1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2017 Intel Corporation 3 */ 4 5 #include <stdarg.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <signal.h> 9 #include <string.h> 10 #include <time.h> 11 #include <fcntl.h> 12 #ifndef RTE_EXEC_ENV_WINDOWS 13 #include <sys/mman.h> 14 #endif 15 #include <sys/types.h> 16 #include <errno.h> 17 #include <stdbool.h> 18 19 #include <sys/queue.h> 20 #include <sys/stat.h> 21 22 #include <stdint.h> 23 #include <unistd.h> 24 #include <inttypes.h> 25 26 #include <rte_common.h> 27 #include <rte_errno.h> 28 #include <rte_byteorder.h> 29 #include <rte_log.h> 30 #include <rte_debug.h> 31 #include <rte_cycles.h> 32 #include <rte_memory.h> 33 #include <rte_memcpy.h> 34 #include <rte_launch.h> 35 #include <rte_eal.h> 36 #include <rte_alarm.h> 37 #include <rte_per_lcore.h> 38 #include <rte_lcore.h> 39 #include <rte_atomic.h> 40 #include <rte_branch_prediction.h> 41 #include <rte_mempool.h> 42 #include <rte_malloc.h> 43 #include <rte_mbuf.h> 44 #include <rte_mbuf_pool_ops.h> 45 #include <rte_interrupts.h> 46 #include <rte_pci.h> 47 #include <rte_ether.h> 48 #include <rte_ethdev.h> 49 #include <rte_dev.h> 50 #include <rte_string_fns.h> 51 #ifdef RTE_NET_IXGBE 52 #include <rte_pmd_ixgbe.h> 53 #endif 54 #ifdef RTE_LIB_PDUMP 55 #include <rte_pdump.h> 56 #endif 57 #include <rte_flow.h> 58 #include <rte_metrics.h> 59 #ifdef RTE_LIB_BITRATESTATS 60 #include <rte_bitrate.h> 61 #endif 62 #ifdef RTE_LIB_LATENCYSTATS 63 #include <rte_latencystats.h> 64 #endif 65 #ifdef RTE_EXEC_ENV_WINDOWS 66 #include <process.h> 67 #endif 68 69 #include "testpmd.h" 70 71 #ifndef MAP_HUGETLB 72 /* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */ 73 #define HUGE_FLAG (0x40000) 74 #else 75 #define HUGE_FLAG MAP_HUGETLB 76 #endif 77 78 #ifndef MAP_HUGE_SHIFT 79 /* older kernels (or FreeBSD) will not have this define */ 80 #define HUGE_SHIFT (26) 81 #else 82 #define HUGE_SHIFT MAP_HUGE_SHIFT 83 #endif 84 85 #define EXTMEM_HEAP_NAME "extmem" 86 #define EXTBUF_ZONE_SIZE RTE_PGSIZE_2M 87 88 uint16_t verbose_level = 0; /**< Silent by default. */ 89 int testpmd_logtype; /**< Log type for testpmd logs */ 90 91 /* use main core for command line ? */ 92 uint8_t interactive = 0; 93 uint8_t auto_start = 0; 94 uint8_t tx_first; 95 char cmdline_filename[PATH_MAX] = {0}; 96 97 /* 98 * NUMA support configuration. 99 * When set, the NUMA support attempts to dispatch the allocation of the 100 * RX and TX memory rings, and of the DMA memory buffers (mbufs) for the 101 * probed ports among the CPU sockets 0 and 1. 102 * Otherwise, all memory is allocated from CPU socket 0. 103 */ 104 uint8_t numa_support = 1; /**< numa enabled by default */ 105 106 /* 107 * In UMA mode,all memory is allocated from socket 0 if --socket-num is 108 * not configured. 109 */ 110 uint8_t socket_num = UMA_NO_CONFIG; 111 112 /* 113 * Select mempool allocation type: 114 * - native: use regular DPDK memory 115 * - anon: use regular DPDK memory to create mempool, but populate using 116 * anonymous memory (may not be IOVA-contiguous) 117 * - xmem: use externally allocated hugepage memory 118 */ 119 uint8_t mp_alloc_type = MP_ALLOC_NATIVE; 120 121 /* 122 * Store specified sockets on which memory pool to be used by ports 123 * is allocated. 124 */ 125 uint8_t port_numa[RTE_MAX_ETHPORTS]; 126 127 /* 128 * Store specified sockets on which RX ring to be used by ports 129 * is allocated. 130 */ 131 uint8_t rxring_numa[RTE_MAX_ETHPORTS]; 132 133 /* 134 * Store specified sockets on which TX ring to be used by ports 135 * is allocated. 136 */ 137 uint8_t txring_numa[RTE_MAX_ETHPORTS]; 138 139 /* 140 * Record the Ethernet address of peer target ports to which packets are 141 * forwarded. 142 * Must be instantiated with the ethernet addresses of peer traffic generator 143 * ports. 144 */ 145 struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS]; 146 portid_t nb_peer_eth_addrs = 0; 147 148 /* 149 * Probed Target Environment. 150 */ 151 struct rte_port *ports; /**< For all probed ethernet ports. */ 152 portid_t nb_ports; /**< Number of probed ethernet ports. */ 153 struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */ 154 lcoreid_t nb_lcores; /**< Number of probed logical cores. */ 155 156 portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */ 157 158 /* 159 * Test Forwarding Configuration. 160 * nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores 161 * nb_fwd_ports <= nb_cfg_ports <= nb_ports 162 */ 163 lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */ 164 lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */ 165 portid_t nb_cfg_ports; /**< Number of configured ports. */ 166 portid_t nb_fwd_ports; /**< Number of forwarding ports. */ 167 168 unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */ 169 portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */ 170 171 struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */ 172 streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */ 173 174 /* 175 * Forwarding engines. 176 */ 177 struct fwd_engine * fwd_engines[] = { 178 &io_fwd_engine, 179 &mac_fwd_engine, 180 &mac_swap_engine, 181 &flow_gen_engine, 182 &rx_only_engine, 183 &tx_only_engine, 184 &csum_fwd_engine, 185 &icmp_echo_engine, 186 &noisy_vnf_engine, 187 &five_tuple_swap_fwd_engine, 188 #ifdef RTE_LIBRTE_IEEE1588 189 &ieee1588_fwd_engine, 190 #endif 191 NULL, 192 }; 193 194 struct rte_mempool *mempools[RTE_MAX_NUMA_NODES * MAX_SEGS_BUFFER_SPLIT]; 195 uint16_t mempool_flags; 196 197 struct fwd_config cur_fwd_config; 198 struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */ 199 uint32_t retry_enabled; 200 uint32_t burst_tx_delay_time = BURST_TX_WAIT_US; 201 uint32_t burst_tx_retry_num = BURST_TX_RETRIES; 202 203 uint32_t mbuf_data_size_n = 1; /* Number of specified mbuf sizes. */ 204 uint16_t mbuf_data_size[MAX_SEGS_BUFFER_SPLIT] = { 205 DEFAULT_MBUF_DATA_SIZE 206 }; /**< Mbuf data space size. */ 207 uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if 208 * specified on command-line. */ 209 uint16_t stats_period; /**< Period to show statistics (disabled by default) */ 210 211 /* 212 * In container, it cannot terminate the process which running with 'stats-period' 213 * option. Set flag to exit stats period loop after received SIGINT/SIGTERM. 214 */ 215 uint8_t f_quit; 216 217 /* 218 * Configuration of packet segments used to scatter received packets 219 * if some of split features is configured. 220 */ 221 uint16_t rx_pkt_seg_lengths[MAX_SEGS_BUFFER_SPLIT]; 222 uint8_t rx_pkt_nb_segs; /**< Number of segments to split */ 223 uint16_t rx_pkt_seg_offsets[MAX_SEGS_BUFFER_SPLIT]; 224 uint8_t rx_pkt_nb_offs; /**< Number of specified offsets */ 225 226 /* 227 * Configuration of packet segments used by the "txonly" processing engine. 228 */ 229 uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */ 230 uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = { 231 TXONLY_DEF_PACKET_LEN, 232 }; 233 uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */ 234 235 enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF; 236 /**< Split policy for packets to TX. */ 237 238 uint8_t txonly_multi_flow; 239 /**< Whether multiple flows are generated in TXONLY mode. */ 240 241 uint32_t tx_pkt_times_inter; 242 /**< Timings for send scheduling in TXONLY mode, time between bursts. */ 243 244 uint32_t tx_pkt_times_intra; 245 /**< Timings for send scheduling in TXONLY mode, time between packets. */ 246 247 uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */ 248 uint16_t nb_pkt_flowgen_clones; /**< Number of Tx packet clones to send in flowgen mode. */ 249 int nb_flows_flowgen = 1024; /**< Number of flows in flowgen mode. */ 250 uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */ 251 252 /* current configuration is in DCB or not,0 means it is not in DCB mode */ 253 uint8_t dcb_config = 0; 254 255 /* 256 * Configurable number of RX/TX queues. 257 */ 258 queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */ 259 queueid_t nb_rxq = 1; /**< Number of RX queues per port. */ 260 queueid_t nb_txq = 1; /**< Number of TX queues per port. */ 261 262 /* 263 * Configurable number of RX/TX ring descriptors. 264 * Defaults are supplied by drivers via ethdev. 265 */ 266 #define RTE_TEST_RX_DESC_DEFAULT 0 267 #define RTE_TEST_TX_DESC_DEFAULT 0 268 uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */ 269 uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */ 270 271 #define RTE_PMD_PARAM_UNSET -1 272 /* 273 * Configurable values of RX and TX ring threshold registers. 274 */ 275 276 int8_t rx_pthresh = RTE_PMD_PARAM_UNSET; 277 int8_t rx_hthresh = RTE_PMD_PARAM_UNSET; 278 int8_t rx_wthresh = RTE_PMD_PARAM_UNSET; 279 280 int8_t tx_pthresh = RTE_PMD_PARAM_UNSET; 281 int8_t tx_hthresh = RTE_PMD_PARAM_UNSET; 282 int8_t tx_wthresh = RTE_PMD_PARAM_UNSET; 283 284 /* 285 * Configurable value of RX free threshold. 286 */ 287 int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET; 288 289 /* 290 * Configurable value of RX drop enable. 291 */ 292 int8_t rx_drop_en = RTE_PMD_PARAM_UNSET; 293 294 /* 295 * Configurable value of TX free threshold. 296 */ 297 int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET; 298 299 /* 300 * Configurable value of TX RS bit threshold. 301 */ 302 int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET; 303 304 /* 305 * Configurable value of buffered packets before sending. 306 */ 307 uint16_t noisy_tx_sw_bufsz; 308 309 /* 310 * Configurable value of packet buffer timeout. 311 */ 312 uint16_t noisy_tx_sw_buf_flush_time; 313 314 /* 315 * Configurable value for size of VNF internal memory area 316 * used for simulating noisy neighbour behaviour 317 */ 318 uint64_t noisy_lkup_mem_sz; 319 320 /* 321 * Configurable value of number of random writes done in 322 * VNF simulation memory area. 323 */ 324 uint64_t noisy_lkup_num_writes; 325 326 /* 327 * Configurable value of number of random reads done in 328 * VNF simulation memory area. 329 */ 330 uint64_t noisy_lkup_num_reads; 331 332 /* 333 * Configurable value of number of random reads/writes done in 334 * VNF simulation memory area. 335 */ 336 uint64_t noisy_lkup_num_reads_writes; 337 338 /* 339 * Receive Side Scaling (RSS) configuration. 340 */ 341 uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */ 342 343 /* 344 * Port topology configuration 345 */ 346 uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */ 347 348 /* 349 * Avoids to flush all the RX streams before starts forwarding. 350 */ 351 uint8_t no_flush_rx = 0; /* flush by default */ 352 353 /* 354 * Flow API isolated mode. 355 */ 356 uint8_t flow_isolate_all; 357 358 /* 359 * Avoids to check link status when starting/stopping a port. 360 */ 361 uint8_t no_link_check = 0; /* check by default */ 362 363 /* 364 * Don't automatically start all ports in interactive mode. 365 */ 366 uint8_t no_device_start = 0; 367 368 /* 369 * Enable link status change notification 370 */ 371 uint8_t lsc_interrupt = 1; /* enabled by default */ 372 373 /* 374 * Enable device removal notification. 375 */ 376 uint8_t rmv_interrupt = 1; /* enabled by default */ 377 378 uint8_t hot_plug = 0; /**< hotplug disabled by default. */ 379 380 /* After attach, port setup is called on event or by iterator */ 381 bool setup_on_probe_event = true; 382 383 /* Clear ptypes on port initialization. */ 384 uint8_t clear_ptypes = true; 385 386 /* Hairpin ports configuration mode. */ 387 uint16_t hairpin_mode; 388 389 /* Pretty printing of ethdev events */ 390 static const char * const eth_event_desc[] = { 391 [RTE_ETH_EVENT_UNKNOWN] = "unknown", 392 [RTE_ETH_EVENT_INTR_LSC] = "link state change", 393 [RTE_ETH_EVENT_QUEUE_STATE] = "queue state", 394 [RTE_ETH_EVENT_INTR_RESET] = "reset", 395 [RTE_ETH_EVENT_VF_MBOX] = "VF mbox", 396 [RTE_ETH_EVENT_IPSEC] = "IPsec", 397 [RTE_ETH_EVENT_MACSEC] = "MACsec", 398 [RTE_ETH_EVENT_INTR_RMV] = "device removal", 399 [RTE_ETH_EVENT_NEW] = "device probed", 400 [RTE_ETH_EVENT_DESTROY] = "device released", 401 [RTE_ETH_EVENT_FLOW_AGED] = "flow aged", 402 [RTE_ETH_EVENT_MAX] = NULL, 403 }; 404 405 /* 406 * Display or mask ether events 407 * Default to all events except VF_MBOX 408 */ 409 uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) | 410 (UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) | 411 (UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) | 412 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) | 413 (UINT32_C(1) << RTE_ETH_EVENT_IPSEC) | 414 (UINT32_C(1) << RTE_ETH_EVENT_MACSEC) | 415 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV) | 416 (UINT32_C(1) << RTE_ETH_EVENT_FLOW_AGED); 417 /* 418 * Decide if all memory are locked for performance. 419 */ 420 int do_mlockall = 0; 421 422 /* 423 * NIC bypass mode configuration options. 424 */ 425 426 #if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS 427 /* The NIC bypass watchdog timeout. */ 428 uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF; 429 #endif 430 431 432 #ifdef RTE_LIB_LATENCYSTATS 433 434 /* 435 * Set when latency stats is enabled in the commandline 436 */ 437 uint8_t latencystats_enabled; 438 439 /* 440 * Lcore ID to serive latency statistics. 441 */ 442 lcoreid_t latencystats_lcore_id = -1; 443 444 #endif 445 446 /* 447 * Ethernet device configuration. 448 */ 449 struct rte_eth_rxmode rx_mode = { 450 /* Default maximum frame length. 451 * Zero is converted to "RTE_ETHER_MTU + PMD Ethernet overhead" 452 * in init_config(). 453 */ 454 .max_rx_pkt_len = 0, 455 }; 456 457 struct rte_eth_txmode tx_mode = { 458 .offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE, 459 }; 460 461 struct rte_fdir_conf fdir_conf = { 462 .mode = RTE_FDIR_MODE_NONE, 463 .pballoc = RTE_FDIR_PBALLOC_64K, 464 .status = RTE_FDIR_REPORT_STATUS, 465 .mask = { 466 .vlan_tci_mask = 0xFFEF, 467 .ipv4_mask = { 468 .src_ip = 0xFFFFFFFF, 469 .dst_ip = 0xFFFFFFFF, 470 }, 471 .ipv6_mask = { 472 .src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 473 .dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 474 }, 475 .src_port_mask = 0xFFFF, 476 .dst_port_mask = 0xFFFF, 477 .mac_addr_byte_mask = 0xFF, 478 .tunnel_type_mask = 1, 479 .tunnel_id_mask = 0xFFFFFFFF, 480 }, 481 .drop_queue = 127, 482 }; 483 484 volatile int test_done = 1; /* stop packet forwarding when set to 1. */ 485 486 /* 487 * Display zero values by default for xstats 488 */ 489 uint8_t xstats_hide_zero; 490 491 /* 492 * Measure of CPU cycles disabled by default 493 */ 494 uint8_t record_core_cycles; 495 496 /* 497 * Display of RX and TX bursts disabled by default 498 */ 499 uint8_t record_burst_stats; 500 501 unsigned int num_sockets = 0; 502 unsigned int socket_ids[RTE_MAX_NUMA_NODES]; 503 504 #ifdef RTE_LIB_BITRATESTATS 505 /* Bitrate statistics */ 506 struct rte_stats_bitrates *bitrate_data; 507 lcoreid_t bitrate_lcore_id; 508 uint8_t bitrate_enabled; 509 #endif 510 511 struct gro_status gro_ports[RTE_MAX_ETHPORTS]; 512 uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES; 513 514 /* 515 * hexadecimal bitmask of RX mq mode can be enabled. 516 */ 517 enum rte_eth_rx_mq_mode rx_mq_mode = ETH_MQ_RX_VMDQ_DCB_RSS; 518 519 /* 520 * Used to set forced link speed 521 */ 522 uint32_t eth_link_speed; 523 524 /* 525 * ID of the current process in multi-process, used to 526 * configure the queues to be polled. 527 */ 528 int proc_id; 529 530 /* 531 * Number of processes in multi-process, used to 532 * configure the queues to be polled. 533 */ 534 unsigned int num_procs = 1; 535 536 static int 537 eth_dev_configure_mp(uint16_t port_id, uint16_t nb_rx_q, uint16_t nb_tx_q, 538 const struct rte_eth_conf *dev_conf) 539 { 540 if (is_proc_primary()) 541 return rte_eth_dev_configure(port_id, nb_rx_q, nb_tx_q, 542 dev_conf); 543 return 0; 544 } 545 546 static int 547 eth_dev_start_mp(uint16_t port_id) 548 { 549 if (is_proc_primary()) 550 return rte_eth_dev_start(port_id); 551 552 return 0; 553 } 554 555 static int 556 eth_dev_stop_mp(uint16_t port_id) 557 { 558 if (is_proc_primary()) 559 return rte_eth_dev_stop(port_id); 560 561 return 0; 562 } 563 564 static void 565 mempool_free_mp(struct rte_mempool *mp) 566 { 567 if (is_proc_primary()) 568 rte_mempool_free(mp); 569 } 570 571 static int 572 eth_dev_set_mtu_mp(uint16_t port_id, uint16_t mtu) 573 { 574 if (is_proc_primary()) 575 return rte_eth_dev_set_mtu(port_id, mtu); 576 577 return 0; 578 } 579 580 /* Forward function declarations */ 581 static void setup_attached_port(portid_t pi); 582 static void check_all_ports_link_status(uint32_t port_mask); 583 static int eth_event_callback(portid_t port_id, 584 enum rte_eth_event_type type, 585 void *param, void *ret_param); 586 static void dev_event_callback(const char *device_name, 587 enum rte_dev_event_type type, 588 void *param); 589 590 /* 591 * Check if all the ports are started. 592 * If yes, return positive value. If not, return zero. 593 */ 594 static int all_ports_started(void); 595 596 struct gso_status gso_ports[RTE_MAX_ETHPORTS]; 597 uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN; 598 599 /* Holds the registered mbuf dynamic flags names. */ 600 char dynf_names[64][RTE_MBUF_DYN_NAMESIZE]; 601 602 /* 603 * Helper function to check if socket is already discovered. 604 * If yes, return positive value. If not, return zero. 605 */ 606 int 607 new_socket_id(unsigned int socket_id) 608 { 609 unsigned int i; 610 611 for (i = 0; i < num_sockets; i++) { 612 if (socket_ids[i] == socket_id) 613 return 0; 614 } 615 return 1; 616 } 617 618 /* 619 * Setup default configuration. 620 */ 621 static void 622 set_default_fwd_lcores_config(void) 623 { 624 unsigned int i; 625 unsigned int nb_lc; 626 unsigned int sock_num; 627 628 nb_lc = 0; 629 for (i = 0; i < RTE_MAX_LCORE; i++) { 630 if (!rte_lcore_is_enabled(i)) 631 continue; 632 sock_num = rte_lcore_to_socket_id(i); 633 if (new_socket_id(sock_num)) { 634 if (num_sockets >= RTE_MAX_NUMA_NODES) { 635 rte_exit(EXIT_FAILURE, 636 "Total sockets greater than %u\n", 637 RTE_MAX_NUMA_NODES); 638 } 639 socket_ids[num_sockets++] = sock_num; 640 } 641 if (i == rte_get_main_lcore()) 642 continue; 643 fwd_lcores_cpuids[nb_lc++] = i; 644 } 645 nb_lcores = (lcoreid_t) nb_lc; 646 nb_cfg_lcores = nb_lcores; 647 nb_fwd_lcores = 1; 648 } 649 650 static void 651 set_def_peer_eth_addrs(void) 652 { 653 portid_t i; 654 655 for (i = 0; i < RTE_MAX_ETHPORTS; i++) { 656 peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR; 657 peer_eth_addrs[i].addr_bytes[5] = i; 658 } 659 } 660 661 static void 662 set_default_fwd_ports_config(void) 663 { 664 portid_t pt_id; 665 int i = 0; 666 667 RTE_ETH_FOREACH_DEV(pt_id) { 668 fwd_ports_ids[i++] = pt_id; 669 670 /* Update sockets info according to the attached device */ 671 int socket_id = rte_eth_dev_socket_id(pt_id); 672 if (socket_id >= 0 && new_socket_id(socket_id)) { 673 if (num_sockets >= RTE_MAX_NUMA_NODES) { 674 rte_exit(EXIT_FAILURE, 675 "Total sockets greater than %u\n", 676 RTE_MAX_NUMA_NODES); 677 } 678 socket_ids[num_sockets++] = socket_id; 679 } 680 } 681 682 nb_cfg_ports = nb_ports; 683 nb_fwd_ports = nb_ports; 684 } 685 686 void 687 set_def_fwd_config(void) 688 { 689 set_default_fwd_lcores_config(); 690 set_def_peer_eth_addrs(); 691 set_default_fwd_ports_config(); 692 } 693 694 #ifndef RTE_EXEC_ENV_WINDOWS 695 /* extremely pessimistic estimation of memory required to create a mempool */ 696 static int 697 calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out) 698 { 699 unsigned int n_pages, mbuf_per_pg, leftover; 700 uint64_t total_mem, mbuf_mem, obj_sz; 701 702 /* there is no good way to predict how much space the mempool will 703 * occupy because it will allocate chunks on the fly, and some of those 704 * will come from default DPDK memory while some will come from our 705 * external memory, so just assume 128MB will be enough for everyone. 706 */ 707 uint64_t hdr_mem = 128 << 20; 708 709 /* account for possible non-contiguousness */ 710 obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL); 711 if (obj_sz > pgsz) { 712 TESTPMD_LOG(ERR, "Object size is bigger than page size\n"); 713 return -1; 714 } 715 716 mbuf_per_pg = pgsz / obj_sz; 717 leftover = (nb_mbufs % mbuf_per_pg) > 0; 718 n_pages = (nb_mbufs / mbuf_per_pg) + leftover; 719 720 mbuf_mem = n_pages * pgsz; 721 722 total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz); 723 724 if (total_mem > SIZE_MAX) { 725 TESTPMD_LOG(ERR, "Memory size too big\n"); 726 return -1; 727 } 728 *out = (size_t)total_mem; 729 730 return 0; 731 } 732 733 static int 734 pagesz_flags(uint64_t page_sz) 735 { 736 /* as per mmap() manpage, all page sizes are log2 of page size 737 * shifted by MAP_HUGE_SHIFT 738 */ 739 int log2 = rte_log2_u64(page_sz); 740 741 return (log2 << HUGE_SHIFT); 742 } 743 744 static void * 745 alloc_mem(size_t memsz, size_t pgsz, bool huge) 746 { 747 void *addr; 748 int flags; 749 750 /* allocate anonymous hugepages */ 751 flags = MAP_ANONYMOUS | MAP_PRIVATE; 752 if (huge) 753 flags |= HUGE_FLAG | pagesz_flags(pgsz); 754 755 addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0); 756 if (addr == MAP_FAILED) 757 return NULL; 758 759 return addr; 760 } 761 762 struct extmem_param { 763 void *addr; 764 size_t len; 765 size_t pgsz; 766 rte_iova_t *iova_table; 767 unsigned int iova_table_len; 768 }; 769 770 static int 771 create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param, 772 bool huge) 773 { 774 uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */ 775 RTE_PGSIZE_16M, RTE_PGSIZE_16G}; /* POWER */ 776 unsigned int cur_page, n_pages, pgsz_idx; 777 size_t mem_sz, cur_pgsz; 778 rte_iova_t *iovas = NULL; 779 void *addr; 780 int ret; 781 782 for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) { 783 /* skip anything that is too big */ 784 if (pgsizes[pgsz_idx] > SIZE_MAX) 785 continue; 786 787 cur_pgsz = pgsizes[pgsz_idx]; 788 789 /* if we were told not to allocate hugepages, override */ 790 if (!huge) 791 cur_pgsz = sysconf(_SC_PAGESIZE); 792 793 ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz); 794 if (ret < 0) { 795 TESTPMD_LOG(ERR, "Cannot calculate memory size\n"); 796 return -1; 797 } 798 799 /* allocate our memory */ 800 addr = alloc_mem(mem_sz, cur_pgsz, huge); 801 802 /* if we couldn't allocate memory with a specified page size, 803 * that doesn't mean we can't do it with other page sizes, so 804 * try another one. 805 */ 806 if (addr == NULL) 807 continue; 808 809 /* store IOVA addresses for every page in this memory area */ 810 n_pages = mem_sz / cur_pgsz; 811 812 iovas = malloc(sizeof(*iovas) * n_pages); 813 814 if (iovas == NULL) { 815 TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n"); 816 goto fail; 817 } 818 /* lock memory if it's not huge pages */ 819 if (!huge) 820 mlock(addr, mem_sz); 821 822 /* populate IOVA addresses */ 823 for (cur_page = 0; cur_page < n_pages; cur_page++) { 824 rte_iova_t iova; 825 size_t offset; 826 void *cur; 827 828 offset = cur_pgsz * cur_page; 829 cur = RTE_PTR_ADD(addr, offset); 830 831 /* touch the page before getting its IOVA */ 832 *(volatile char *)cur = 0; 833 834 iova = rte_mem_virt2iova(cur); 835 836 iovas[cur_page] = iova; 837 } 838 839 break; 840 } 841 /* if we couldn't allocate anything */ 842 if (iovas == NULL) 843 return -1; 844 845 param->addr = addr; 846 param->len = mem_sz; 847 param->pgsz = cur_pgsz; 848 param->iova_table = iovas; 849 param->iova_table_len = n_pages; 850 851 return 0; 852 fail: 853 if (iovas) 854 free(iovas); 855 if (addr) 856 munmap(addr, mem_sz); 857 858 return -1; 859 } 860 861 static int 862 setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge) 863 { 864 struct extmem_param param; 865 int socket_id, ret; 866 867 memset(¶m, 0, sizeof(param)); 868 869 /* check if our heap exists */ 870 socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 871 if (socket_id < 0) { 872 /* create our heap */ 873 ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME); 874 if (ret < 0) { 875 TESTPMD_LOG(ERR, "Cannot create heap\n"); 876 return -1; 877 } 878 } 879 880 ret = create_extmem(nb_mbufs, mbuf_sz, ¶m, huge); 881 if (ret < 0) { 882 TESTPMD_LOG(ERR, "Cannot create memory area\n"); 883 return -1; 884 } 885 886 /* we now have a valid memory area, so add it to heap */ 887 ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME, 888 param.addr, param.len, param.iova_table, 889 param.iova_table_len, param.pgsz); 890 891 /* when using VFIO, memory is automatically mapped for DMA by EAL */ 892 893 /* not needed any more */ 894 free(param.iova_table); 895 896 if (ret < 0) { 897 TESTPMD_LOG(ERR, "Cannot add memory to heap\n"); 898 munmap(param.addr, param.len); 899 return -1; 900 } 901 902 /* success */ 903 904 TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n", 905 param.len >> 20); 906 907 return 0; 908 } 909 static void 910 dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 911 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 912 { 913 uint16_t pid = 0; 914 int ret; 915 916 RTE_ETH_FOREACH_DEV(pid) { 917 struct rte_eth_dev_info dev_info; 918 919 ret = eth_dev_info_get_print_err(pid, &dev_info); 920 if (ret != 0) { 921 TESTPMD_LOG(DEBUG, 922 "unable to get device info for port %d on addr 0x%p," 923 "mempool unmapping will not be performed\n", 924 pid, memhdr->addr); 925 continue; 926 } 927 928 ret = rte_dev_dma_unmap(dev_info.device, memhdr->addr, 0, memhdr->len); 929 if (ret) { 930 TESTPMD_LOG(DEBUG, 931 "unable to DMA unmap addr 0x%p " 932 "for device %s\n", 933 memhdr->addr, dev_info.device->name); 934 } 935 } 936 ret = rte_extmem_unregister(memhdr->addr, memhdr->len); 937 if (ret) { 938 TESTPMD_LOG(DEBUG, 939 "unable to un-register addr 0x%p\n", memhdr->addr); 940 } 941 } 942 943 static void 944 dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 945 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 946 { 947 uint16_t pid = 0; 948 size_t page_size = sysconf(_SC_PAGESIZE); 949 int ret; 950 951 ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0, 952 page_size); 953 if (ret) { 954 TESTPMD_LOG(DEBUG, 955 "unable to register addr 0x%p\n", memhdr->addr); 956 return; 957 } 958 RTE_ETH_FOREACH_DEV(pid) { 959 struct rte_eth_dev_info dev_info; 960 961 ret = eth_dev_info_get_print_err(pid, &dev_info); 962 if (ret != 0) { 963 TESTPMD_LOG(DEBUG, 964 "unable to get device info for port %d on addr 0x%p," 965 "mempool mapping will not be performed\n", 966 pid, memhdr->addr); 967 continue; 968 } 969 ret = rte_dev_dma_map(dev_info.device, memhdr->addr, 0, memhdr->len); 970 if (ret) { 971 TESTPMD_LOG(DEBUG, 972 "unable to DMA map addr 0x%p " 973 "for device %s\n", 974 memhdr->addr, dev_info.device->name); 975 } 976 } 977 } 978 #endif 979 980 static unsigned int 981 setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id, 982 char *pool_name, struct rte_pktmbuf_extmem **ext_mem) 983 { 984 struct rte_pktmbuf_extmem *xmem; 985 unsigned int ext_num, zone_num, elt_num; 986 uint16_t elt_size; 987 988 elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE); 989 elt_num = EXTBUF_ZONE_SIZE / elt_size; 990 zone_num = (nb_mbufs + elt_num - 1) / elt_num; 991 992 xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num); 993 if (xmem == NULL) { 994 TESTPMD_LOG(ERR, "Cannot allocate memory for " 995 "external buffer descriptors\n"); 996 *ext_mem = NULL; 997 return 0; 998 } 999 for (ext_num = 0; ext_num < zone_num; ext_num++) { 1000 struct rte_pktmbuf_extmem *xseg = xmem + ext_num; 1001 const struct rte_memzone *mz; 1002 char mz_name[RTE_MEMZONE_NAMESIZE]; 1003 int ret; 1004 1005 ret = snprintf(mz_name, sizeof(mz_name), 1006 RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num); 1007 if (ret < 0 || ret >= (int)sizeof(mz_name)) { 1008 errno = ENAMETOOLONG; 1009 ext_num = 0; 1010 break; 1011 } 1012 mz = rte_memzone_reserve_aligned(mz_name, EXTBUF_ZONE_SIZE, 1013 socket_id, 1014 RTE_MEMZONE_IOVA_CONTIG | 1015 RTE_MEMZONE_1GB | 1016 RTE_MEMZONE_SIZE_HINT_ONLY, 1017 EXTBUF_ZONE_SIZE); 1018 if (mz == NULL) { 1019 /* 1020 * The caller exits on external buffer creation 1021 * error, so there is no need to free memzones. 1022 */ 1023 errno = ENOMEM; 1024 ext_num = 0; 1025 break; 1026 } 1027 xseg->buf_ptr = mz->addr; 1028 xseg->buf_iova = mz->iova; 1029 xseg->buf_len = EXTBUF_ZONE_SIZE; 1030 xseg->elt_size = elt_size; 1031 } 1032 if (ext_num == 0 && xmem != NULL) { 1033 free(xmem); 1034 xmem = NULL; 1035 } 1036 *ext_mem = xmem; 1037 return ext_num; 1038 } 1039 1040 /* 1041 * Configuration initialisation done once at init time. 1042 */ 1043 static struct rte_mempool * 1044 mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf, 1045 unsigned int socket_id, uint16_t size_idx) 1046 { 1047 char pool_name[RTE_MEMPOOL_NAMESIZE]; 1048 struct rte_mempool *rte_mp = NULL; 1049 #ifndef RTE_EXEC_ENV_WINDOWS 1050 uint32_t mb_size; 1051 1052 mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size; 1053 #endif 1054 mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name), size_idx); 1055 if (!is_proc_primary()) { 1056 rte_mp = rte_mempool_lookup(pool_name); 1057 if (rte_mp == NULL) 1058 rte_exit(EXIT_FAILURE, 1059 "Get mbuf pool for socket %u failed: %s\n", 1060 socket_id, rte_strerror(rte_errno)); 1061 return rte_mp; 1062 } 1063 1064 TESTPMD_LOG(INFO, 1065 "create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n", 1066 pool_name, nb_mbuf, mbuf_seg_size, socket_id); 1067 1068 switch (mp_alloc_type) { 1069 case MP_ALLOC_NATIVE: 1070 { 1071 /* wrapper to rte_mempool_create() */ 1072 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1073 rte_mbuf_best_mempool_ops()); 1074 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 1075 mb_mempool_cache, 0, mbuf_seg_size, socket_id); 1076 break; 1077 } 1078 #ifndef RTE_EXEC_ENV_WINDOWS 1079 case MP_ALLOC_ANON: 1080 { 1081 rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf, 1082 mb_size, (unsigned int) mb_mempool_cache, 1083 sizeof(struct rte_pktmbuf_pool_private), 1084 socket_id, mempool_flags); 1085 if (rte_mp == NULL) 1086 goto err; 1087 1088 if (rte_mempool_populate_anon(rte_mp) == 0) { 1089 rte_mempool_free(rte_mp); 1090 rte_mp = NULL; 1091 goto err; 1092 } 1093 rte_pktmbuf_pool_init(rte_mp, NULL); 1094 rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL); 1095 rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL); 1096 break; 1097 } 1098 case MP_ALLOC_XMEM: 1099 case MP_ALLOC_XMEM_HUGE: 1100 { 1101 int heap_socket; 1102 bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE; 1103 1104 if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0) 1105 rte_exit(EXIT_FAILURE, "Could not create external memory\n"); 1106 1107 heap_socket = 1108 rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 1109 if (heap_socket < 0) 1110 rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n"); 1111 1112 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1113 rte_mbuf_best_mempool_ops()); 1114 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 1115 mb_mempool_cache, 0, mbuf_seg_size, 1116 heap_socket); 1117 break; 1118 } 1119 #endif 1120 case MP_ALLOC_XBUF: 1121 { 1122 struct rte_pktmbuf_extmem *ext_mem; 1123 unsigned int ext_num; 1124 1125 ext_num = setup_extbuf(nb_mbuf, mbuf_seg_size, 1126 socket_id, pool_name, &ext_mem); 1127 if (ext_num == 0) 1128 rte_exit(EXIT_FAILURE, 1129 "Can't create pinned data buffers\n"); 1130 1131 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1132 rte_mbuf_best_mempool_ops()); 1133 rte_mp = rte_pktmbuf_pool_create_extbuf 1134 (pool_name, nb_mbuf, mb_mempool_cache, 1135 0, mbuf_seg_size, socket_id, 1136 ext_mem, ext_num); 1137 free(ext_mem); 1138 break; 1139 } 1140 default: 1141 { 1142 rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n"); 1143 } 1144 } 1145 1146 #ifndef RTE_EXEC_ENV_WINDOWS 1147 err: 1148 #endif 1149 if (rte_mp == NULL) { 1150 rte_exit(EXIT_FAILURE, 1151 "Creation of mbuf pool for socket %u failed: %s\n", 1152 socket_id, rte_strerror(rte_errno)); 1153 } else if (verbose_level > 0) { 1154 rte_mempool_dump(stdout, rte_mp); 1155 } 1156 return rte_mp; 1157 } 1158 1159 /* 1160 * Check given socket id is valid or not with NUMA mode, 1161 * if valid, return 0, else return -1 1162 */ 1163 static int 1164 check_socket_id(const unsigned int socket_id) 1165 { 1166 static int warning_once = 0; 1167 1168 if (new_socket_id(socket_id)) { 1169 if (!warning_once && numa_support) 1170 fprintf(stderr, 1171 "Warning: NUMA should be configured manually by using --port-numa-config and --ring-numa-config parameters along with --numa.\n"); 1172 warning_once = 1; 1173 return -1; 1174 } 1175 return 0; 1176 } 1177 1178 /* 1179 * Get the allowed maximum number of RX queues. 1180 * *pid return the port id which has minimal value of 1181 * max_rx_queues in all ports. 1182 */ 1183 queueid_t 1184 get_allowed_max_nb_rxq(portid_t *pid) 1185 { 1186 queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT; 1187 bool max_rxq_valid = false; 1188 portid_t pi; 1189 struct rte_eth_dev_info dev_info; 1190 1191 RTE_ETH_FOREACH_DEV(pi) { 1192 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1193 continue; 1194 1195 max_rxq_valid = true; 1196 if (dev_info.max_rx_queues < allowed_max_rxq) { 1197 allowed_max_rxq = dev_info.max_rx_queues; 1198 *pid = pi; 1199 } 1200 } 1201 return max_rxq_valid ? allowed_max_rxq : 0; 1202 } 1203 1204 /* 1205 * Check input rxq is valid or not. 1206 * If input rxq is not greater than any of maximum number 1207 * of RX queues of all ports, it is valid. 1208 * if valid, return 0, else return -1 1209 */ 1210 int 1211 check_nb_rxq(queueid_t rxq) 1212 { 1213 queueid_t allowed_max_rxq; 1214 portid_t pid = 0; 1215 1216 allowed_max_rxq = get_allowed_max_nb_rxq(&pid); 1217 if (rxq > allowed_max_rxq) { 1218 fprintf(stderr, 1219 "Fail: input rxq (%u) can't be greater than max_rx_queues (%u) of port %u\n", 1220 rxq, allowed_max_rxq, pid); 1221 return -1; 1222 } 1223 return 0; 1224 } 1225 1226 /* 1227 * Get the allowed maximum number of TX queues. 1228 * *pid return the port id which has minimal value of 1229 * max_tx_queues in all ports. 1230 */ 1231 queueid_t 1232 get_allowed_max_nb_txq(portid_t *pid) 1233 { 1234 queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT; 1235 bool max_txq_valid = false; 1236 portid_t pi; 1237 struct rte_eth_dev_info dev_info; 1238 1239 RTE_ETH_FOREACH_DEV(pi) { 1240 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1241 continue; 1242 1243 max_txq_valid = true; 1244 if (dev_info.max_tx_queues < allowed_max_txq) { 1245 allowed_max_txq = dev_info.max_tx_queues; 1246 *pid = pi; 1247 } 1248 } 1249 return max_txq_valid ? allowed_max_txq : 0; 1250 } 1251 1252 /* 1253 * Check input txq is valid or not. 1254 * If input txq is not greater than any of maximum number 1255 * of TX queues of all ports, it is valid. 1256 * if valid, return 0, else return -1 1257 */ 1258 int 1259 check_nb_txq(queueid_t txq) 1260 { 1261 queueid_t allowed_max_txq; 1262 portid_t pid = 0; 1263 1264 allowed_max_txq = get_allowed_max_nb_txq(&pid); 1265 if (txq > allowed_max_txq) { 1266 fprintf(stderr, 1267 "Fail: input txq (%u) can't be greater than max_tx_queues (%u) of port %u\n", 1268 txq, allowed_max_txq, pid); 1269 return -1; 1270 } 1271 return 0; 1272 } 1273 1274 /* 1275 * Get the allowed maximum number of RXDs of every rx queue. 1276 * *pid return the port id which has minimal value of 1277 * max_rxd in all queues of all ports. 1278 */ 1279 static uint16_t 1280 get_allowed_max_nb_rxd(portid_t *pid) 1281 { 1282 uint16_t allowed_max_rxd = UINT16_MAX; 1283 portid_t pi; 1284 struct rte_eth_dev_info dev_info; 1285 1286 RTE_ETH_FOREACH_DEV(pi) { 1287 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1288 continue; 1289 1290 if (dev_info.rx_desc_lim.nb_max < allowed_max_rxd) { 1291 allowed_max_rxd = dev_info.rx_desc_lim.nb_max; 1292 *pid = pi; 1293 } 1294 } 1295 return allowed_max_rxd; 1296 } 1297 1298 /* 1299 * Get the allowed minimal number of RXDs of every rx queue. 1300 * *pid return the port id which has minimal value of 1301 * min_rxd in all queues of all ports. 1302 */ 1303 static uint16_t 1304 get_allowed_min_nb_rxd(portid_t *pid) 1305 { 1306 uint16_t allowed_min_rxd = 0; 1307 portid_t pi; 1308 struct rte_eth_dev_info dev_info; 1309 1310 RTE_ETH_FOREACH_DEV(pi) { 1311 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1312 continue; 1313 1314 if (dev_info.rx_desc_lim.nb_min > allowed_min_rxd) { 1315 allowed_min_rxd = dev_info.rx_desc_lim.nb_min; 1316 *pid = pi; 1317 } 1318 } 1319 1320 return allowed_min_rxd; 1321 } 1322 1323 /* 1324 * Check input rxd is valid or not. 1325 * If input rxd is not greater than any of maximum number 1326 * of RXDs of every Rx queues and is not less than any of 1327 * minimal number of RXDs of every Rx queues, it is valid. 1328 * if valid, return 0, else return -1 1329 */ 1330 int 1331 check_nb_rxd(queueid_t rxd) 1332 { 1333 uint16_t allowed_max_rxd; 1334 uint16_t allowed_min_rxd; 1335 portid_t pid = 0; 1336 1337 allowed_max_rxd = get_allowed_max_nb_rxd(&pid); 1338 if (rxd > allowed_max_rxd) { 1339 fprintf(stderr, 1340 "Fail: input rxd (%u) can't be greater than max_rxds (%u) of port %u\n", 1341 rxd, allowed_max_rxd, pid); 1342 return -1; 1343 } 1344 1345 allowed_min_rxd = get_allowed_min_nb_rxd(&pid); 1346 if (rxd < allowed_min_rxd) { 1347 fprintf(stderr, 1348 "Fail: input rxd (%u) can't be less than min_rxds (%u) of port %u\n", 1349 rxd, allowed_min_rxd, pid); 1350 return -1; 1351 } 1352 1353 return 0; 1354 } 1355 1356 /* 1357 * Get the allowed maximum number of TXDs of every rx queues. 1358 * *pid return the port id which has minimal value of 1359 * max_txd in every tx queue. 1360 */ 1361 static uint16_t 1362 get_allowed_max_nb_txd(portid_t *pid) 1363 { 1364 uint16_t allowed_max_txd = UINT16_MAX; 1365 portid_t pi; 1366 struct rte_eth_dev_info dev_info; 1367 1368 RTE_ETH_FOREACH_DEV(pi) { 1369 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1370 continue; 1371 1372 if (dev_info.tx_desc_lim.nb_max < allowed_max_txd) { 1373 allowed_max_txd = dev_info.tx_desc_lim.nb_max; 1374 *pid = pi; 1375 } 1376 } 1377 return allowed_max_txd; 1378 } 1379 1380 /* 1381 * Get the allowed maximum number of TXDs of every tx queues. 1382 * *pid return the port id which has minimal value of 1383 * min_txd in every tx queue. 1384 */ 1385 static uint16_t 1386 get_allowed_min_nb_txd(portid_t *pid) 1387 { 1388 uint16_t allowed_min_txd = 0; 1389 portid_t pi; 1390 struct rte_eth_dev_info dev_info; 1391 1392 RTE_ETH_FOREACH_DEV(pi) { 1393 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1394 continue; 1395 1396 if (dev_info.tx_desc_lim.nb_min > allowed_min_txd) { 1397 allowed_min_txd = dev_info.tx_desc_lim.nb_min; 1398 *pid = pi; 1399 } 1400 } 1401 1402 return allowed_min_txd; 1403 } 1404 1405 /* 1406 * Check input txd is valid or not. 1407 * If input txd is not greater than any of maximum number 1408 * of TXDs of every Rx queues, it is valid. 1409 * if valid, return 0, else return -1 1410 */ 1411 int 1412 check_nb_txd(queueid_t txd) 1413 { 1414 uint16_t allowed_max_txd; 1415 uint16_t allowed_min_txd; 1416 portid_t pid = 0; 1417 1418 allowed_max_txd = get_allowed_max_nb_txd(&pid); 1419 if (txd > allowed_max_txd) { 1420 fprintf(stderr, 1421 "Fail: input txd (%u) can't be greater than max_txds (%u) of port %u\n", 1422 txd, allowed_max_txd, pid); 1423 return -1; 1424 } 1425 1426 allowed_min_txd = get_allowed_min_nb_txd(&pid); 1427 if (txd < allowed_min_txd) { 1428 fprintf(stderr, 1429 "Fail: input txd (%u) can't be less than min_txds (%u) of port %u\n", 1430 txd, allowed_min_txd, pid); 1431 return -1; 1432 } 1433 return 0; 1434 } 1435 1436 1437 /* 1438 * Get the allowed maximum number of hairpin queues. 1439 * *pid return the port id which has minimal value of 1440 * max_hairpin_queues in all ports. 1441 */ 1442 queueid_t 1443 get_allowed_max_nb_hairpinq(portid_t *pid) 1444 { 1445 queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT; 1446 portid_t pi; 1447 struct rte_eth_hairpin_cap cap; 1448 1449 RTE_ETH_FOREACH_DEV(pi) { 1450 if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) { 1451 *pid = pi; 1452 return 0; 1453 } 1454 if (cap.max_nb_queues < allowed_max_hairpinq) { 1455 allowed_max_hairpinq = cap.max_nb_queues; 1456 *pid = pi; 1457 } 1458 } 1459 return allowed_max_hairpinq; 1460 } 1461 1462 /* 1463 * Check input hairpin is valid or not. 1464 * If input hairpin is not greater than any of maximum number 1465 * of hairpin queues of all ports, it is valid. 1466 * if valid, return 0, else return -1 1467 */ 1468 int 1469 check_nb_hairpinq(queueid_t hairpinq) 1470 { 1471 queueid_t allowed_max_hairpinq; 1472 portid_t pid = 0; 1473 1474 allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid); 1475 if (hairpinq > allowed_max_hairpinq) { 1476 fprintf(stderr, 1477 "Fail: input hairpin (%u) can't be greater than max_hairpin_queues (%u) of port %u\n", 1478 hairpinq, allowed_max_hairpinq, pid); 1479 return -1; 1480 } 1481 return 0; 1482 } 1483 1484 static void 1485 init_config_port_offloads(portid_t pid, uint32_t socket_id) 1486 { 1487 struct rte_port *port = &ports[pid]; 1488 uint16_t data_size; 1489 int ret; 1490 int i; 1491 1492 port->dev_conf.txmode = tx_mode; 1493 port->dev_conf.rxmode = rx_mode; 1494 1495 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 1496 if (ret != 0) 1497 rte_exit(EXIT_FAILURE, "rte_eth_dev_info_get() failed\n"); 1498 1499 ret = update_jumbo_frame_offload(pid); 1500 if (ret != 0) 1501 fprintf(stderr, 1502 "Updating jumbo frame offload failed for port %u\n", 1503 pid); 1504 1505 if (!(port->dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)) 1506 port->dev_conf.txmode.offloads &= 1507 ~DEV_TX_OFFLOAD_MBUF_FAST_FREE; 1508 1509 /* Apply Rx offloads configuration */ 1510 for (i = 0; i < port->dev_info.max_rx_queues; i++) 1511 port->rx_conf[i].offloads = port->dev_conf.rxmode.offloads; 1512 /* Apply Tx offloads configuration */ 1513 for (i = 0; i < port->dev_info.max_tx_queues; i++) 1514 port->tx_conf[i].offloads = port->dev_conf.txmode.offloads; 1515 1516 if (eth_link_speed) 1517 port->dev_conf.link_speeds = eth_link_speed; 1518 1519 /* set flag to initialize port/queue */ 1520 port->need_reconfig = 1; 1521 port->need_reconfig_queues = 1; 1522 port->socket_id = socket_id; 1523 port->tx_metadata = 0; 1524 1525 /* 1526 * Check for maximum number of segments per MTU. 1527 * Accordingly update the mbuf data size. 1528 */ 1529 if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX && 1530 port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) { 1531 data_size = rx_mode.max_rx_pkt_len / 1532 port->dev_info.rx_desc_lim.nb_mtu_seg_max; 1533 1534 if ((data_size + RTE_PKTMBUF_HEADROOM) > mbuf_data_size[0]) { 1535 mbuf_data_size[0] = data_size + RTE_PKTMBUF_HEADROOM; 1536 TESTPMD_LOG(WARNING, 1537 "Configured mbuf size of the first segment %hu\n", 1538 mbuf_data_size[0]); 1539 } 1540 } 1541 } 1542 1543 static void 1544 init_config(void) 1545 { 1546 portid_t pid; 1547 struct rte_mempool *mbp; 1548 unsigned int nb_mbuf_per_pool; 1549 lcoreid_t lc_id; 1550 struct rte_gro_param gro_param; 1551 uint32_t gso_types; 1552 1553 /* Configuration of logical cores. */ 1554 fwd_lcores = rte_zmalloc("testpmd: fwd_lcores", 1555 sizeof(struct fwd_lcore *) * nb_lcores, 1556 RTE_CACHE_LINE_SIZE); 1557 if (fwd_lcores == NULL) { 1558 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) " 1559 "failed\n", nb_lcores); 1560 } 1561 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1562 fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore", 1563 sizeof(struct fwd_lcore), 1564 RTE_CACHE_LINE_SIZE); 1565 if (fwd_lcores[lc_id] == NULL) { 1566 rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) " 1567 "failed\n"); 1568 } 1569 fwd_lcores[lc_id]->cpuid_idx = lc_id; 1570 } 1571 1572 RTE_ETH_FOREACH_DEV(pid) { 1573 uint32_t socket_id; 1574 1575 if (numa_support) { 1576 socket_id = port_numa[pid]; 1577 if (port_numa[pid] == NUMA_NO_CONFIG) { 1578 socket_id = rte_eth_dev_socket_id(pid); 1579 1580 /* 1581 * if socket_id is invalid, 1582 * set to the first available socket. 1583 */ 1584 if (check_socket_id(socket_id) < 0) 1585 socket_id = socket_ids[0]; 1586 } 1587 } else { 1588 socket_id = (socket_num == UMA_NO_CONFIG) ? 1589 0 : socket_num; 1590 } 1591 /* Apply default TxRx configuration for all ports */ 1592 init_config_port_offloads(pid, socket_id); 1593 } 1594 /* 1595 * Create pools of mbuf. 1596 * If NUMA support is disabled, create a single pool of mbuf in 1597 * socket 0 memory by default. 1598 * Otherwise, create a pool of mbuf in the memory of sockets 0 and 1. 1599 * 1600 * Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and 1601 * nb_txd can be configured at run time. 1602 */ 1603 if (param_total_num_mbufs) 1604 nb_mbuf_per_pool = param_total_num_mbufs; 1605 else { 1606 nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX + 1607 (nb_lcores * mb_mempool_cache) + 1608 RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST; 1609 nb_mbuf_per_pool *= RTE_MAX_ETHPORTS; 1610 } 1611 1612 if (numa_support) { 1613 uint8_t i, j; 1614 1615 for (i = 0; i < num_sockets; i++) 1616 for (j = 0; j < mbuf_data_size_n; j++) 1617 mempools[i * MAX_SEGS_BUFFER_SPLIT + j] = 1618 mbuf_pool_create(mbuf_data_size[j], 1619 nb_mbuf_per_pool, 1620 socket_ids[i], j); 1621 } else { 1622 uint8_t i; 1623 1624 for (i = 0; i < mbuf_data_size_n; i++) 1625 mempools[i] = mbuf_pool_create 1626 (mbuf_data_size[i], 1627 nb_mbuf_per_pool, 1628 socket_num == UMA_NO_CONFIG ? 1629 0 : socket_num, i); 1630 } 1631 1632 init_port_config(); 1633 1634 gso_types = DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | 1635 DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_UDP_TSO; 1636 /* 1637 * Records which Mbuf pool to use by each logical core, if needed. 1638 */ 1639 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1640 mbp = mbuf_pool_find( 1641 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 0); 1642 1643 if (mbp == NULL) 1644 mbp = mbuf_pool_find(0, 0); 1645 fwd_lcores[lc_id]->mbp = mbp; 1646 /* initialize GSO context */ 1647 fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp; 1648 fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp; 1649 fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types; 1650 fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN - 1651 RTE_ETHER_CRC_LEN; 1652 fwd_lcores[lc_id]->gso_ctx.flag = 0; 1653 } 1654 1655 fwd_config_setup(); 1656 1657 /* create a gro context for each lcore */ 1658 gro_param.gro_types = RTE_GRO_TCP_IPV4; 1659 gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES; 1660 gro_param.max_item_per_flow = MAX_PKT_BURST; 1661 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1662 gro_param.socket_id = rte_lcore_to_socket_id( 1663 fwd_lcores_cpuids[lc_id]); 1664 fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param); 1665 if (fwd_lcores[lc_id]->gro_ctx == NULL) { 1666 rte_exit(EXIT_FAILURE, 1667 "rte_gro_ctx_create() failed\n"); 1668 } 1669 } 1670 } 1671 1672 1673 void 1674 reconfig(portid_t new_port_id, unsigned socket_id) 1675 { 1676 /* Reconfiguration of Ethernet ports. */ 1677 init_config_port_offloads(new_port_id, socket_id); 1678 init_port_config(); 1679 } 1680 1681 1682 int 1683 init_fwd_streams(void) 1684 { 1685 portid_t pid; 1686 struct rte_port *port; 1687 streamid_t sm_id, nb_fwd_streams_new; 1688 queueid_t q; 1689 1690 /* set socket id according to numa or not */ 1691 RTE_ETH_FOREACH_DEV(pid) { 1692 port = &ports[pid]; 1693 if (nb_rxq > port->dev_info.max_rx_queues) { 1694 fprintf(stderr, 1695 "Fail: nb_rxq(%d) is greater than max_rx_queues(%d)\n", 1696 nb_rxq, port->dev_info.max_rx_queues); 1697 return -1; 1698 } 1699 if (nb_txq > port->dev_info.max_tx_queues) { 1700 fprintf(stderr, 1701 "Fail: nb_txq(%d) is greater than max_tx_queues(%d)\n", 1702 nb_txq, port->dev_info.max_tx_queues); 1703 return -1; 1704 } 1705 if (numa_support) { 1706 if (port_numa[pid] != NUMA_NO_CONFIG) 1707 port->socket_id = port_numa[pid]; 1708 else { 1709 port->socket_id = rte_eth_dev_socket_id(pid); 1710 1711 /* 1712 * if socket_id is invalid, 1713 * set to the first available socket. 1714 */ 1715 if (check_socket_id(port->socket_id) < 0) 1716 port->socket_id = socket_ids[0]; 1717 } 1718 } 1719 else { 1720 if (socket_num == UMA_NO_CONFIG) 1721 port->socket_id = 0; 1722 else 1723 port->socket_id = socket_num; 1724 } 1725 } 1726 1727 q = RTE_MAX(nb_rxq, nb_txq); 1728 if (q == 0) { 1729 fprintf(stderr, 1730 "Fail: Cannot allocate fwd streams as number of queues is 0\n"); 1731 return -1; 1732 } 1733 nb_fwd_streams_new = (streamid_t)(nb_ports * q); 1734 if (nb_fwd_streams_new == nb_fwd_streams) 1735 return 0; 1736 /* clear the old */ 1737 if (fwd_streams != NULL) { 1738 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1739 if (fwd_streams[sm_id] == NULL) 1740 continue; 1741 rte_free(fwd_streams[sm_id]); 1742 fwd_streams[sm_id] = NULL; 1743 } 1744 rte_free(fwd_streams); 1745 fwd_streams = NULL; 1746 } 1747 1748 /* init new */ 1749 nb_fwd_streams = nb_fwd_streams_new; 1750 if (nb_fwd_streams) { 1751 fwd_streams = rte_zmalloc("testpmd: fwd_streams", 1752 sizeof(struct fwd_stream *) * nb_fwd_streams, 1753 RTE_CACHE_LINE_SIZE); 1754 if (fwd_streams == NULL) 1755 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d" 1756 " (struct fwd_stream *)) failed\n", 1757 nb_fwd_streams); 1758 1759 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1760 fwd_streams[sm_id] = rte_zmalloc("testpmd:" 1761 " struct fwd_stream", sizeof(struct fwd_stream), 1762 RTE_CACHE_LINE_SIZE); 1763 if (fwd_streams[sm_id] == NULL) 1764 rte_exit(EXIT_FAILURE, "rte_zmalloc" 1765 "(struct fwd_stream) failed\n"); 1766 } 1767 } 1768 1769 return 0; 1770 } 1771 1772 static void 1773 pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs) 1774 { 1775 uint64_t total_burst, sburst; 1776 uint64_t nb_burst; 1777 uint64_t burst_stats[4]; 1778 uint16_t pktnb_stats[4]; 1779 uint16_t nb_pkt; 1780 int burst_percent[4], sburstp; 1781 int i; 1782 1783 /* 1784 * First compute the total number of packet bursts and the 1785 * two highest numbers of bursts of the same number of packets. 1786 */ 1787 memset(&burst_stats, 0x0, sizeof(burst_stats)); 1788 memset(&pktnb_stats, 0x0, sizeof(pktnb_stats)); 1789 1790 /* Show stats for 0 burst size always */ 1791 total_burst = pbs->pkt_burst_spread[0]; 1792 burst_stats[0] = pbs->pkt_burst_spread[0]; 1793 pktnb_stats[0] = 0; 1794 1795 /* Find the next 2 burst sizes with highest occurrences. */ 1796 for (nb_pkt = 1; nb_pkt < MAX_PKT_BURST; nb_pkt++) { 1797 nb_burst = pbs->pkt_burst_spread[nb_pkt]; 1798 1799 if (nb_burst == 0) 1800 continue; 1801 1802 total_burst += nb_burst; 1803 1804 if (nb_burst > burst_stats[1]) { 1805 burst_stats[2] = burst_stats[1]; 1806 pktnb_stats[2] = pktnb_stats[1]; 1807 burst_stats[1] = nb_burst; 1808 pktnb_stats[1] = nb_pkt; 1809 } else if (nb_burst > burst_stats[2]) { 1810 burst_stats[2] = nb_burst; 1811 pktnb_stats[2] = nb_pkt; 1812 } 1813 } 1814 if (total_burst == 0) 1815 return; 1816 1817 printf(" %s-bursts : %"PRIu64" [", rx_tx, total_burst); 1818 for (i = 0, sburst = 0, sburstp = 0; i < 4; i++) { 1819 if (i == 3) { 1820 printf("%d%% of other]\n", 100 - sburstp); 1821 return; 1822 } 1823 1824 sburst += burst_stats[i]; 1825 if (sburst == total_burst) { 1826 printf("%d%% of %d pkts]\n", 1827 100 - sburstp, (int) pktnb_stats[i]); 1828 return; 1829 } 1830 1831 burst_percent[i] = 1832 (double)burst_stats[i] / total_burst * 100; 1833 printf("%d%% of %d pkts + ", 1834 burst_percent[i], (int) pktnb_stats[i]); 1835 sburstp += burst_percent[i]; 1836 } 1837 } 1838 1839 static void 1840 fwd_stream_stats_display(streamid_t stream_id) 1841 { 1842 struct fwd_stream *fs; 1843 static const char *fwd_top_stats_border = "-------"; 1844 1845 fs = fwd_streams[stream_id]; 1846 if ((fs->rx_packets == 0) && (fs->tx_packets == 0) && 1847 (fs->fwd_dropped == 0)) 1848 return; 1849 printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> " 1850 "TX Port=%2d/Queue=%2d %s\n", 1851 fwd_top_stats_border, fs->rx_port, fs->rx_queue, 1852 fs->tx_port, fs->tx_queue, fwd_top_stats_border); 1853 printf(" RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64 1854 " TX-dropped: %-14"PRIu64, 1855 fs->rx_packets, fs->tx_packets, fs->fwd_dropped); 1856 1857 /* if checksum mode */ 1858 if (cur_fwd_eng == &csum_fwd_engine) { 1859 printf(" RX- bad IP checksum: %-14"PRIu64 1860 " Rx- bad L4 checksum: %-14"PRIu64 1861 " Rx- bad outer L4 checksum: %-14"PRIu64"\n", 1862 fs->rx_bad_ip_csum, fs->rx_bad_l4_csum, 1863 fs->rx_bad_outer_l4_csum); 1864 printf(" RX- bad outer IP checksum: %-14"PRIu64"\n", 1865 fs->rx_bad_outer_ip_csum); 1866 } else { 1867 printf("\n"); 1868 } 1869 1870 if (record_burst_stats) { 1871 pkt_burst_stats_display("RX", &fs->rx_burst_stats); 1872 pkt_burst_stats_display("TX", &fs->tx_burst_stats); 1873 } 1874 } 1875 1876 void 1877 fwd_stats_display(void) 1878 { 1879 static const char *fwd_stats_border = "----------------------"; 1880 static const char *acc_stats_border = "+++++++++++++++"; 1881 struct { 1882 struct fwd_stream *rx_stream; 1883 struct fwd_stream *tx_stream; 1884 uint64_t tx_dropped; 1885 uint64_t rx_bad_ip_csum; 1886 uint64_t rx_bad_l4_csum; 1887 uint64_t rx_bad_outer_l4_csum; 1888 uint64_t rx_bad_outer_ip_csum; 1889 } ports_stats[RTE_MAX_ETHPORTS]; 1890 uint64_t total_rx_dropped = 0; 1891 uint64_t total_tx_dropped = 0; 1892 uint64_t total_rx_nombuf = 0; 1893 struct rte_eth_stats stats; 1894 uint64_t fwd_cycles = 0; 1895 uint64_t total_recv = 0; 1896 uint64_t total_xmit = 0; 1897 struct rte_port *port; 1898 streamid_t sm_id; 1899 portid_t pt_id; 1900 int i; 1901 1902 memset(ports_stats, 0, sizeof(ports_stats)); 1903 1904 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1905 struct fwd_stream *fs = fwd_streams[sm_id]; 1906 1907 if (cur_fwd_config.nb_fwd_streams > 1908 cur_fwd_config.nb_fwd_ports) { 1909 fwd_stream_stats_display(sm_id); 1910 } else { 1911 ports_stats[fs->tx_port].tx_stream = fs; 1912 ports_stats[fs->rx_port].rx_stream = fs; 1913 } 1914 1915 ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped; 1916 1917 ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum; 1918 ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum; 1919 ports_stats[fs->rx_port].rx_bad_outer_l4_csum += 1920 fs->rx_bad_outer_l4_csum; 1921 ports_stats[fs->rx_port].rx_bad_outer_ip_csum += 1922 fs->rx_bad_outer_ip_csum; 1923 1924 if (record_core_cycles) 1925 fwd_cycles += fs->core_cycles; 1926 } 1927 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 1928 pt_id = fwd_ports_ids[i]; 1929 port = &ports[pt_id]; 1930 1931 rte_eth_stats_get(pt_id, &stats); 1932 stats.ipackets -= port->stats.ipackets; 1933 stats.opackets -= port->stats.opackets; 1934 stats.ibytes -= port->stats.ibytes; 1935 stats.obytes -= port->stats.obytes; 1936 stats.imissed -= port->stats.imissed; 1937 stats.oerrors -= port->stats.oerrors; 1938 stats.rx_nombuf -= port->stats.rx_nombuf; 1939 1940 total_recv += stats.ipackets; 1941 total_xmit += stats.opackets; 1942 total_rx_dropped += stats.imissed; 1943 total_tx_dropped += ports_stats[pt_id].tx_dropped; 1944 total_tx_dropped += stats.oerrors; 1945 total_rx_nombuf += stats.rx_nombuf; 1946 1947 printf("\n %s Forward statistics for port %-2d %s\n", 1948 fwd_stats_border, pt_id, fwd_stats_border); 1949 1950 printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64 1951 "RX-total: %-"PRIu64"\n", stats.ipackets, stats.imissed, 1952 stats.ipackets + stats.imissed); 1953 1954 if (cur_fwd_eng == &csum_fwd_engine) { 1955 printf(" Bad-ipcsum: %-14"PRIu64 1956 " Bad-l4csum: %-14"PRIu64 1957 "Bad-outer-l4csum: %-14"PRIu64"\n", 1958 ports_stats[pt_id].rx_bad_ip_csum, 1959 ports_stats[pt_id].rx_bad_l4_csum, 1960 ports_stats[pt_id].rx_bad_outer_l4_csum); 1961 printf(" Bad-outer-ipcsum: %-14"PRIu64"\n", 1962 ports_stats[pt_id].rx_bad_outer_ip_csum); 1963 } 1964 if (stats.ierrors + stats.rx_nombuf > 0) { 1965 printf(" RX-error: %-"PRIu64"\n", stats.ierrors); 1966 printf(" RX-nombufs: %-14"PRIu64"\n", stats.rx_nombuf); 1967 } 1968 1969 printf(" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64 1970 "TX-total: %-"PRIu64"\n", 1971 stats.opackets, ports_stats[pt_id].tx_dropped, 1972 stats.opackets + ports_stats[pt_id].tx_dropped); 1973 1974 if (record_burst_stats) { 1975 if (ports_stats[pt_id].rx_stream) 1976 pkt_burst_stats_display("RX", 1977 &ports_stats[pt_id].rx_stream->rx_burst_stats); 1978 if (ports_stats[pt_id].tx_stream) 1979 pkt_burst_stats_display("TX", 1980 &ports_stats[pt_id].tx_stream->tx_burst_stats); 1981 } 1982 1983 printf(" %s--------------------------------%s\n", 1984 fwd_stats_border, fwd_stats_border); 1985 } 1986 1987 printf("\n %s Accumulated forward statistics for all ports" 1988 "%s\n", 1989 acc_stats_border, acc_stats_border); 1990 printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: " 1991 "%-"PRIu64"\n" 1992 " TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: " 1993 "%-"PRIu64"\n", 1994 total_recv, total_rx_dropped, total_recv + total_rx_dropped, 1995 total_xmit, total_tx_dropped, total_xmit + total_tx_dropped); 1996 if (total_rx_nombuf > 0) 1997 printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf); 1998 printf(" %s++++++++++++++++++++++++++++++++++++++++++++++" 1999 "%s\n", 2000 acc_stats_border, acc_stats_border); 2001 if (record_core_cycles) { 2002 #define CYC_PER_MHZ 1E6 2003 if (total_recv > 0 || total_xmit > 0) { 2004 uint64_t total_pkts = 0; 2005 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 || 2006 strcmp(cur_fwd_eng->fwd_mode_name, "flowgen") == 0) 2007 total_pkts = total_xmit; 2008 else 2009 total_pkts = total_recv; 2010 2011 printf("\n CPU cycles/packet=%.2F (total cycles=" 2012 "%"PRIu64" / total %s packets=%"PRIu64") at %"PRIu64 2013 " MHz Clock\n", 2014 (double) fwd_cycles / total_pkts, 2015 fwd_cycles, cur_fwd_eng->fwd_mode_name, total_pkts, 2016 (uint64_t)(rte_get_tsc_hz() / CYC_PER_MHZ)); 2017 } 2018 } 2019 } 2020 2021 void 2022 fwd_stats_reset(void) 2023 { 2024 streamid_t sm_id; 2025 portid_t pt_id; 2026 int i; 2027 2028 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2029 pt_id = fwd_ports_ids[i]; 2030 rte_eth_stats_get(pt_id, &ports[pt_id].stats); 2031 } 2032 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 2033 struct fwd_stream *fs = fwd_streams[sm_id]; 2034 2035 fs->rx_packets = 0; 2036 fs->tx_packets = 0; 2037 fs->fwd_dropped = 0; 2038 fs->rx_bad_ip_csum = 0; 2039 fs->rx_bad_l4_csum = 0; 2040 fs->rx_bad_outer_l4_csum = 0; 2041 fs->rx_bad_outer_ip_csum = 0; 2042 2043 memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats)); 2044 memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats)); 2045 fs->core_cycles = 0; 2046 } 2047 } 2048 2049 static void 2050 flush_fwd_rx_queues(void) 2051 { 2052 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2053 portid_t rxp; 2054 portid_t port_id; 2055 queueid_t rxq; 2056 uint16_t nb_rx; 2057 uint16_t i; 2058 uint8_t j; 2059 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 2060 uint64_t timer_period; 2061 2062 if (num_procs > 1) { 2063 printf("multi-process not support for flushing fwd Rx queues, skip the below lines and return.\n"); 2064 return; 2065 } 2066 2067 /* convert to number of cycles */ 2068 timer_period = rte_get_timer_hz(); /* 1 second timeout */ 2069 2070 for (j = 0; j < 2; j++) { 2071 for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) { 2072 for (rxq = 0; rxq < nb_rxq; rxq++) { 2073 port_id = fwd_ports_ids[rxp]; 2074 /** 2075 * testpmd can stuck in the below do while loop 2076 * if rte_eth_rx_burst() always returns nonzero 2077 * packets. So timer is added to exit this loop 2078 * after 1sec timer expiry. 2079 */ 2080 prev_tsc = rte_rdtsc(); 2081 do { 2082 nb_rx = rte_eth_rx_burst(port_id, rxq, 2083 pkts_burst, MAX_PKT_BURST); 2084 for (i = 0; i < nb_rx; i++) 2085 rte_pktmbuf_free(pkts_burst[i]); 2086 2087 cur_tsc = rte_rdtsc(); 2088 diff_tsc = cur_tsc - prev_tsc; 2089 timer_tsc += diff_tsc; 2090 } while ((nb_rx > 0) && 2091 (timer_tsc < timer_period)); 2092 timer_tsc = 0; 2093 } 2094 } 2095 rte_delay_ms(10); /* wait 10 milli-seconds before retrying */ 2096 } 2097 } 2098 2099 static void 2100 run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd) 2101 { 2102 struct fwd_stream **fsm; 2103 streamid_t nb_fs; 2104 streamid_t sm_id; 2105 #ifdef RTE_LIB_BITRATESTATS 2106 uint64_t tics_per_1sec; 2107 uint64_t tics_datum; 2108 uint64_t tics_current; 2109 uint16_t i, cnt_ports; 2110 2111 cnt_ports = nb_ports; 2112 tics_datum = rte_rdtsc(); 2113 tics_per_1sec = rte_get_timer_hz(); 2114 #endif 2115 fsm = &fwd_streams[fc->stream_idx]; 2116 nb_fs = fc->stream_nb; 2117 do { 2118 for (sm_id = 0; sm_id < nb_fs; sm_id++) 2119 (*pkt_fwd)(fsm[sm_id]); 2120 #ifdef RTE_LIB_BITRATESTATS 2121 if (bitrate_enabled != 0 && 2122 bitrate_lcore_id == rte_lcore_id()) { 2123 tics_current = rte_rdtsc(); 2124 if (tics_current - tics_datum >= tics_per_1sec) { 2125 /* Periodic bitrate calculation */ 2126 for (i = 0; i < cnt_ports; i++) 2127 rte_stats_bitrate_calc(bitrate_data, 2128 ports_ids[i]); 2129 tics_datum = tics_current; 2130 } 2131 } 2132 #endif 2133 #ifdef RTE_LIB_LATENCYSTATS 2134 if (latencystats_enabled != 0 && 2135 latencystats_lcore_id == rte_lcore_id()) 2136 rte_latencystats_update(); 2137 #endif 2138 2139 } while (! fc->stopped); 2140 } 2141 2142 static int 2143 start_pkt_forward_on_core(void *fwd_arg) 2144 { 2145 run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg, 2146 cur_fwd_config.fwd_eng->packet_fwd); 2147 return 0; 2148 } 2149 2150 /* 2151 * Run the TXONLY packet forwarding engine to send a single burst of packets. 2152 * Used to start communication flows in network loopback test configurations. 2153 */ 2154 static int 2155 run_one_txonly_burst_on_core(void *fwd_arg) 2156 { 2157 struct fwd_lcore *fwd_lc; 2158 struct fwd_lcore tmp_lcore; 2159 2160 fwd_lc = (struct fwd_lcore *) fwd_arg; 2161 tmp_lcore = *fwd_lc; 2162 tmp_lcore.stopped = 1; 2163 run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd); 2164 return 0; 2165 } 2166 2167 /* 2168 * Launch packet forwarding: 2169 * - Setup per-port forwarding context. 2170 * - launch logical cores with their forwarding configuration. 2171 */ 2172 static void 2173 launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore) 2174 { 2175 port_fwd_begin_t port_fwd_begin; 2176 unsigned int i; 2177 unsigned int lc_id; 2178 int diag; 2179 2180 port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin; 2181 if (port_fwd_begin != NULL) { 2182 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2183 (*port_fwd_begin)(fwd_ports_ids[i]); 2184 } 2185 for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) { 2186 lc_id = fwd_lcores_cpuids[i]; 2187 if ((interactive == 0) || (lc_id != rte_lcore_id())) { 2188 fwd_lcores[i]->stopped = 0; 2189 diag = rte_eal_remote_launch(pkt_fwd_on_lcore, 2190 fwd_lcores[i], lc_id); 2191 if (diag != 0) 2192 fprintf(stderr, 2193 "launch lcore %u failed - diag=%d\n", 2194 lc_id, diag); 2195 } 2196 } 2197 } 2198 2199 /* 2200 * Launch packet forwarding configuration. 2201 */ 2202 void 2203 start_packet_forwarding(int with_tx_first) 2204 { 2205 port_fwd_begin_t port_fwd_begin; 2206 port_fwd_end_t port_fwd_end; 2207 unsigned int i; 2208 2209 if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq) 2210 rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n"); 2211 2212 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq) 2213 rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n"); 2214 2215 if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 && 2216 strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) && 2217 (!nb_rxq || !nb_txq)) 2218 rte_exit(EXIT_FAILURE, 2219 "Either rxq or txq are 0, cannot use %s fwd mode\n", 2220 cur_fwd_eng->fwd_mode_name); 2221 2222 if (all_ports_started() == 0) { 2223 fprintf(stderr, "Not all ports were started\n"); 2224 return; 2225 } 2226 if (test_done == 0) { 2227 fprintf(stderr, "Packet forwarding already started\n"); 2228 return; 2229 } 2230 test_done = 0; 2231 2232 fwd_config_setup(); 2233 2234 if(!no_flush_rx) 2235 flush_fwd_rx_queues(); 2236 2237 pkt_fwd_config_display(&cur_fwd_config); 2238 rxtx_config_display(); 2239 2240 fwd_stats_reset(); 2241 if (with_tx_first) { 2242 port_fwd_begin = tx_only_engine.port_fwd_begin; 2243 if (port_fwd_begin != NULL) { 2244 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2245 (*port_fwd_begin)(fwd_ports_ids[i]); 2246 } 2247 while (with_tx_first--) { 2248 launch_packet_forwarding( 2249 run_one_txonly_burst_on_core); 2250 rte_eal_mp_wait_lcore(); 2251 } 2252 port_fwd_end = tx_only_engine.port_fwd_end; 2253 if (port_fwd_end != NULL) { 2254 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2255 (*port_fwd_end)(fwd_ports_ids[i]); 2256 } 2257 } 2258 launch_packet_forwarding(start_pkt_forward_on_core); 2259 } 2260 2261 void 2262 stop_packet_forwarding(void) 2263 { 2264 port_fwd_end_t port_fwd_end; 2265 lcoreid_t lc_id; 2266 portid_t pt_id; 2267 int i; 2268 2269 if (test_done) { 2270 fprintf(stderr, "Packet forwarding not started\n"); 2271 return; 2272 } 2273 printf("Telling cores to stop..."); 2274 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) 2275 fwd_lcores[lc_id]->stopped = 1; 2276 printf("\nWaiting for lcores to finish...\n"); 2277 rte_eal_mp_wait_lcore(); 2278 port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end; 2279 if (port_fwd_end != NULL) { 2280 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2281 pt_id = fwd_ports_ids[i]; 2282 (*port_fwd_end)(pt_id); 2283 } 2284 } 2285 2286 fwd_stats_display(); 2287 2288 printf("\nDone.\n"); 2289 test_done = 1; 2290 } 2291 2292 void 2293 dev_set_link_up(portid_t pid) 2294 { 2295 if (rte_eth_dev_set_link_up(pid) < 0) 2296 fprintf(stderr, "\nSet link up fail.\n"); 2297 } 2298 2299 void 2300 dev_set_link_down(portid_t pid) 2301 { 2302 if (rte_eth_dev_set_link_down(pid) < 0) 2303 fprintf(stderr, "\nSet link down fail.\n"); 2304 } 2305 2306 static int 2307 all_ports_started(void) 2308 { 2309 portid_t pi; 2310 struct rte_port *port; 2311 2312 RTE_ETH_FOREACH_DEV(pi) { 2313 port = &ports[pi]; 2314 /* Check if there is a port which is not started */ 2315 if ((port->port_status != RTE_PORT_STARTED) && 2316 (port->slave_flag == 0)) 2317 return 0; 2318 } 2319 2320 /* No port is not started */ 2321 return 1; 2322 } 2323 2324 int 2325 port_is_stopped(portid_t port_id) 2326 { 2327 struct rte_port *port = &ports[port_id]; 2328 2329 if ((port->port_status != RTE_PORT_STOPPED) && 2330 (port->slave_flag == 0)) 2331 return 0; 2332 return 1; 2333 } 2334 2335 int 2336 all_ports_stopped(void) 2337 { 2338 portid_t pi; 2339 2340 RTE_ETH_FOREACH_DEV(pi) { 2341 if (!port_is_stopped(pi)) 2342 return 0; 2343 } 2344 2345 return 1; 2346 } 2347 2348 int 2349 port_is_started(portid_t port_id) 2350 { 2351 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2352 return 0; 2353 2354 if (ports[port_id].port_status != RTE_PORT_STARTED) 2355 return 0; 2356 2357 return 1; 2358 } 2359 2360 /* Configure the Rx and Tx hairpin queues for the selected port. */ 2361 static int 2362 setup_hairpin_queues(portid_t pi, portid_t p_pi, uint16_t cnt_pi) 2363 { 2364 queueid_t qi; 2365 struct rte_eth_hairpin_conf hairpin_conf = { 2366 .peer_count = 1, 2367 }; 2368 int i; 2369 int diag; 2370 struct rte_port *port = &ports[pi]; 2371 uint16_t peer_rx_port = pi; 2372 uint16_t peer_tx_port = pi; 2373 uint32_t manual = 1; 2374 uint32_t tx_exp = hairpin_mode & 0x10; 2375 2376 if (!(hairpin_mode & 0xf)) { 2377 peer_rx_port = pi; 2378 peer_tx_port = pi; 2379 manual = 0; 2380 } else if (hairpin_mode & 0x1) { 2381 peer_tx_port = rte_eth_find_next_owned_by(pi + 1, 2382 RTE_ETH_DEV_NO_OWNER); 2383 if (peer_tx_port >= RTE_MAX_ETHPORTS) 2384 peer_tx_port = rte_eth_find_next_owned_by(0, 2385 RTE_ETH_DEV_NO_OWNER); 2386 if (p_pi != RTE_MAX_ETHPORTS) { 2387 peer_rx_port = p_pi; 2388 } else { 2389 uint16_t next_pi; 2390 2391 /* Last port will be the peer RX port of the first. */ 2392 RTE_ETH_FOREACH_DEV(next_pi) 2393 peer_rx_port = next_pi; 2394 } 2395 manual = 1; 2396 } else if (hairpin_mode & 0x2) { 2397 if (cnt_pi & 0x1) { 2398 peer_rx_port = p_pi; 2399 } else { 2400 peer_rx_port = rte_eth_find_next_owned_by(pi + 1, 2401 RTE_ETH_DEV_NO_OWNER); 2402 if (peer_rx_port >= RTE_MAX_ETHPORTS) 2403 peer_rx_port = pi; 2404 } 2405 peer_tx_port = peer_rx_port; 2406 manual = 1; 2407 } 2408 2409 for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) { 2410 hairpin_conf.peers[0].port = peer_rx_port; 2411 hairpin_conf.peers[0].queue = i + nb_rxq; 2412 hairpin_conf.manual_bind = !!manual; 2413 hairpin_conf.tx_explicit = !!tx_exp; 2414 diag = rte_eth_tx_hairpin_queue_setup 2415 (pi, qi, nb_txd, &hairpin_conf); 2416 i++; 2417 if (diag == 0) 2418 continue; 2419 2420 /* Fail to setup rx queue, return */ 2421 if (rte_atomic16_cmpset(&(port->port_status), 2422 RTE_PORT_HANDLING, 2423 RTE_PORT_STOPPED) == 0) 2424 fprintf(stderr, 2425 "Port %d can not be set back to stopped\n", pi); 2426 fprintf(stderr, "Fail to configure port %d hairpin queues\n", 2427 pi); 2428 /* try to reconfigure queues next time */ 2429 port->need_reconfig_queues = 1; 2430 return -1; 2431 } 2432 for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) { 2433 hairpin_conf.peers[0].port = peer_tx_port; 2434 hairpin_conf.peers[0].queue = i + nb_txq; 2435 hairpin_conf.manual_bind = !!manual; 2436 hairpin_conf.tx_explicit = !!tx_exp; 2437 diag = rte_eth_rx_hairpin_queue_setup 2438 (pi, qi, nb_rxd, &hairpin_conf); 2439 i++; 2440 if (diag == 0) 2441 continue; 2442 2443 /* Fail to setup rx queue, return */ 2444 if (rte_atomic16_cmpset(&(port->port_status), 2445 RTE_PORT_HANDLING, 2446 RTE_PORT_STOPPED) == 0) 2447 fprintf(stderr, 2448 "Port %d can not be set back to stopped\n", pi); 2449 fprintf(stderr, "Fail to configure port %d hairpin queues\n", 2450 pi); 2451 /* try to reconfigure queues next time */ 2452 port->need_reconfig_queues = 1; 2453 return -1; 2454 } 2455 return 0; 2456 } 2457 2458 /* Configure the Rx with optional split. */ 2459 int 2460 rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, 2461 uint16_t nb_rx_desc, unsigned int socket_id, 2462 struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) 2463 { 2464 union rte_eth_rxseg rx_useg[MAX_SEGS_BUFFER_SPLIT] = {}; 2465 unsigned int i, mp_n; 2466 int ret; 2467 2468 if (rx_pkt_nb_segs <= 1 || 2469 (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) == 0) { 2470 rx_conf->rx_seg = NULL; 2471 rx_conf->rx_nseg = 0; 2472 ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, 2473 nb_rx_desc, socket_id, 2474 rx_conf, mp); 2475 return ret; 2476 } 2477 for (i = 0; i < rx_pkt_nb_segs; i++) { 2478 struct rte_eth_rxseg_split *rx_seg = &rx_useg[i].split; 2479 struct rte_mempool *mpx; 2480 /* 2481 * Use last valid pool for the segments with number 2482 * exceeding the pool index. 2483 */ 2484 mp_n = (i > mbuf_data_size_n) ? mbuf_data_size_n - 1 : i; 2485 mpx = mbuf_pool_find(socket_id, mp_n); 2486 /* Handle zero as mbuf data buffer size. */ 2487 rx_seg->length = rx_pkt_seg_lengths[i] ? 2488 rx_pkt_seg_lengths[i] : 2489 mbuf_data_size[mp_n]; 2490 rx_seg->offset = i < rx_pkt_nb_offs ? 2491 rx_pkt_seg_offsets[i] : 0; 2492 rx_seg->mp = mpx ? mpx : mp; 2493 } 2494 rx_conf->rx_nseg = rx_pkt_nb_segs; 2495 rx_conf->rx_seg = rx_useg; 2496 ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, nb_rx_desc, 2497 socket_id, rx_conf, NULL); 2498 rx_conf->rx_seg = NULL; 2499 rx_conf->rx_nseg = 0; 2500 return ret; 2501 } 2502 2503 int 2504 start_port(portid_t pid) 2505 { 2506 int diag, need_check_link_status = -1; 2507 portid_t pi; 2508 portid_t p_pi = RTE_MAX_ETHPORTS; 2509 portid_t pl[RTE_MAX_ETHPORTS]; 2510 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2511 uint16_t cnt_pi = 0; 2512 uint16_t cfg_pi = 0; 2513 int peer_pi; 2514 queueid_t qi; 2515 struct rte_port *port; 2516 struct rte_eth_hairpin_cap cap; 2517 2518 if (port_id_is_invalid(pid, ENABLED_WARN)) 2519 return 0; 2520 2521 RTE_ETH_FOREACH_DEV(pi) { 2522 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2523 continue; 2524 2525 need_check_link_status = 0; 2526 port = &ports[pi]; 2527 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED, 2528 RTE_PORT_HANDLING) == 0) { 2529 fprintf(stderr, "Port %d is now not stopped\n", pi); 2530 continue; 2531 } 2532 2533 if (port->need_reconfig > 0) { 2534 port->need_reconfig = 0; 2535 2536 if (flow_isolate_all) { 2537 int ret = port_flow_isolate(pi, 1); 2538 if (ret) { 2539 fprintf(stderr, 2540 "Failed to apply isolated mode on port %d\n", 2541 pi); 2542 return -1; 2543 } 2544 } 2545 configure_rxtx_dump_callbacks(0); 2546 printf("Configuring Port %d (socket %u)\n", pi, 2547 port->socket_id); 2548 if (nb_hairpinq > 0 && 2549 rte_eth_dev_hairpin_capability_get(pi, &cap)) { 2550 fprintf(stderr, 2551 "Port %d doesn't support hairpin queues\n", 2552 pi); 2553 return -1; 2554 } 2555 /* configure port */ 2556 diag = eth_dev_configure_mp(pi, nb_rxq + nb_hairpinq, 2557 nb_txq + nb_hairpinq, 2558 &(port->dev_conf)); 2559 if (diag != 0) { 2560 if (rte_atomic16_cmpset(&(port->port_status), 2561 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2562 fprintf(stderr, 2563 "Port %d can not be set back to stopped\n", 2564 pi); 2565 fprintf(stderr, "Fail to configure port %d\n", 2566 pi); 2567 /* try to reconfigure port next time */ 2568 port->need_reconfig = 1; 2569 return -1; 2570 } 2571 } 2572 if (port->need_reconfig_queues > 0 && is_proc_primary()) { 2573 port->need_reconfig_queues = 0; 2574 /* setup tx queues */ 2575 for (qi = 0; qi < nb_txq; qi++) { 2576 if ((numa_support) && 2577 (txring_numa[pi] != NUMA_NO_CONFIG)) 2578 diag = rte_eth_tx_queue_setup(pi, qi, 2579 port->nb_tx_desc[qi], 2580 txring_numa[pi], 2581 &(port->tx_conf[qi])); 2582 else 2583 diag = rte_eth_tx_queue_setup(pi, qi, 2584 port->nb_tx_desc[qi], 2585 port->socket_id, 2586 &(port->tx_conf[qi])); 2587 2588 if (diag == 0) 2589 continue; 2590 2591 /* Fail to setup tx queue, return */ 2592 if (rte_atomic16_cmpset(&(port->port_status), 2593 RTE_PORT_HANDLING, 2594 RTE_PORT_STOPPED) == 0) 2595 fprintf(stderr, 2596 "Port %d can not be set back to stopped\n", 2597 pi); 2598 fprintf(stderr, 2599 "Fail to configure port %d tx queues\n", 2600 pi); 2601 /* try to reconfigure queues next time */ 2602 port->need_reconfig_queues = 1; 2603 return -1; 2604 } 2605 for (qi = 0; qi < nb_rxq; qi++) { 2606 /* setup rx queues */ 2607 if ((numa_support) && 2608 (rxring_numa[pi] != NUMA_NO_CONFIG)) { 2609 struct rte_mempool * mp = 2610 mbuf_pool_find 2611 (rxring_numa[pi], 0); 2612 if (mp == NULL) { 2613 fprintf(stderr, 2614 "Failed to setup RX queue: No mempool allocation on the socket %d\n", 2615 rxring_numa[pi]); 2616 return -1; 2617 } 2618 2619 diag = rx_queue_setup(pi, qi, 2620 port->nb_rx_desc[qi], 2621 rxring_numa[pi], 2622 &(port->rx_conf[qi]), 2623 mp); 2624 } else { 2625 struct rte_mempool *mp = 2626 mbuf_pool_find 2627 (port->socket_id, 0); 2628 if (mp == NULL) { 2629 fprintf(stderr, 2630 "Failed to setup RX queue: No mempool allocation on the socket %d\n", 2631 port->socket_id); 2632 return -1; 2633 } 2634 diag = rx_queue_setup(pi, qi, 2635 port->nb_rx_desc[qi], 2636 port->socket_id, 2637 &(port->rx_conf[qi]), 2638 mp); 2639 } 2640 if (diag == 0) 2641 continue; 2642 2643 /* Fail to setup rx queue, return */ 2644 if (rte_atomic16_cmpset(&(port->port_status), 2645 RTE_PORT_HANDLING, 2646 RTE_PORT_STOPPED) == 0) 2647 fprintf(stderr, 2648 "Port %d can not be set back to stopped\n", 2649 pi); 2650 fprintf(stderr, 2651 "Fail to configure port %d rx queues\n", 2652 pi); 2653 /* try to reconfigure queues next time */ 2654 port->need_reconfig_queues = 1; 2655 return -1; 2656 } 2657 /* setup hairpin queues */ 2658 if (setup_hairpin_queues(pi, p_pi, cnt_pi) != 0) 2659 return -1; 2660 } 2661 configure_rxtx_dump_callbacks(verbose_level); 2662 if (clear_ptypes) { 2663 diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN, 2664 NULL, 0); 2665 if (diag < 0) 2666 fprintf(stderr, 2667 "Port %d: Failed to disable Ptype parsing\n", 2668 pi); 2669 } 2670 2671 p_pi = pi; 2672 cnt_pi++; 2673 2674 /* start port */ 2675 diag = eth_dev_start_mp(pi); 2676 if (diag < 0) { 2677 fprintf(stderr, "Fail to start port %d: %s\n", 2678 pi, rte_strerror(-diag)); 2679 2680 /* Fail to setup rx queue, return */ 2681 if (rte_atomic16_cmpset(&(port->port_status), 2682 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2683 fprintf(stderr, 2684 "Port %d can not be set back to stopped\n", 2685 pi); 2686 continue; 2687 } 2688 2689 if (rte_atomic16_cmpset(&(port->port_status), 2690 RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0) 2691 fprintf(stderr, "Port %d can not be set into started\n", 2692 pi); 2693 2694 if (eth_macaddr_get_print_err(pi, &port->eth_addr) == 0) 2695 printf("Port %d: " RTE_ETHER_ADDR_PRT_FMT "\n", pi, 2696 RTE_ETHER_ADDR_BYTES(&port->eth_addr)); 2697 2698 /* at least one port started, need checking link status */ 2699 need_check_link_status = 1; 2700 2701 pl[cfg_pi++] = pi; 2702 } 2703 2704 if (need_check_link_status == 1 && !no_link_check) 2705 check_all_ports_link_status(RTE_PORT_ALL); 2706 else if (need_check_link_status == 0) 2707 fprintf(stderr, "Please stop the ports first\n"); 2708 2709 if (hairpin_mode & 0xf) { 2710 uint16_t i; 2711 int j; 2712 2713 /* bind all started hairpin ports */ 2714 for (i = 0; i < cfg_pi; i++) { 2715 pi = pl[i]; 2716 /* bind current Tx to all peer Rx */ 2717 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2718 RTE_MAX_ETHPORTS, 1); 2719 if (peer_pi < 0) 2720 return peer_pi; 2721 for (j = 0; j < peer_pi; j++) { 2722 if (!port_is_started(peer_pl[j])) 2723 continue; 2724 diag = rte_eth_hairpin_bind(pi, peer_pl[j]); 2725 if (diag < 0) { 2726 fprintf(stderr, 2727 "Error during binding hairpin Tx port %u to %u: %s\n", 2728 pi, peer_pl[j], 2729 rte_strerror(-diag)); 2730 return -1; 2731 } 2732 } 2733 /* bind all peer Tx to current Rx */ 2734 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2735 RTE_MAX_ETHPORTS, 0); 2736 if (peer_pi < 0) 2737 return peer_pi; 2738 for (j = 0; j < peer_pi; j++) { 2739 if (!port_is_started(peer_pl[j])) 2740 continue; 2741 diag = rte_eth_hairpin_bind(peer_pl[j], pi); 2742 if (diag < 0) { 2743 fprintf(stderr, 2744 "Error during binding hairpin Tx port %u to %u: %s\n", 2745 peer_pl[j], pi, 2746 rte_strerror(-diag)); 2747 return -1; 2748 } 2749 } 2750 } 2751 } 2752 2753 printf("Done\n"); 2754 return 0; 2755 } 2756 2757 void 2758 stop_port(portid_t pid) 2759 { 2760 portid_t pi; 2761 struct rte_port *port; 2762 int need_check_link_status = 0; 2763 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2764 int peer_pi; 2765 2766 if (port_id_is_invalid(pid, ENABLED_WARN)) 2767 return; 2768 2769 printf("Stopping ports...\n"); 2770 2771 RTE_ETH_FOREACH_DEV(pi) { 2772 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2773 continue; 2774 2775 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2776 fprintf(stderr, 2777 "Please remove port %d from forwarding configuration.\n", 2778 pi); 2779 continue; 2780 } 2781 2782 if (port_is_bonding_slave(pi)) { 2783 fprintf(stderr, 2784 "Please remove port %d from bonded device.\n", 2785 pi); 2786 continue; 2787 } 2788 2789 port = &ports[pi]; 2790 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED, 2791 RTE_PORT_HANDLING) == 0) 2792 continue; 2793 2794 if (hairpin_mode & 0xf) { 2795 int j; 2796 2797 rte_eth_hairpin_unbind(pi, RTE_MAX_ETHPORTS); 2798 /* unbind all peer Tx from current Rx */ 2799 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2800 RTE_MAX_ETHPORTS, 0); 2801 if (peer_pi < 0) 2802 continue; 2803 for (j = 0; j < peer_pi; j++) { 2804 if (!port_is_started(peer_pl[j])) 2805 continue; 2806 rte_eth_hairpin_unbind(peer_pl[j], pi); 2807 } 2808 } 2809 2810 if (port->flow_list) 2811 port_flow_flush(pi); 2812 2813 if (eth_dev_stop_mp(pi) != 0) 2814 RTE_LOG(ERR, EAL, "rte_eth_dev_stop failed for port %u\n", 2815 pi); 2816 2817 if (rte_atomic16_cmpset(&(port->port_status), 2818 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2819 fprintf(stderr, "Port %d can not be set into stopped\n", 2820 pi); 2821 need_check_link_status = 1; 2822 } 2823 if (need_check_link_status && !no_link_check) 2824 check_all_ports_link_status(RTE_PORT_ALL); 2825 2826 printf("Done\n"); 2827 } 2828 2829 static void 2830 remove_invalid_ports_in(portid_t *array, portid_t *total) 2831 { 2832 portid_t i; 2833 portid_t new_total = 0; 2834 2835 for (i = 0; i < *total; i++) 2836 if (!port_id_is_invalid(array[i], DISABLED_WARN)) { 2837 array[new_total] = array[i]; 2838 new_total++; 2839 } 2840 *total = new_total; 2841 } 2842 2843 static void 2844 remove_invalid_ports(void) 2845 { 2846 remove_invalid_ports_in(ports_ids, &nb_ports); 2847 remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports); 2848 nb_cfg_ports = nb_fwd_ports; 2849 } 2850 2851 void 2852 close_port(portid_t pid) 2853 { 2854 portid_t pi; 2855 struct rte_port *port; 2856 2857 if (port_id_is_invalid(pid, ENABLED_WARN)) 2858 return; 2859 2860 printf("Closing ports...\n"); 2861 2862 RTE_ETH_FOREACH_DEV(pi) { 2863 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2864 continue; 2865 2866 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2867 fprintf(stderr, 2868 "Please remove port %d from forwarding configuration.\n", 2869 pi); 2870 continue; 2871 } 2872 2873 if (port_is_bonding_slave(pi)) { 2874 fprintf(stderr, 2875 "Please remove port %d from bonded device.\n", 2876 pi); 2877 continue; 2878 } 2879 2880 port = &ports[pi]; 2881 if (rte_atomic16_cmpset(&(port->port_status), 2882 RTE_PORT_CLOSED, RTE_PORT_CLOSED) == 1) { 2883 fprintf(stderr, "Port %d is already closed\n", pi); 2884 continue; 2885 } 2886 2887 if (is_proc_primary()) { 2888 port_flow_flush(pi); 2889 rte_eth_dev_close(pi); 2890 } 2891 } 2892 2893 remove_invalid_ports(); 2894 printf("Done\n"); 2895 } 2896 2897 void 2898 reset_port(portid_t pid) 2899 { 2900 int diag; 2901 portid_t pi; 2902 struct rte_port *port; 2903 2904 if (port_id_is_invalid(pid, ENABLED_WARN)) 2905 return; 2906 2907 if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) || 2908 (pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) { 2909 fprintf(stderr, 2910 "Can not reset port(s), please stop port(s) first.\n"); 2911 return; 2912 } 2913 2914 printf("Resetting ports...\n"); 2915 2916 RTE_ETH_FOREACH_DEV(pi) { 2917 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2918 continue; 2919 2920 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2921 fprintf(stderr, 2922 "Please remove port %d from forwarding configuration.\n", 2923 pi); 2924 continue; 2925 } 2926 2927 if (port_is_bonding_slave(pi)) { 2928 fprintf(stderr, 2929 "Please remove port %d from bonded device.\n", 2930 pi); 2931 continue; 2932 } 2933 2934 diag = rte_eth_dev_reset(pi); 2935 if (diag == 0) { 2936 port = &ports[pi]; 2937 port->need_reconfig = 1; 2938 port->need_reconfig_queues = 1; 2939 } else { 2940 fprintf(stderr, "Failed to reset port %d. diag=%d\n", 2941 pi, diag); 2942 } 2943 } 2944 2945 printf("Done\n"); 2946 } 2947 2948 void 2949 attach_port(char *identifier) 2950 { 2951 portid_t pi; 2952 struct rte_dev_iterator iterator; 2953 2954 printf("Attaching a new port...\n"); 2955 2956 if (identifier == NULL) { 2957 fprintf(stderr, "Invalid parameters are specified\n"); 2958 return; 2959 } 2960 2961 if (rte_dev_probe(identifier) < 0) { 2962 TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier); 2963 return; 2964 } 2965 2966 /* first attach mode: event */ 2967 if (setup_on_probe_event) { 2968 /* new ports are detected on RTE_ETH_EVENT_NEW event */ 2969 for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++) 2970 if (ports[pi].port_status == RTE_PORT_HANDLING && 2971 ports[pi].need_setup != 0) 2972 setup_attached_port(pi); 2973 return; 2974 } 2975 2976 /* second attach mode: iterator */ 2977 RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) { 2978 /* setup ports matching the devargs used for probing */ 2979 if (port_is_forwarding(pi)) 2980 continue; /* port was already attached before */ 2981 setup_attached_port(pi); 2982 } 2983 } 2984 2985 static void 2986 setup_attached_port(portid_t pi) 2987 { 2988 unsigned int socket_id; 2989 int ret; 2990 2991 socket_id = (unsigned)rte_eth_dev_socket_id(pi); 2992 /* if socket_id is invalid, set to the first available socket. */ 2993 if (check_socket_id(socket_id) < 0) 2994 socket_id = socket_ids[0]; 2995 reconfig(pi, socket_id); 2996 ret = rte_eth_promiscuous_enable(pi); 2997 if (ret != 0) 2998 fprintf(stderr, 2999 "Error during enabling promiscuous mode for port %u: %s - ignore\n", 3000 pi, rte_strerror(-ret)); 3001 3002 ports_ids[nb_ports++] = pi; 3003 fwd_ports_ids[nb_fwd_ports++] = pi; 3004 nb_cfg_ports = nb_fwd_ports; 3005 ports[pi].need_setup = 0; 3006 ports[pi].port_status = RTE_PORT_STOPPED; 3007 3008 printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports); 3009 printf("Done\n"); 3010 } 3011 3012 static void 3013 detach_device(struct rte_device *dev) 3014 { 3015 portid_t sibling; 3016 3017 if (dev == NULL) { 3018 fprintf(stderr, "Device already removed\n"); 3019 return; 3020 } 3021 3022 printf("Removing a device...\n"); 3023 3024 RTE_ETH_FOREACH_DEV_OF(sibling, dev) { 3025 if (ports[sibling].port_status != RTE_PORT_CLOSED) { 3026 if (ports[sibling].port_status != RTE_PORT_STOPPED) { 3027 fprintf(stderr, "Port %u not stopped\n", 3028 sibling); 3029 return; 3030 } 3031 port_flow_flush(sibling); 3032 } 3033 } 3034 3035 if (rte_dev_remove(dev) < 0) { 3036 TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name); 3037 return; 3038 } 3039 remove_invalid_ports(); 3040 3041 printf("Device is detached\n"); 3042 printf("Now total ports is %d\n", nb_ports); 3043 printf("Done\n"); 3044 return; 3045 } 3046 3047 void 3048 detach_port_device(portid_t port_id) 3049 { 3050 int ret; 3051 struct rte_eth_dev_info dev_info; 3052 3053 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3054 return; 3055 3056 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3057 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3058 fprintf(stderr, "Port not stopped\n"); 3059 return; 3060 } 3061 fprintf(stderr, "Port was not closed\n"); 3062 } 3063 3064 ret = eth_dev_info_get_print_err(port_id, &dev_info); 3065 if (ret != 0) { 3066 TESTPMD_LOG(ERR, 3067 "Failed to get device info for port %d, not detaching\n", 3068 port_id); 3069 return; 3070 } 3071 detach_device(dev_info.device); 3072 } 3073 3074 void 3075 detach_devargs(char *identifier) 3076 { 3077 struct rte_dev_iterator iterator; 3078 struct rte_devargs da; 3079 portid_t port_id; 3080 3081 printf("Removing a device...\n"); 3082 3083 memset(&da, 0, sizeof(da)); 3084 if (rte_devargs_parsef(&da, "%s", identifier)) { 3085 fprintf(stderr, "cannot parse identifier\n"); 3086 return; 3087 } 3088 3089 RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) { 3090 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3091 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3092 fprintf(stderr, "Port %u not stopped\n", 3093 port_id); 3094 rte_eth_iterator_cleanup(&iterator); 3095 rte_devargs_reset(&da); 3096 return; 3097 } 3098 port_flow_flush(port_id); 3099 } 3100 } 3101 3102 if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) { 3103 TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n", 3104 da.name, da.bus->name); 3105 rte_devargs_reset(&da); 3106 return; 3107 } 3108 3109 remove_invalid_ports(); 3110 3111 printf("Device %s is detached\n", identifier); 3112 printf("Now total ports is %d\n", nb_ports); 3113 printf("Done\n"); 3114 rte_devargs_reset(&da); 3115 } 3116 3117 void 3118 pmd_test_exit(void) 3119 { 3120 portid_t pt_id; 3121 unsigned int i; 3122 int ret; 3123 3124 if (test_done == 0) 3125 stop_packet_forwarding(); 3126 3127 #ifndef RTE_EXEC_ENV_WINDOWS 3128 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3129 if (mempools[i]) { 3130 if (mp_alloc_type == MP_ALLOC_ANON) 3131 rte_mempool_mem_iter(mempools[i], dma_unmap_cb, 3132 NULL); 3133 } 3134 } 3135 #endif 3136 if (ports != NULL) { 3137 no_link_check = 1; 3138 RTE_ETH_FOREACH_DEV(pt_id) { 3139 printf("\nStopping port %d...\n", pt_id); 3140 fflush(stdout); 3141 stop_port(pt_id); 3142 } 3143 RTE_ETH_FOREACH_DEV(pt_id) { 3144 printf("\nShutting down port %d...\n", pt_id); 3145 fflush(stdout); 3146 close_port(pt_id); 3147 } 3148 } 3149 3150 if (hot_plug) { 3151 ret = rte_dev_event_monitor_stop(); 3152 if (ret) { 3153 RTE_LOG(ERR, EAL, 3154 "fail to stop device event monitor."); 3155 return; 3156 } 3157 3158 ret = rte_dev_event_callback_unregister(NULL, 3159 dev_event_callback, NULL); 3160 if (ret < 0) { 3161 RTE_LOG(ERR, EAL, 3162 "fail to unregister device event callback.\n"); 3163 return; 3164 } 3165 3166 ret = rte_dev_hotplug_handle_disable(); 3167 if (ret) { 3168 RTE_LOG(ERR, EAL, 3169 "fail to disable hotplug handling.\n"); 3170 return; 3171 } 3172 } 3173 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3174 if (mempools[i]) 3175 mempool_free_mp(mempools[i]); 3176 } 3177 3178 printf("\nBye...\n"); 3179 } 3180 3181 typedef void (*cmd_func_t)(void); 3182 struct pmd_test_command { 3183 const char *cmd_name; 3184 cmd_func_t cmd_func; 3185 }; 3186 3187 /* Check the link status of all ports in up to 9s, and print them finally */ 3188 static void 3189 check_all_ports_link_status(uint32_t port_mask) 3190 { 3191 #define CHECK_INTERVAL 100 /* 100ms */ 3192 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 3193 portid_t portid; 3194 uint8_t count, all_ports_up, print_flag = 0; 3195 struct rte_eth_link link; 3196 int ret; 3197 char link_status[RTE_ETH_LINK_MAX_STR_LEN]; 3198 3199 printf("Checking link statuses...\n"); 3200 fflush(stdout); 3201 for (count = 0; count <= MAX_CHECK_TIME; count++) { 3202 all_ports_up = 1; 3203 RTE_ETH_FOREACH_DEV(portid) { 3204 if ((port_mask & (1 << portid)) == 0) 3205 continue; 3206 memset(&link, 0, sizeof(link)); 3207 ret = rte_eth_link_get_nowait(portid, &link); 3208 if (ret < 0) { 3209 all_ports_up = 0; 3210 if (print_flag == 1) 3211 fprintf(stderr, 3212 "Port %u link get failed: %s\n", 3213 portid, rte_strerror(-ret)); 3214 continue; 3215 } 3216 /* print link status if flag set */ 3217 if (print_flag == 1) { 3218 rte_eth_link_to_str(link_status, 3219 sizeof(link_status), &link); 3220 printf("Port %d %s\n", portid, link_status); 3221 continue; 3222 } 3223 /* clear all_ports_up flag if any link down */ 3224 if (link.link_status == ETH_LINK_DOWN) { 3225 all_ports_up = 0; 3226 break; 3227 } 3228 } 3229 /* after finally printing all link status, get out */ 3230 if (print_flag == 1) 3231 break; 3232 3233 if (all_ports_up == 0) { 3234 fflush(stdout); 3235 rte_delay_ms(CHECK_INTERVAL); 3236 } 3237 3238 /* set the print_flag if all ports up or timeout */ 3239 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 3240 print_flag = 1; 3241 } 3242 3243 if (lsc_interrupt) 3244 break; 3245 } 3246 } 3247 3248 static void 3249 rmv_port_callback(void *arg) 3250 { 3251 int need_to_start = 0; 3252 int org_no_link_check = no_link_check; 3253 portid_t port_id = (intptr_t)arg; 3254 struct rte_eth_dev_info dev_info; 3255 int ret; 3256 3257 RTE_ETH_VALID_PORTID_OR_RET(port_id); 3258 3259 if (!test_done && port_is_forwarding(port_id)) { 3260 need_to_start = 1; 3261 stop_packet_forwarding(); 3262 } 3263 no_link_check = 1; 3264 stop_port(port_id); 3265 no_link_check = org_no_link_check; 3266 3267 ret = eth_dev_info_get_print_err(port_id, &dev_info); 3268 if (ret != 0) 3269 TESTPMD_LOG(ERR, 3270 "Failed to get device info for port %d, not detaching\n", 3271 port_id); 3272 else { 3273 struct rte_device *device = dev_info.device; 3274 close_port(port_id); 3275 detach_device(device); /* might be already removed or have more ports */ 3276 } 3277 if (need_to_start) 3278 start_packet_forwarding(0); 3279 } 3280 3281 /* This function is used by the interrupt thread */ 3282 static int 3283 eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param, 3284 void *ret_param) 3285 { 3286 RTE_SET_USED(param); 3287 RTE_SET_USED(ret_param); 3288 3289 if (type >= RTE_ETH_EVENT_MAX) { 3290 fprintf(stderr, 3291 "\nPort %" PRIu16 ": %s called upon invalid event %d\n", 3292 port_id, __func__, type); 3293 fflush(stderr); 3294 } else if (event_print_mask & (UINT32_C(1) << type)) { 3295 printf("\nPort %" PRIu16 ": %s event\n", port_id, 3296 eth_event_desc[type]); 3297 fflush(stdout); 3298 } 3299 3300 switch (type) { 3301 case RTE_ETH_EVENT_NEW: 3302 ports[port_id].need_setup = 1; 3303 ports[port_id].port_status = RTE_PORT_HANDLING; 3304 break; 3305 case RTE_ETH_EVENT_INTR_RMV: 3306 if (port_id_is_invalid(port_id, DISABLED_WARN)) 3307 break; 3308 if (rte_eal_alarm_set(100000, 3309 rmv_port_callback, (void *)(intptr_t)port_id)) 3310 fprintf(stderr, 3311 "Could not set up deferred device removal\n"); 3312 break; 3313 case RTE_ETH_EVENT_DESTROY: 3314 ports[port_id].port_status = RTE_PORT_CLOSED; 3315 printf("Port %u is closed\n", port_id); 3316 break; 3317 default: 3318 break; 3319 } 3320 return 0; 3321 } 3322 3323 static int 3324 register_eth_event_callback(void) 3325 { 3326 int ret; 3327 enum rte_eth_event_type event; 3328 3329 for (event = RTE_ETH_EVENT_UNKNOWN; 3330 event < RTE_ETH_EVENT_MAX; event++) { 3331 ret = rte_eth_dev_callback_register(RTE_ETH_ALL, 3332 event, 3333 eth_event_callback, 3334 NULL); 3335 if (ret != 0) { 3336 TESTPMD_LOG(ERR, "Failed to register callback for " 3337 "%s event\n", eth_event_desc[event]); 3338 return -1; 3339 } 3340 } 3341 3342 return 0; 3343 } 3344 3345 /* This function is used by the interrupt thread */ 3346 static void 3347 dev_event_callback(const char *device_name, enum rte_dev_event_type type, 3348 __rte_unused void *arg) 3349 { 3350 uint16_t port_id; 3351 int ret; 3352 3353 if (type >= RTE_DEV_EVENT_MAX) { 3354 fprintf(stderr, "%s called upon invalid event %d\n", 3355 __func__, type); 3356 fflush(stderr); 3357 } 3358 3359 switch (type) { 3360 case RTE_DEV_EVENT_REMOVE: 3361 RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n", 3362 device_name); 3363 ret = rte_eth_dev_get_port_by_name(device_name, &port_id); 3364 if (ret) { 3365 RTE_LOG(ERR, EAL, "can not get port by device %s!\n", 3366 device_name); 3367 return; 3368 } 3369 /* 3370 * Because the user's callback is invoked in eal interrupt 3371 * callback, the interrupt callback need to be finished before 3372 * it can be unregistered when detaching device. So finish 3373 * callback soon and use a deferred removal to detach device 3374 * is need. It is a workaround, once the device detaching be 3375 * moved into the eal in the future, the deferred removal could 3376 * be deleted. 3377 */ 3378 if (rte_eal_alarm_set(100000, 3379 rmv_port_callback, (void *)(intptr_t)port_id)) 3380 RTE_LOG(ERR, EAL, 3381 "Could not set up deferred device removal\n"); 3382 break; 3383 case RTE_DEV_EVENT_ADD: 3384 RTE_LOG(ERR, EAL, "The device: %s has been added!\n", 3385 device_name); 3386 /* TODO: After finish kernel driver binding, 3387 * begin to attach port. 3388 */ 3389 break; 3390 default: 3391 break; 3392 } 3393 } 3394 3395 static void 3396 rxtx_port_config(struct rte_port *port) 3397 { 3398 uint16_t qid; 3399 uint64_t offloads; 3400 3401 for (qid = 0; qid < nb_rxq; qid++) { 3402 offloads = port->rx_conf[qid].offloads; 3403 port->rx_conf[qid] = port->dev_info.default_rxconf; 3404 if (offloads != 0) 3405 port->rx_conf[qid].offloads = offloads; 3406 3407 /* Check if any Rx parameters have been passed */ 3408 if (rx_pthresh != RTE_PMD_PARAM_UNSET) 3409 port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh; 3410 3411 if (rx_hthresh != RTE_PMD_PARAM_UNSET) 3412 port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh; 3413 3414 if (rx_wthresh != RTE_PMD_PARAM_UNSET) 3415 port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh; 3416 3417 if (rx_free_thresh != RTE_PMD_PARAM_UNSET) 3418 port->rx_conf[qid].rx_free_thresh = rx_free_thresh; 3419 3420 if (rx_drop_en != RTE_PMD_PARAM_UNSET) 3421 port->rx_conf[qid].rx_drop_en = rx_drop_en; 3422 3423 port->nb_rx_desc[qid] = nb_rxd; 3424 } 3425 3426 for (qid = 0; qid < nb_txq; qid++) { 3427 offloads = port->tx_conf[qid].offloads; 3428 port->tx_conf[qid] = port->dev_info.default_txconf; 3429 if (offloads != 0) 3430 port->tx_conf[qid].offloads = offloads; 3431 3432 /* Check if any Tx parameters have been passed */ 3433 if (tx_pthresh != RTE_PMD_PARAM_UNSET) 3434 port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh; 3435 3436 if (tx_hthresh != RTE_PMD_PARAM_UNSET) 3437 port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh; 3438 3439 if (tx_wthresh != RTE_PMD_PARAM_UNSET) 3440 port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh; 3441 3442 if (tx_rs_thresh != RTE_PMD_PARAM_UNSET) 3443 port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh; 3444 3445 if (tx_free_thresh != RTE_PMD_PARAM_UNSET) 3446 port->tx_conf[qid].tx_free_thresh = tx_free_thresh; 3447 3448 port->nb_tx_desc[qid] = nb_txd; 3449 } 3450 } 3451 3452 /* 3453 * Helper function to arrange max_rx_pktlen value and JUMBO_FRAME offload, 3454 * MTU is also aligned if JUMBO_FRAME offload is not set. 3455 * 3456 * port->dev_info should be set before calling this function. 3457 * 3458 * return 0 on success, negative on error 3459 */ 3460 int 3461 update_jumbo_frame_offload(portid_t portid) 3462 { 3463 struct rte_port *port = &ports[portid]; 3464 uint32_t eth_overhead; 3465 uint64_t rx_offloads; 3466 int ret; 3467 bool on; 3468 3469 /* Update the max_rx_pkt_len to have MTU as RTE_ETHER_MTU */ 3470 if (port->dev_info.max_mtu != UINT16_MAX && 3471 port->dev_info.max_rx_pktlen > port->dev_info.max_mtu) 3472 eth_overhead = port->dev_info.max_rx_pktlen - 3473 port->dev_info.max_mtu; 3474 else 3475 eth_overhead = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN; 3476 3477 rx_offloads = port->dev_conf.rxmode.offloads; 3478 3479 /* Default config value is 0 to use PMD specific overhead */ 3480 if (port->dev_conf.rxmode.max_rx_pkt_len == 0) 3481 port->dev_conf.rxmode.max_rx_pkt_len = RTE_ETHER_MTU + eth_overhead; 3482 3483 if (port->dev_conf.rxmode.max_rx_pkt_len <= RTE_ETHER_MTU + eth_overhead) { 3484 rx_offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; 3485 on = false; 3486 } else { 3487 if ((port->dev_info.rx_offload_capa & DEV_RX_OFFLOAD_JUMBO_FRAME) == 0) { 3488 fprintf(stderr, 3489 "Frame size (%u) is not supported by port %u\n", 3490 port->dev_conf.rxmode.max_rx_pkt_len, 3491 portid); 3492 return -1; 3493 } 3494 rx_offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 3495 on = true; 3496 } 3497 3498 if (rx_offloads != port->dev_conf.rxmode.offloads) { 3499 uint16_t qid; 3500 3501 port->dev_conf.rxmode.offloads = rx_offloads; 3502 3503 /* Apply JUMBO_FRAME offload configuration to Rx queue(s) */ 3504 for (qid = 0; qid < port->dev_info.nb_rx_queues; qid++) { 3505 if (on) 3506 port->rx_conf[qid].offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 3507 else 3508 port->rx_conf[qid].offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; 3509 } 3510 } 3511 3512 /* If JUMBO_FRAME is set MTU conversion done by ethdev layer, 3513 * if unset do it here 3514 */ 3515 if ((rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) == 0) { 3516 ret = eth_dev_set_mtu_mp(portid, 3517 port->dev_conf.rxmode.max_rx_pkt_len - eth_overhead); 3518 if (ret) 3519 fprintf(stderr, 3520 "Failed to set MTU to %u for port %u\n", 3521 port->dev_conf.rxmode.max_rx_pkt_len - eth_overhead, 3522 portid); 3523 } 3524 3525 return 0; 3526 } 3527 3528 void 3529 init_port_config(void) 3530 { 3531 portid_t pid; 3532 struct rte_port *port; 3533 int ret; 3534 3535 RTE_ETH_FOREACH_DEV(pid) { 3536 port = &ports[pid]; 3537 port->dev_conf.fdir_conf = fdir_conf; 3538 3539 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 3540 if (ret != 0) 3541 return; 3542 3543 if (nb_rxq > 1) { 3544 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3545 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 3546 rss_hf & port->dev_info.flow_type_rss_offloads; 3547 } else { 3548 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3549 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0; 3550 } 3551 3552 if (port->dcb_flag == 0) { 3553 if( port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) 3554 port->dev_conf.rxmode.mq_mode = 3555 (enum rte_eth_rx_mq_mode) 3556 (rx_mq_mode & ETH_MQ_RX_RSS); 3557 else 3558 port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE; 3559 } 3560 3561 rxtx_port_config(port); 3562 3563 ret = eth_macaddr_get_print_err(pid, &port->eth_addr); 3564 if (ret != 0) 3565 return; 3566 3567 #if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS 3568 rte_pmd_ixgbe_bypass_init(pid); 3569 #endif 3570 3571 if (lsc_interrupt && (*port->dev_info.dev_flags & RTE_ETH_DEV_INTR_LSC)) 3572 port->dev_conf.intr_conf.lsc = 1; 3573 if (rmv_interrupt && (*port->dev_info.dev_flags & RTE_ETH_DEV_INTR_RMV)) 3574 port->dev_conf.intr_conf.rmv = 1; 3575 } 3576 } 3577 3578 void set_port_slave_flag(portid_t slave_pid) 3579 { 3580 struct rte_port *port; 3581 3582 port = &ports[slave_pid]; 3583 port->slave_flag = 1; 3584 } 3585 3586 void clear_port_slave_flag(portid_t slave_pid) 3587 { 3588 struct rte_port *port; 3589 3590 port = &ports[slave_pid]; 3591 port->slave_flag = 0; 3592 } 3593 3594 uint8_t port_is_bonding_slave(portid_t slave_pid) 3595 { 3596 struct rte_port *port; 3597 struct rte_eth_dev_info dev_info; 3598 int ret; 3599 3600 port = &ports[slave_pid]; 3601 ret = eth_dev_info_get_print_err(slave_pid, &dev_info); 3602 if (ret != 0) { 3603 TESTPMD_LOG(ERR, 3604 "Failed to get device info for port id %d," 3605 "cannot determine if the port is a bonded slave", 3606 slave_pid); 3607 return 0; 3608 } 3609 if ((*dev_info.dev_flags & RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1)) 3610 return 1; 3611 return 0; 3612 } 3613 3614 const uint16_t vlan_tags[] = { 3615 0, 1, 2, 3, 4, 5, 6, 7, 3616 8, 9, 10, 11, 12, 13, 14, 15, 3617 16, 17, 18, 19, 20, 21, 22, 23, 3618 24, 25, 26, 27, 28, 29, 30, 31 3619 }; 3620 3621 static int 3622 get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf, 3623 enum dcb_mode_enable dcb_mode, 3624 enum rte_eth_nb_tcs num_tcs, 3625 uint8_t pfc_en) 3626 { 3627 uint8_t i; 3628 int32_t rc; 3629 struct rte_eth_rss_conf rss_conf; 3630 3631 /* 3632 * Builds up the correct configuration for dcb+vt based on the vlan tags array 3633 * given above, and the number of traffic classes available for use. 3634 */ 3635 if (dcb_mode == DCB_VT_ENABLED) { 3636 struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf = 3637 ð_conf->rx_adv_conf.vmdq_dcb_conf; 3638 struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf = 3639 ð_conf->tx_adv_conf.vmdq_dcb_tx_conf; 3640 3641 /* VMDQ+DCB RX and TX configurations */ 3642 vmdq_rx_conf->enable_default_pool = 0; 3643 vmdq_rx_conf->default_pool = 0; 3644 vmdq_rx_conf->nb_queue_pools = 3645 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3646 vmdq_tx_conf->nb_queue_pools = 3647 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3648 3649 vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools; 3650 for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) { 3651 vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i]; 3652 vmdq_rx_conf->pool_map[i].pools = 3653 1 << (i % vmdq_rx_conf->nb_queue_pools); 3654 } 3655 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3656 vmdq_rx_conf->dcb_tc[i] = i % num_tcs; 3657 vmdq_tx_conf->dcb_tc[i] = i % num_tcs; 3658 } 3659 3660 /* set DCB mode of RX and TX of multiple queues */ 3661 eth_conf->rxmode.mq_mode = 3662 (enum rte_eth_rx_mq_mode) 3663 (rx_mq_mode & ETH_MQ_RX_VMDQ_DCB); 3664 eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB; 3665 } else { 3666 struct rte_eth_dcb_rx_conf *rx_conf = 3667 ð_conf->rx_adv_conf.dcb_rx_conf; 3668 struct rte_eth_dcb_tx_conf *tx_conf = 3669 ð_conf->tx_adv_conf.dcb_tx_conf; 3670 3671 memset(&rss_conf, 0, sizeof(struct rte_eth_rss_conf)); 3672 3673 rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf); 3674 if (rc != 0) 3675 return rc; 3676 3677 rx_conf->nb_tcs = num_tcs; 3678 tx_conf->nb_tcs = num_tcs; 3679 3680 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3681 rx_conf->dcb_tc[i] = i % num_tcs; 3682 tx_conf->dcb_tc[i] = i % num_tcs; 3683 } 3684 3685 eth_conf->rxmode.mq_mode = 3686 (enum rte_eth_rx_mq_mode) 3687 (rx_mq_mode & ETH_MQ_RX_DCB_RSS); 3688 eth_conf->rx_adv_conf.rss_conf = rss_conf; 3689 eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB; 3690 } 3691 3692 if (pfc_en) 3693 eth_conf->dcb_capability_en = 3694 ETH_DCB_PG_SUPPORT | ETH_DCB_PFC_SUPPORT; 3695 else 3696 eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT; 3697 3698 return 0; 3699 } 3700 3701 int 3702 init_port_dcb_config(portid_t pid, 3703 enum dcb_mode_enable dcb_mode, 3704 enum rte_eth_nb_tcs num_tcs, 3705 uint8_t pfc_en) 3706 { 3707 struct rte_eth_conf port_conf; 3708 struct rte_port *rte_port; 3709 int retval; 3710 uint16_t i; 3711 3712 if (num_procs > 1) { 3713 printf("The multi-process feature doesn't support dcb.\n"); 3714 return -ENOTSUP; 3715 } 3716 rte_port = &ports[pid]; 3717 3718 memset(&port_conf, 0, sizeof(struct rte_eth_conf)); 3719 3720 port_conf.rxmode = rte_port->dev_conf.rxmode; 3721 port_conf.txmode = rte_port->dev_conf.txmode; 3722 3723 /*set configuration of DCB in vt mode and DCB in non-vt mode*/ 3724 retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en); 3725 if (retval < 0) 3726 return retval; 3727 port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3728 3729 /* re-configure the device . */ 3730 retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf); 3731 if (retval < 0) 3732 return retval; 3733 3734 retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info); 3735 if (retval != 0) 3736 return retval; 3737 3738 /* If dev_info.vmdq_pool_base is greater than 0, 3739 * the queue id of vmdq pools is started after pf queues. 3740 */ 3741 if (dcb_mode == DCB_VT_ENABLED && 3742 rte_port->dev_info.vmdq_pool_base > 0) { 3743 fprintf(stderr, 3744 "VMDQ_DCB multi-queue mode is nonsensical for port %d.\n", 3745 pid); 3746 return -1; 3747 } 3748 3749 /* Assume the ports in testpmd have the same dcb capability 3750 * and has the same number of rxq and txq in dcb mode 3751 */ 3752 if (dcb_mode == DCB_VT_ENABLED) { 3753 if (rte_port->dev_info.max_vfs > 0) { 3754 nb_rxq = rte_port->dev_info.nb_rx_queues; 3755 nb_txq = rte_port->dev_info.nb_tx_queues; 3756 } else { 3757 nb_rxq = rte_port->dev_info.max_rx_queues; 3758 nb_txq = rte_port->dev_info.max_tx_queues; 3759 } 3760 } else { 3761 /*if vt is disabled, use all pf queues */ 3762 if (rte_port->dev_info.vmdq_pool_base == 0) { 3763 nb_rxq = rte_port->dev_info.max_rx_queues; 3764 nb_txq = rte_port->dev_info.max_tx_queues; 3765 } else { 3766 nb_rxq = (queueid_t)num_tcs; 3767 nb_txq = (queueid_t)num_tcs; 3768 3769 } 3770 } 3771 rx_free_thresh = 64; 3772 3773 memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf)); 3774 3775 rxtx_port_config(rte_port); 3776 /* VLAN filter */ 3777 rte_port->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3778 for (i = 0; i < RTE_DIM(vlan_tags); i++) 3779 rx_vft_set(pid, vlan_tags[i], 1); 3780 3781 retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr); 3782 if (retval != 0) 3783 return retval; 3784 3785 rte_port->dcb_flag = 1; 3786 3787 /* Enter DCB configuration status */ 3788 dcb_config = 1; 3789 3790 return 0; 3791 } 3792 3793 static void 3794 init_port(void) 3795 { 3796 int i; 3797 3798 /* Configuration of Ethernet ports. */ 3799 ports = rte_zmalloc("testpmd: ports", 3800 sizeof(struct rte_port) * RTE_MAX_ETHPORTS, 3801 RTE_CACHE_LINE_SIZE); 3802 if (ports == NULL) { 3803 rte_exit(EXIT_FAILURE, 3804 "rte_zmalloc(%d struct rte_port) failed\n", 3805 RTE_MAX_ETHPORTS); 3806 } 3807 for (i = 0; i < RTE_MAX_ETHPORTS; i++) 3808 LIST_INIT(&ports[i].flow_tunnel_list); 3809 /* Initialize ports NUMA structures */ 3810 memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3811 memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3812 memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3813 } 3814 3815 static void 3816 force_quit(void) 3817 { 3818 pmd_test_exit(); 3819 prompt_exit(); 3820 } 3821 3822 static void 3823 print_stats(void) 3824 { 3825 uint8_t i; 3826 const char clr[] = { 27, '[', '2', 'J', '\0' }; 3827 const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 3828 3829 /* Clear screen and move to top left */ 3830 printf("%s%s", clr, top_left); 3831 3832 printf("\nPort statistics ===================================="); 3833 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 3834 nic_stats_display(fwd_ports_ids[i]); 3835 3836 fflush(stdout); 3837 } 3838 3839 static void 3840 signal_handler(int signum) 3841 { 3842 if (signum == SIGINT || signum == SIGTERM) { 3843 fprintf(stderr, "\nSignal %d received, preparing to exit...\n", 3844 signum); 3845 #ifdef RTE_LIB_PDUMP 3846 /* uninitialize packet capture framework */ 3847 rte_pdump_uninit(); 3848 #endif 3849 #ifdef RTE_LIB_LATENCYSTATS 3850 if (latencystats_enabled != 0) 3851 rte_latencystats_uninit(); 3852 #endif 3853 force_quit(); 3854 /* Set flag to indicate the force termination. */ 3855 f_quit = 1; 3856 /* exit with the expected status */ 3857 #ifndef RTE_EXEC_ENV_WINDOWS 3858 signal(signum, SIG_DFL); 3859 kill(getpid(), signum); 3860 #endif 3861 } 3862 } 3863 3864 int 3865 main(int argc, char** argv) 3866 { 3867 int diag; 3868 portid_t port_id; 3869 uint16_t count; 3870 int ret; 3871 3872 signal(SIGINT, signal_handler); 3873 signal(SIGTERM, signal_handler); 3874 3875 testpmd_logtype = rte_log_register("testpmd"); 3876 if (testpmd_logtype < 0) 3877 rte_exit(EXIT_FAILURE, "Cannot register log type"); 3878 rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG); 3879 3880 diag = rte_eal_init(argc, argv); 3881 if (diag < 0) 3882 rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n", 3883 rte_strerror(rte_errno)); 3884 3885 ret = register_eth_event_callback(); 3886 if (ret != 0) 3887 rte_exit(EXIT_FAILURE, "Cannot register for ethdev events"); 3888 3889 #ifdef RTE_LIB_PDUMP 3890 /* initialize packet capture framework */ 3891 rte_pdump_init(); 3892 #endif 3893 3894 count = 0; 3895 RTE_ETH_FOREACH_DEV(port_id) { 3896 ports_ids[count] = port_id; 3897 count++; 3898 } 3899 nb_ports = (portid_t) count; 3900 if (nb_ports == 0) 3901 TESTPMD_LOG(WARNING, "No probed ethernet devices\n"); 3902 3903 /* allocate port structures, and init them */ 3904 init_port(); 3905 3906 set_def_fwd_config(); 3907 if (nb_lcores == 0) 3908 rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n" 3909 "Check the core mask argument\n"); 3910 3911 /* Bitrate/latency stats disabled by default */ 3912 #ifdef RTE_LIB_BITRATESTATS 3913 bitrate_enabled = 0; 3914 #endif 3915 #ifdef RTE_LIB_LATENCYSTATS 3916 latencystats_enabled = 0; 3917 #endif 3918 3919 /* on FreeBSD, mlockall() is disabled by default */ 3920 #ifdef RTE_EXEC_ENV_FREEBSD 3921 do_mlockall = 0; 3922 #else 3923 do_mlockall = 1; 3924 #endif 3925 3926 argc -= diag; 3927 argv += diag; 3928 if (argc > 1) 3929 launch_args_parse(argc, argv); 3930 3931 #ifndef RTE_EXEC_ENV_WINDOWS 3932 if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) { 3933 TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n", 3934 strerror(errno)); 3935 } 3936 #endif 3937 3938 if (tx_first && interactive) 3939 rte_exit(EXIT_FAILURE, "--tx-first cannot be used on " 3940 "interactive mode.\n"); 3941 3942 if (tx_first && lsc_interrupt) { 3943 fprintf(stderr, 3944 "Warning: lsc_interrupt needs to be off when using tx_first. Disabling.\n"); 3945 lsc_interrupt = 0; 3946 } 3947 3948 if (!nb_rxq && !nb_txq) 3949 fprintf(stderr, 3950 "Warning: Either rx or tx queues should be non-zero\n"); 3951 3952 if (nb_rxq > 1 && nb_rxq > nb_txq) 3953 fprintf(stderr, 3954 "Warning: nb_rxq=%d enables RSS configuration, but nb_txq=%d will prevent to fully test it.\n", 3955 nb_rxq, nb_txq); 3956 3957 init_config(); 3958 3959 if (hot_plug) { 3960 ret = rte_dev_hotplug_handle_enable(); 3961 if (ret) { 3962 RTE_LOG(ERR, EAL, 3963 "fail to enable hotplug handling."); 3964 return -1; 3965 } 3966 3967 ret = rte_dev_event_monitor_start(); 3968 if (ret) { 3969 RTE_LOG(ERR, EAL, 3970 "fail to start device event monitoring."); 3971 return -1; 3972 } 3973 3974 ret = rte_dev_event_callback_register(NULL, 3975 dev_event_callback, NULL); 3976 if (ret) { 3977 RTE_LOG(ERR, EAL, 3978 "fail to register device event callback\n"); 3979 return -1; 3980 } 3981 } 3982 3983 if (!no_device_start && start_port(RTE_PORT_ALL) != 0) 3984 rte_exit(EXIT_FAILURE, "Start ports failed\n"); 3985 3986 /* set all ports to promiscuous mode by default */ 3987 RTE_ETH_FOREACH_DEV(port_id) { 3988 ret = rte_eth_promiscuous_enable(port_id); 3989 if (ret != 0) 3990 fprintf(stderr, 3991 "Error during enabling promiscuous mode for port %u: %s - ignore\n", 3992 port_id, rte_strerror(-ret)); 3993 } 3994 3995 /* Init metrics library */ 3996 rte_metrics_init(rte_socket_id()); 3997 3998 #ifdef RTE_LIB_LATENCYSTATS 3999 if (latencystats_enabled != 0) { 4000 int ret = rte_latencystats_init(1, NULL); 4001 if (ret) 4002 fprintf(stderr, 4003 "Warning: latencystats init() returned error %d\n", 4004 ret); 4005 fprintf(stderr, "Latencystats running on lcore %d\n", 4006 latencystats_lcore_id); 4007 } 4008 #endif 4009 4010 /* Setup bitrate stats */ 4011 #ifdef RTE_LIB_BITRATESTATS 4012 if (bitrate_enabled != 0) { 4013 bitrate_data = rte_stats_bitrate_create(); 4014 if (bitrate_data == NULL) 4015 rte_exit(EXIT_FAILURE, 4016 "Could not allocate bitrate data.\n"); 4017 rte_stats_bitrate_reg(bitrate_data); 4018 } 4019 #endif 4020 4021 #ifdef RTE_LIB_CMDLINE 4022 if (strlen(cmdline_filename) != 0) 4023 cmdline_read_from_file(cmdline_filename); 4024 4025 if (interactive == 1) { 4026 if (auto_start) { 4027 printf("Start automatic packet forwarding\n"); 4028 start_packet_forwarding(0); 4029 } 4030 prompt(); 4031 pmd_test_exit(); 4032 } else 4033 #endif 4034 { 4035 char c; 4036 int rc; 4037 4038 f_quit = 0; 4039 4040 printf("No commandline core given, start packet forwarding\n"); 4041 start_packet_forwarding(tx_first); 4042 if (stats_period != 0) { 4043 uint64_t prev_time = 0, cur_time, diff_time = 0; 4044 uint64_t timer_period; 4045 4046 /* Convert to number of cycles */ 4047 timer_period = stats_period * rte_get_timer_hz(); 4048 4049 while (f_quit == 0) { 4050 cur_time = rte_get_timer_cycles(); 4051 diff_time += cur_time - prev_time; 4052 4053 if (diff_time >= timer_period) { 4054 print_stats(); 4055 /* Reset the timer */ 4056 diff_time = 0; 4057 } 4058 /* Sleep to avoid unnecessary checks */ 4059 prev_time = cur_time; 4060 rte_delay_us_sleep(US_PER_S); 4061 } 4062 } 4063 4064 printf("Press enter to exit\n"); 4065 rc = read(0, &c, 1); 4066 pmd_test_exit(); 4067 if (rc < 0) 4068 return 1; 4069 } 4070 4071 ret = rte_eal_cleanup(); 4072 if (ret != 0) 4073 rte_exit(EXIT_FAILURE, 4074 "EAL cleanup failed: %s\n", strerror(-ret)); 4075 4076 return EXIT_SUCCESS; 4077 } 4078