupt ||
654 	     flags->sa_expiry_pkts_hard ||
655 	     flags->tunnel_hdr_verify))
656 		return TEST_SUCCESS;
657 
658 	if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS &&
659 	   flags->udp_encap) {
660 		const struct rte_ipv4_hdr *iph4;
661 		const struct rte_ipv6_hdr *iph6;
662 
663 		if (td->ipsec_xform.tunnel.type ==
664 				RTE_SECURITY_IPSEC_TUNNEL_IPV4) {
665 			iph4 = (const struct rte_ipv4_hdr *)output_text;
666 			if (iph4->next_proto_id != IPPROTO_UDP) {
667 				printf("UDP header is not found\n");
668 				return TEST_FAILED;
669 			}
670 		} else {
671 			iph6 = (const struct rte_ipv6_hdr *)output_text;
672 			if (iph6->proto != IPPROTO_UDP) {
673 				printf("UDP header is not found\n");
674 				return TEST_FAILED;
675 			}
676 		}
677 
678 		len -= sizeof(struct rte_udp_hdr);
679 		output_text += sizeof(struct rte_udp_hdr);
680 	}
681 
682 	if (len != td->output_text.len) {
683 		printf("Output length (%d) not matching with expected (%d)\n",
684 			len, td->output_text.len);
685 		return TEST_FAILED;
686 	}
687 
688 	if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) &&
689 				flags->fragment) {
690 		const struct rte_ipv4_hdr *iph4;
691 		iph4 = (const struct rte_ipv4_hdr *)output_text;
692 		if (iph4->fragment_offset) {
693 			printf("Output packet is fragmented");
694 			return TEST_FAILED;
695 		}
696 	}
697 
698 	skip = test_ipsec_tunnel_hdr_len_get(td);
699 
700 	len -= skip;
701 	output_text += skip;
702 
703 	if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
704 				flags->ip_csum) {
705 		if (m->ol_flags & RTE_MBUF_F_RX_IP_CKSUM_GOOD)
706 			ret = test_ipsec_l3_csum_verify(m);
707 		else
708 			ret = TEST_FAILED;
709 
710 		if (ret == TEST_FAILED)
711 			printf("Inner IP checksum test failed\n");
712 
713 		return ret;
714 	}
715 
716 	if ((td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
717 				flags->l4_csum) {
718 		if (m->ol_flags & RTE_MBUF_F_RX_L4_CKSUM_GOOD)
719 			ret = test_ipsec_l4_csum_verify(m);
720 		else
721 			ret = TEST_FAILED;
722 
723 		if (ret == TEST_FAILED)
724 			printf("Inner L4 checksum test failed\n");
725 
726 		return ret;
727 	}
728 
729 	memcpy(td_output_text, td->output_text.data + skip, len);
730 
731 	if (test_ipsec_pkt_update(td_output_text, flags)) {
732 		printf("Could not update expected vector");
733 		return TEST_FAILED;
734 	}
735 
736 	if (memcmp(output_text, td_output_text, len)) {
737 		if (silent)
738 			return TEST_FAILED;
739 
740 		printf("TestCase %s line %d: %s\n", __func__, __LINE__,
741 			"output text not as expected\n");
742 
743 		rte_hexdump(stdout, "expected", td_output_text, len);
744 		rte_hexdump(stdout, "actual", output_text, len);
745 		return TEST_FAILED;
746 	}
747 
748 	return TEST_SUCCESS;
749 }
750 
751 static int
752 test_ipsec_res_d_prepare(struct rte_mbuf *m, const struct ipsec_test_data *td,
753 		   struct ipsec_test_data *res_d)
754 {
755 	uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
756 	uint32_t len = rte_pktmbuf_pkt_len(m);
757 
758 	memcpy(res_d, td, sizeof(*res_d));
759 	memcpy(res_d->input_text.data, output_text, len);
760 	res_d->input_text.len = len;
761 
762 	res_d->ipsec_xform.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS;
763 	if (res_d->aead) {
764 		res_d->xform.aead.aead.op = RTE_CRYPTO_AEAD_OP_DECRYPT;
765 	} else {
766 		res_d->xform.chain.cipher.cipher.op =
767 				RTE_CRYPTO_CIPHER_OP_DECRYPT;
768 		res_d->xform.chain.auth.auth.op = RTE_CRYPTO_AUTH_OP_VERIFY;
769 	}
770 
771 	return TEST_SUCCESS;
772 }
773 
774 int
775 test_ipsec_post_process(struct rte_mbuf *m, const struct ipsec_test_data *td,
776 			struct ipsec_test_data *res_d, bool silent,
777 			const struct ipsec_test_flags *flags)
778 {
779 	uint8_t *output_text = rte_pktmbuf_mtod(m, uint8_t *);
780 	int ret;
781 
782 	if (td->ipsec_xform.direction == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
783 		const struct rte_ipv4_hdr *iph4;
784 		const struct rte_ipv6_hdr *iph6;
785 
786 		if (flags->iv_gen) {
787 			ret = test_ipsec_iv_verify_push(m, td);
788 			if (ret != TEST_SUCCESS)
789 				return ret;
790 		}
791 
792 		iph4 = (const struct rte_ipv4_hdr *)output_text;
793 
794 		if (td->ipsec_xform.mode ==
795 				RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT) {
796 			if (flags->ipv6) {
797 				iph6 = (const struct rte_ipv6_hdr *)output_text;
798 				if (is_valid_ipv6_pkt(iph6) == false) {
799 					printf("Transport packet is not IPv6\n");
800 					return TEST_FAILED;
801 				}
802 			} else {
803 				if (is_valid_ipv4_pkt(iph4) == false) {
804 					printf("Transport packet is not IPv4\n");
805 					return TEST_FAILED;
806 				}
807 			}
808 		} else {
809 			if (td->ipsec_xform.tunnel.type ==
810 					RTE_SECURITY_IPSEC_TUNNEL_IPV4) {
811 				uint16_t f_off;
812 
813 				if (is_valid_ipv4_pkt(iph4) == false) {
814 					printf("Tunnel outer header is not IPv4\n");
815 					return TEST_FAILED;
816 				}
817 
818 				f_off = rte_be_to_cpu_16(iph4->fragment_offset);
819 
820 				if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
821 				    flags->df == TEST_IPSEC_SET_DF_1_INNER_0) {
822 					if (!(f_off & RTE_IPV4_HDR_DF_FLAG)) {
823 						printf("DF bit is not set\n");
824 						return TEST_FAILED;
825 					}
826 				} else {
827 					if ((f_off & RTE_IPV4_HDR_DF_FLAG)) {
828 						printf("DF bit is set\n");
829 						return TEST_FAILED;
830 					}
831 				}
832 			} else {
833 				iph6 = (const struct rte_ipv6_hdr *)output_text;
834 				if (is_valid_ipv6_pkt(iph6) == false) {
835 					printf("Tunnel outer header is not IPv6\n");
836 					return TEST_FAILED;
837 				}
838 			}
839 		}
840 	}
841 
842 	/*
843 	 * In case of known vector tests & all inbound tests, res_d provided
844 	 * would be NULL and output data need to be validated against expected.
845 	 * For inbound, output_text would be plain packet and for outbound
846 	 * output_text would IPsec packet. Validate by comparing against
847 	 * known vectors.
848 	 *
849 	 * In case of combined mode tests, the output_text from outbound
850 	 * operation (ie, IPsec packet) would need to be inbound processed to
851 	 * obtain the plain text. Copy output_text to result data, 'res_d', so
852 	 * that inbound processing can be done.
853 	 */
854 
855 	if (res_d == NULL)
856 		return test_ipsec_td_verify(m, td, silent, flags);
857 	else
858 		return test_ipsec_res_d_prepare(m, td, res_d);
859 }
860 
861 int
862 test_ipsec_status_check(struct rte_crypto_op *op,
863 			const struct ipsec_test_flags *flags,
864 			enum rte_security_ipsec_sa_direction dir,
865 			int pkt_num)
866 {
867 	int ret = TEST_SUCCESS;
868 
869 	if (dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS &&
870 	    flags->sa_expiry_pkts_hard &&
871 	    pkt_num == IPSEC_TEST_PACKETS_MAX) {
872 		if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
873 			printf("SA hard expiry (pkts) test failed\n");
874 			return TEST_FAILED;
875 		} else {
876 			return TEST_SUCCESS;
877 		}
878 	}
879 
880 	if ((dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS) &&
881 	    flags->tunnel_hdr_verify) {
882 		if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
883 			printf("Tunnel header verify test case failed\n");
884 			return TEST_FAILED;
885 		} else {
886 			return TEST_SUCCESS;
887 		}
888 	}
889 
890 	if (dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS && flags->icv_corrupt) {
891 		if (op->status != RTE_CRYPTO_OP_STATUS_ERROR) {
892 			printf("ICV corruption test case failed\n");
893 			ret = TEST_FAILED;
894 		}
895 	} else {
896 		if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) {
897 			printf("Security op processing failed [pkt_num: %d]\n",
898 			       pkt_num);
899 			ret = TEST_FAILED;
900 		}
901 	}
902 
903 	if (flags->sa_expiry_pkts_soft && pkt_num == IPSEC_TEST_PACKETS_MAX) {
904 		if (!(op->aux_flags &
905 		      RTE_CRYPTO_OP_AUX_FLAGS_IPSEC_SOFT_EXPIRY)) {
906 			printf("SA soft expiry (pkts) test failed\n");
907 			ret = TEST_FAILED;
908 		}
909 	}
910 
911 	return ret;
912 }
913 
914 int
915 test_ipsec_stats_verify(struct rte_security_ctx *ctx,
916 			struct rte_security_session *sess,
917 			const struct ipsec_test_flags *flags,
918 			enum rte_security_ipsec_sa_direction dir)
919 {
920 	struct rte_security_stats stats = {0};
921 	int ret = TEST_SUCCESS;
922 
923 	if (flags->stats_success) {
924 		if (rte_security_session_stats_get(ctx, sess, &stats) < 0)
925 			return TEST_FAILED;
926 
927 		if (dir == RTE_SECURITY_IPSEC_SA_DIR_EGRESS) {
928 			if (stats.ipsec.opackets != 1 ||
929 			    stats.ipsec.oerrors != 0)
930 				ret = TEST_FAILED;
931 		} else {
932 			if (stats.ipsec.ipackets != 1 ||
933 			    stats.ipsec.ierrors != 0)
934 				ret = TEST_FAILED;
935 		}
936 	}
937 
938 	return ret;
939 }
940 
941 int
942 test_ipsec_pkt_update(uint8_t *pkt, const struct ipsec_test_flags *flags)
943 {
944 	struct rte_ipv4_hdr *iph4;
945 	bool cksum_dirty = false;
946 	uint16_t frag_off;
947 
948 	iph4 = (struct rte_ipv4_hdr *)pkt;
949 
950 	if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
951 	    flags->df == TEST_IPSEC_SET_DF_0_INNER_1 ||
952 	    flags->df == TEST_IPSEC_COPY_DF_INNER_0 ||
953 	    flags->df == TEST_IPSEC_SET_DF_1_INNER_0) {
954 
955 		if (!is_ipv4(iph4)) {
956 			printf("Invalid packet type");
957 			return -1;
958 		}
959 
960 		frag_off = rte_be_to_cpu_16(iph4->fragment_offset);
961 
962 		if (flags->df == TEST_IPSEC_COPY_DF_INNER_1 ||
963 		    flags->df == TEST_IPSEC_SET_DF_0_INNER_1)
964 			frag_off |= RTE_IPV4_HDR_DF_FLAG;
965 		else
966 			frag_off &= ~RTE_IPV4_HDR_DF_FLAG;
967 
968 		iph4->fragment_offset = rte_cpu_to_be_16(frag_off);
969 		cksum_dirty = true;
970 	}
971 
972 	if (cksum_dirty && is_ipv4(iph4)) {
973 		iph4->hdr_checksum = 0;
974 		iph4->hdr_checksum = rte_ipv4_cksum(iph4);
975 	}
976 
977 	return 0;
978 }
979 
980 #endif /* !RTE_EXEC_ENV_WINDOWS */
981