1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2017 Intel Corporation 3 */ 4 5 #include <stdarg.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <signal.h> 9 #include <string.h> 10 #include <time.h> 11 #include <fcntl.h> 12 #include <sys/mman.h> 13 #include <sys/types.h> 14 #include <errno.h> 15 #include <stdbool.h> 16 17 #include <sys/queue.h> 18 #include <sys/stat.h> 19 20 #include <stdint.h> 21 #include <unistd.h> 22 #include <inttypes.h> 23 24 #include <rte_common.h> 25 #include <rte_errno.h> 26 #include <rte_byteorder.h> 27 #include <rte_log.h> 28 #include <rte_debug.h> 29 #include <rte_cycles.h> 30 #include <rte_memory.h> 31 #include <rte_memcpy.h> 32 #include <rte_launch.h> 33 #include <rte_eal.h> 34 #include <rte_alarm.h> 35 #include <rte_per_lcore.h> 36 #include <rte_lcore.h> 37 #include <rte_atomic.h> 38 #include <rte_branch_prediction.h> 39 #include <rte_mempool.h> 40 #include <rte_malloc.h> 41 #include <rte_mbuf.h> 42 #include <rte_mbuf_pool_ops.h> 43 #include <rte_interrupts.h> 44 #include <rte_pci.h> 45 #include <rte_ether.h> 46 #include <rte_ethdev.h> 47 #include <rte_dev.h> 48 #include <rte_string_fns.h> 49 #ifdef RTE_NET_IXGBE 50 #include <rte_pmd_ixgbe.h> 51 #endif 52 #ifdef RTE_LIB_PDUMP 53 #include <rte_pdump.h> 54 #endif 55 #include <rte_flow.h> 56 #include <rte_metrics.h> 57 #ifdef RTE_LIB_BITRATESTATS 58 #include <rte_bitrate.h> 59 #endif 60 #ifdef RTE_LIB_LATENCYSTATS 61 #include <rte_latencystats.h> 62 #endif 63 64 #include "testpmd.h" 65 66 #ifndef MAP_HUGETLB 67 /* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */ 68 #define HUGE_FLAG (0x40000) 69 #else 70 #define HUGE_FLAG MAP_HUGETLB 71 #endif 72 73 #ifndef MAP_HUGE_SHIFT 74 /* older kernels (or FreeBSD) will not have this define */ 75 #define HUGE_SHIFT (26) 76 #else 77 #define HUGE_SHIFT MAP_HUGE_SHIFT 78 #endif 79 80 #define EXTMEM_HEAP_NAME "extmem" 81 #define EXTBUF_ZONE_SIZE RTE_PGSIZE_2M 82 83 uint16_t verbose_level = 0; /**< Silent by default. */ 84 int testpmd_logtype; /**< Log type for testpmd logs */ 85 86 /* use main core for command line ? */ 87 uint8_t interactive = 0; 88 uint8_t auto_start = 0; 89 uint8_t tx_first; 90 char cmdline_filename[PATH_MAX] = {0}; 91 92 /* 93 * NUMA support configuration. 94 * When set, the NUMA support attempts to dispatch the allocation of the 95 * RX and TX memory rings, and of the DMA memory buffers (mbufs) for the 96 * probed ports among the CPU sockets 0 and 1. 97 * Otherwise, all memory is allocated from CPU socket 0. 98 */ 99 uint8_t numa_support = 1; /**< numa enabled by default */ 100 101 /* 102 * In UMA mode,all memory is allocated from socket 0 if --socket-num is 103 * not configured. 104 */ 105 uint8_t socket_num = UMA_NO_CONFIG; 106 107 /* 108 * Select mempool allocation type: 109 * - native: use regular DPDK memory 110 * - anon: use regular DPDK memory to create mempool, but populate using 111 * anonymous memory (may not be IOVA-contiguous) 112 * - xmem: use externally allocated hugepage memory 113 */ 114 uint8_t mp_alloc_type = MP_ALLOC_NATIVE; 115 116 /* 117 * Store specified sockets on which memory pool to be used by ports 118 * is allocated. 119 */ 120 uint8_t port_numa[RTE_MAX_ETHPORTS]; 121 122 /* 123 * Store specified sockets on which RX ring to be used by ports 124 * is allocated. 125 */ 126 uint8_t rxring_numa[RTE_MAX_ETHPORTS]; 127 128 /* 129 * Store specified sockets on which TX ring to be used by ports 130 * is allocated. 131 */ 132 uint8_t txring_numa[RTE_MAX_ETHPORTS]; 133 134 /* 135 * Record the Ethernet address of peer target ports to which packets are 136 * forwarded. 137 * Must be instantiated with the ethernet addresses of peer traffic generator 138 * ports. 139 */ 140 struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS]; 141 portid_t nb_peer_eth_addrs = 0; 142 143 /* 144 * Probed Target Environment. 145 */ 146 struct rte_port *ports; /**< For all probed ethernet ports. */ 147 portid_t nb_ports; /**< Number of probed ethernet ports. */ 148 struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */ 149 lcoreid_t nb_lcores; /**< Number of probed logical cores. */ 150 151 portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */ 152 153 /* 154 * Test Forwarding Configuration. 155 * nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores 156 * nb_fwd_ports <= nb_cfg_ports <= nb_ports 157 */ 158 lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */ 159 lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */ 160 portid_t nb_cfg_ports; /**< Number of configured ports. */ 161 portid_t nb_fwd_ports; /**< Number of forwarding ports. */ 162 163 unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */ 164 portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */ 165 166 struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */ 167 streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */ 168 169 /* 170 * Forwarding engines. 171 */ 172 struct fwd_engine * fwd_engines[] = { 173 &io_fwd_engine, 174 &mac_fwd_engine, 175 &mac_swap_engine, 176 &flow_gen_engine, 177 &rx_only_engine, 178 &tx_only_engine, 179 &csum_fwd_engine, 180 &icmp_echo_engine, 181 &noisy_vnf_engine, 182 &five_tuple_swap_fwd_engine, 183 #ifdef RTE_LIBRTE_IEEE1588 184 &ieee1588_fwd_engine, 185 #endif 186 NULL, 187 }; 188 189 struct rte_mempool *mempools[RTE_MAX_NUMA_NODES * MAX_SEGS_BUFFER_SPLIT]; 190 uint16_t mempool_flags; 191 192 struct fwd_config cur_fwd_config; 193 struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */ 194 uint32_t retry_enabled; 195 uint32_t burst_tx_delay_time = BURST_TX_WAIT_US; 196 uint32_t burst_tx_retry_num = BURST_TX_RETRIES; 197 198 uint32_t mbuf_data_size_n = 1; /* Number of specified mbuf sizes. */ 199 uint16_t mbuf_data_size[MAX_SEGS_BUFFER_SPLIT] = { 200 DEFAULT_MBUF_DATA_SIZE 201 }; /**< Mbuf data space size. */ 202 uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if 203 * specified on command-line. */ 204 uint16_t stats_period; /**< Period to show statistics (disabled by default) */ 205 206 /* 207 * In container, it cannot terminate the process which running with 'stats-period' 208 * option. Set flag to exit stats period loop after received SIGINT/SIGTERM. 209 */ 210 uint8_t f_quit; 211 212 /* 213 * Configuration of packet segments used to scatter received packets 214 * if some of split features is configured. 215 */ 216 uint16_t rx_pkt_seg_lengths[MAX_SEGS_BUFFER_SPLIT]; 217 uint8_t rx_pkt_nb_segs; /**< Number of segments to split */ 218 uint16_t rx_pkt_seg_offsets[MAX_SEGS_BUFFER_SPLIT]; 219 uint8_t rx_pkt_nb_offs; /**< Number of specified offsets */ 220 221 /* 222 * Configuration of packet segments used by the "txonly" processing engine. 223 */ 224 uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */ 225 uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = { 226 TXONLY_DEF_PACKET_LEN, 227 }; 228 uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */ 229 230 enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF; 231 /**< Split policy for packets to TX. */ 232 233 uint8_t txonly_multi_flow; 234 /**< Whether multiple flows are generated in TXONLY mode. */ 235 236 uint32_t tx_pkt_times_inter; 237 /**< Timings for send scheduling in TXONLY mode, time between bursts. */ 238 239 uint32_t tx_pkt_times_intra; 240 /**< Timings for send scheduling in TXONLY mode, time between packets. */ 241 242 uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */ 243 uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */ 244 245 /* current configuration is in DCB or not,0 means it is not in DCB mode */ 246 uint8_t dcb_config = 0; 247 248 /* Whether the dcb is in testing status */ 249 uint8_t dcb_test = 0; 250 251 /* 252 * Configurable number of RX/TX queues. 253 */ 254 queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */ 255 queueid_t nb_rxq = 1; /**< Number of RX queues per port. */ 256 queueid_t nb_txq = 1; /**< Number of TX queues per port. */ 257 258 /* 259 * Configurable number of RX/TX ring descriptors. 260 * Defaults are supplied by drivers via ethdev. 261 */ 262 #define RTE_TEST_RX_DESC_DEFAULT 0 263 #define RTE_TEST_TX_DESC_DEFAULT 0 264 uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */ 265 uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */ 266 267 #define RTE_PMD_PARAM_UNSET -1 268 /* 269 * Configurable values of RX and TX ring threshold registers. 270 */ 271 272 int8_t rx_pthresh = RTE_PMD_PARAM_UNSET; 273 int8_t rx_hthresh = RTE_PMD_PARAM_UNSET; 274 int8_t rx_wthresh = RTE_PMD_PARAM_UNSET; 275 276 int8_t tx_pthresh = RTE_PMD_PARAM_UNSET; 277 int8_t tx_hthresh = RTE_PMD_PARAM_UNSET; 278 int8_t tx_wthresh = RTE_PMD_PARAM_UNSET; 279 280 /* 281 * Configurable value of RX free threshold. 282 */ 283 int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET; 284 285 /* 286 * Configurable value of RX drop enable. 287 */ 288 int8_t rx_drop_en = RTE_PMD_PARAM_UNSET; 289 290 /* 291 * Configurable value of TX free threshold. 292 */ 293 int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET; 294 295 /* 296 * Configurable value of TX RS bit threshold. 297 */ 298 int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET; 299 300 /* 301 * Configurable value of buffered packets before sending. 302 */ 303 uint16_t noisy_tx_sw_bufsz; 304 305 /* 306 * Configurable value of packet buffer timeout. 307 */ 308 uint16_t noisy_tx_sw_buf_flush_time; 309 310 /* 311 * Configurable value for size of VNF internal memory area 312 * used for simulating noisy neighbour behaviour 313 */ 314 uint64_t noisy_lkup_mem_sz; 315 316 /* 317 * Configurable value of number of random writes done in 318 * VNF simulation memory area. 319 */ 320 uint64_t noisy_lkup_num_writes; 321 322 /* 323 * Configurable value of number of random reads done in 324 * VNF simulation memory area. 325 */ 326 uint64_t noisy_lkup_num_reads; 327 328 /* 329 * Configurable value of number of random reads/writes done in 330 * VNF simulation memory area. 331 */ 332 uint64_t noisy_lkup_num_reads_writes; 333 334 /* 335 * Receive Side Scaling (RSS) configuration. 336 */ 337 uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */ 338 339 /* 340 * Port topology configuration 341 */ 342 uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */ 343 344 /* 345 * Avoids to flush all the RX streams before starts forwarding. 346 */ 347 uint8_t no_flush_rx = 0; /* flush by default */ 348 349 /* 350 * Flow API isolated mode. 351 */ 352 uint8_t flow_isolate_all; 353 354 /* 355 * Avoids to check link status when starting/stopping a port. 356 */ 357 uint8_t no_link_check = 0; /* check by default */ 358 359 /* 360 * Don't automatically start all ports in interactive mode. 361 */ 362 uint8_t no_device_start = 0; 363 364 /* 365 * Enable link status change notification 366 */ 367 uint8_t lsc_interrupt = 1; /* enabled by default */ 368 369 /* 370 * Enable device removal notification. 371 */ 372 uint8_t rmv_interrupt = 1; /* enabled by default */ 373 374 uint8_t hot_plug = 0; /**< hotplug disabled by default. */ 375 376 /* After attach, port setup is called on event or by iterator */ 377 bool setup_on_probe_event = true; 378 379 /* Clear ptypes on port initialization. */ 380 uint8_t clear_ptypes = true; 381 382 /* Hairpin ports configuration mode. */ 383 uint16_t hairpin_mode; 384 385 /* Pretty printing of ethdev events */ 386 static const char * const eth_event_desc[] = { 387 [RTE_ETH_EVENT_UNKNOWN] = "unknown", 388 [RTE_ETH_EVENT_INTR_LSC] = "link state change", 389 [RTE_ETH_EVENT_QUEUE_STATE] = "queue state", 390 [RTE_ETH_EVENT_INTR_RESET] = "reset", 391 [RTE_ETH_EVENT_VF_MBOX] = "VF mbox", 392 [RTE_ETH_EVENT_IPSEC] = "IPsec", 393 [RTE_ETH_EVENT_MACSEC] = "MACsec", 394 [RTE_ETH_EVENT_INTR_RMV] = "device removal", 395 [RTE_ETH_EVENT_NEW] = "device probed", 396 [RTE_ETH_EVENT_DESTROY] = "device released", 397 [RTE_ETH_EVENT_FLOW_AGED] = "flow aged", 398 [RTE_ETH_EVENT_MAX] = NULL, 399 }; 400 401 /* 402 * Display or mask ether events 403 * Default to all events except VF_MBOX 404 */ 405 uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) | 406 (UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) | 407 (UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) | 408 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) | 409 (UINT32_C(1) << RTE_ETH_EVENT_IPSEC) | 410 (UINT32_C(1) << RTE_ETH_EVENT_MACSEC) | 411 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV) | 412 (UINT32_C(1) << RTE_ETH_EVENT_FLOW_AGED); 413 /* 414 * Decide if all memory are locked for performance. 415 */ 416 int do_mlockall = 0; 417 418 /* 419 * NIC bypass mode configuration options. 420 */ 421 422 #if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS 423 /* The NIC bypass watchdog timeout. */ 424 uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF; 425 #endif 426 427 428 #ifdef RTE_LIB_LATENCYSTATS 429 430 /* 431 * Set when latency stats is enabled in the commandline 432 */ 433 uint8_t latencystats_enabled; 434 435 /* 436 * Lcore ID to serive latency statistics. 437 */ 438 lcoreid_t latencystats_lcore_id = -1; 439 440 #endif 441 442 /* 443 * Ethernet device configuration. 444 */ 445 struct rte_eth_rxmode rx_mode = { 446 .max_rx_pkt_len = RTE_ETHER_MAX_LEN, 447 /**< Default maximum frame length. */ 448 }; 449 450 struct rte_eth_txmode tx_mode = { 451 .offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE, 452 }; 453 454 struct rte_fdir_conf fdir_conf = { 455 .mode = RTE_FDIR_MODE_NONE, 456 .pballoc = RTE_FDIR_PBALLOC_64K, 457 .status = RTE_FDIR_REPORT_STATUS, 458 .mask = { 459 .vlan_tci_mask = 0xFFEF, 460 .ipv4_mask = { 461 .src_ip = 0xFFFFFFFF, 462 .dst_ip = 0xFFFFFFFF, 463 }, 464 .ipv6_mask = { 465 .src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 466 .dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 467 }, 468 .src_port_mask = 0xFFFF, 469 .dst_port_mask = 0xFFFF, 470 .mac_addr_byte_mask = 0xFF, 471 .tunnel_type_mask = 1, 472 .tunnel_id_mask = 0xFFFFFFFF, 473 }, 474 .drop_queue = 127, 475 }; 476 477 volatile int test_done = 1; /* stop packet forwarding when set to 1. */ 478 479 struct queue_stats_mappings tx_queue_stats_mappings_array[MAX_TX_QUEUE_STATS_MAPPINGS]; 480 struct queue_stats_mappings rx_queue_stats_mappings_array[MAX_RX_QUEUE_STATS_MAPPINGS]; 481 482 struct queue_stats_mappings *tx_queue_stats_mappings = tx_queue_stats_mappings_array; 483 struct queue_stats_mappings *rx_queue_stats_mappings = rx_queue_stats_mappings_array; 484 485 uint16_t nb_tx_queue_stats_mappings = 0; 486 uint16_t nb_rx_queue_stats_mappings = 0; 487 488 /* 489 * Display zero values by default for xstats 490 */ 491 uint8_t xstats_hide_zero; 492 493 /* 494 * Measure of CPU cycles disabled by default 495 */ 496 uint8_t record_core_cycles; 497 498 /* 499 * Display of RX and TX bursts disabled by default 500 */ 501 uint8_t record_burst_stats; 502 503 unsigned int num_sockets = 0; 504 unsigned int socket_ids[RTE_MAX_NUMA_NODES]; 505 506 #ifdef RTE_LIB_BITRATESTATS 507 /* Bitrate statistics */ 508 struct rte_stats_bitrates *bitrate_data; 509 lcoreid_t bitrate_lcore_id; 510 uint8_t bitrate_enabled; 511 #endif 512 513 struct gro_status gro_ports[RTE_MAX_ETHPORTS]; 514 uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES; 515 516 /* 517 * hexadecimal bitmask of RX mq mode can be enabled. 518 */ 519 enum rte_eth_rx_mq_mode rx_mq_mode = ETH_MQ_RX_VMDQ_DCB_RSS; 520 521 /* Forward function declarations */ 522 static void setup_attached_port(portid_t pi); 523 static void map_port_queue_stats_mapping_registers(portid_t pi, 524 struct rte_port *port); 525 static void check_all_ports_link_status(uint32_t port_mask); 526 static int eth_event_callback(portid_t port_id, 527 enum rte_eth_event_type type, 528 void *param, void *ret_param); 529 static void dev_event_callback(const char *device_name, 530 enum rte_dev_event_type type, 531 void *param); 532 533 /* 534 * Check if all the ports are started. 535 * If yes, return positive value. If not, return zero. 536 */ 537 static int all_ports_started(void); 538 539 struct gso_status gso_ports[RTE_MAX_ETHPORTS]; 540 uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN; 541 542 /* Holds the registered mbuf dynamic flags names. */ 543 char dynf_names[64][RTE_MBUF_DYN_NAMESIZE]; 544 545 /* 546 * Helper function to check if socket is already discovered. 547 * If yes, return positive value. If not, return zero. 548 */ 549 int 550 new_socket_id(unsigned int socket_id) 551 { 552 unsigned int i; 553 554 for (i = 0; i < num_sockets; i++) { 555 if (socket_ids[i] == socket_id) 556 return 0; 557 } 558 return 1; 559 } 560 561 /* 562 * Setup default configuration. 563 */ 564 static void 565 set_default_fwd_lcores_config(void) 566 { 567 unsigned int i; 568 unsigned int nb_lc; 569 unsigned int sock_num; 570 571 nb_lc = 0; 572 for (i = 0; i < RTE_MAX_LCORE; i++) { 573 if (!rte_lcore_is_enabled(i)) 574 continue; 575 sock_num = rte_lcore_to_socket_id(i); 576 if (new_socket_id(sock_num)) { 577 if (num_sockets >= RTE_MAX_NUMA_NODES) { 578 rte_exit(EXIT_FAILURE, 579 "Total sockets greater than %u\n", 580 RTE_MAX_NUMA_NODES); 581 } 582 socket_ids[num_sockets++] = sock_num; 583 } 584 if (i == rte_get_main_lcore()) 585 continue; 586 fwd_lcores_cpuids[nb_lc++] = i; 587 } 588 nb_lcores = (lcoreid_t) nb_lc; 589 nb_cfg_lcores = nb_lcores; 590 nb_fwd_lcores = 1; 591 } 592 593 static void 594 set_def_peer_eth_addrs(void) 595 { 596 portid_t i; 597 598 for (i = 0; i < RTE_MAX_ETHPORTS; i++) { 599 peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR; 600 peer_eth_addrs[i].addr_bytes[5] = i; 601 } 602 } 603 604 static void 605 set_default_fwd_ports_config(void) 606 { 607 portid_t pt_id; 608 int i = 0; 609 610 RTE_ETH_FOREACH_DEV(pt_id) { 611 fwd_ports_ids[i++] = pt_id; 612 613 /* Update sockets info according to the attached device */ 614 int socket_id = rte_eth_dev_socket_id(pt_id); 615 if (socket_id >= 0 && new_socket_id(socket_id)) { 616 if (num_sockets >= RTE_MAX_NUMA_NODES) { 617 rte_exit(EXIT_FAILURE, 618 "Total sockets greater than %u\n", 619 RTE_MAX_NUMA_NODES); 620 } 621 socket_ids[num_sockets++] = socket_id; 622 } 623 } 624 625 nb_cfg_ports = nb_ports; 626 nb_fwd_ports = nb_ports; 627 } 628 629 void 630 set_def_fwd_config(void) 631 { 632 set_default_fwd_lcores_config(); 633 set_def_peer_eth_addrs(); 634 set_default_fwd_ports_config(); 635 } 636 637 /* extremely pessimistic estimation of memory required to create a mempool */ 638 static int 639 calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out) 640 { 641 unsigned int n_pages, mbuf_per_pg, leftover; 642 uint64_t total_mem, mbuf_mem, obj_sz; 643 644 /* there is no good way to predict how much space the mempool will 645 * occupy because it will allocate chunks on the fly, and some of those 646 * will come from default DPDK memory while some will come from our 647 * external memory, so just assume 128MB will be enough for everyone. 648 */ 649 uint64_t hdr_mem = 128 << 20; 650 651 /* account for possible non-contiguousness */ 652 obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL); 653 if (obj_sz > pgsz) { 654 TESTPMD_LOG(ERR, "Object size is bigger than page size\n"); 655 return -1; 656 } 657 658 mbuf_per_pg = pgsz / obj_sz; 659 leftover = (nb_mbufs % mbuf_per_pg) > 0; 660 n_pages = (nb_mbufs / mbuf_per_pg) + leftover; 661 662 mbuf_mem = n_pages * pgsz; 663 664 total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz); 665 666 if (total_mem > SIZE_MAX) { 667 TESTPMD_LOG(ERR, "Memory size too big\n"); 668 return -1; 669 } 670 *out = (size_t)total_mem; 671 672 return 0; 673 } 674 675 static int 676 pagesz_flags(uint64_t page_sz) 677 { 678 /* as per mmap() manpage, all page sizes are log2 of page size 679 * shifted by MAP_HUGE_SHIFT 680 */ 681 int log2 = rte_log2_u64(page_sz); 682 683 return (log2 << HUGE_SHIFT); 684 } 685 686 static void * 687 alloc_mem(size_t memsz, size_t pgsz, bool huge) 688 { 689 void *addr; 690 int flags; 691 692 /* allocate anonymous hugepages */ 693 flags = MAP_ANONYMOUS | MAP_PRIVATE; 694 if (huge) 695 flags |= HUGE_FLAG | pagesz_flags(pgsz); 696 697 addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0); 698 if (addr == MAP_FAILED) 699 return NULL; 700 701 return addr; 702 } 703 704 struct extmem_param { 705 void *addr; 706 size_t len; 707 size_t pgsz; 708 rte_iova_t *iova_table; 709 unsigned int iova_table_len; 710 }; 711 712 static int 713 create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param, 714 bool huge) 715 { 716 uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */ 717 RTE_PGSIZE_16M, RTE_PGSIZE_16G}; /* POWER */ 718 unsigned int cur_page, n_pages, pgsz_idx; 719 size_t mem_sz, cur_pgsz; 720 rte_iova_t *iovas = NULL; 721 void *addr; 722 int ret; 723 724 for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) { 725 /* skip anything that is too big */ 726 if (pgsizes[pgsz_idx] > SIZE_MAX) 727 continue; 728 729 cur_pgsz = pgsizes[pgsz_idx]; 730 731 /* if we were told not to allocate hugepages, override */ 732 if (!huge) 733 cur_pgsz = sysconf(_SC_PAGESIZE); 734 735 ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz); 736 if (ret < 0) { 737 TESTPMD_LOG(ERR, "Cannot calculate memory size\n"); 738 return -1; 739 } 740 741 /* allocate our memory */ 742 addr = alloc_mem(mem_sz, cur_pgsz, huge); 743 744 /* if we couldn't allocate memory with a specified page size, 745 * that doesn't mean we can't do it with other page sizes, so 746 * try another one. 747 */ 748 if (addr == NULL) 749 continue; 750 751 /* store IOVA addresses for every page in this memory area */ 752 n_pages = mem_sz / cur_pgsz; 753 754 iovas = malloc(sizeof(*iovas) * n_pages); 755 756 if (iovas == NULL) { 757 TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n"); 758 goto fail; 759 } 760 /* lock memory if it's not huge pages */ 761 if (!huge) 762 mlock(addr, mem_sz); 763 764 /* populate IOVA addresses */ 765 for (cur_page = 0; cur_page < n_pages; cur_page++) { 766 rte_iova_t iova; 767 size_t offset; 768 void *cur; 769 770 offset = cur_pgsz * cur_page; 771 cur = RTE_PTR_ADD(addr, offset); 772 773 /* touch the page before getting its IOVA */ 774 *(volatile char *)cur = 0; 775 776 iova = rte_mem_virt2iova(cur); 777 778 iovas[cur_page] = iova; 779 } 780 781 break; 782 } 783 /* if we couldn't allocate anything */ 784 if (iovas == NULL) 785 return -1; 786 787 param->addr = addr; 788 param->len = mem_sz; 789 param->pgsz = cur_pgsz; 790 param->iova_table = iovas; 791 param->iova_table_len = n_pages; 792 793 return 0; 794 fail: 795 if (iovas) 796 free(iovas); 797 if (addr) 798 munmap(addr, mem_sz); 799 800 return -1; 801 } 802 803 static int 804 setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge) 805 { 806 struct extmem_param param; 807 int socket_id, ret; 808 809 memset(¶m, 0, sizeof(param)); 810 811 /* check if our heap exists */ 812 socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 813 if (socket_id < 0) { 814 /* create our heap */ 815 ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME); 816 if (ret < 0) { 817 TESTPMD_LOG(ERR, "Cannot create heap\n"); 818 return -1; 819 } 820 } 821 822 ret = create_extmem(nb_mbufs, mbuf_sz, ¶m, huge); 823 if (ret < 0) { 824 TESTPMD_LOG(ERR, "Cannot create memory area\n"); 825 return -1; 826 } 827 828 /* we now have a valid memory area, so add it to heap */ 829 ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME, 830 param.addr, param.len, param.iova_table, 831 param.iova_table_len, param.pgsz); 832 833 /* when using VFIO, memory is automatically mapped for DMA by EAL */ 834 835 /* not needed any more */ 836 free(param.iova_table); 837 838 if (ret < 0) { 839 TESTPMD_LOG(ERR, "Cannot add memory to heap\n"); 840 munmap(param.addr, param.len); 841 return -1; 842 } 843 844 /* success */ 845 846 TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n", 847 param.len >> 20); 848 849 return 0; 850 } 851 static void 852 dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 853 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 854 { 855 uint16_t pid = 0; 856 int ret; 857 858 RTE_ETH_FOREACH_DEV(pid) { 859 struct rte_eth_dev *dev = 860 &rte_eth_devices[pid]; 861 862 ret = rte_dev_dma_unmap(dev->device, memhdr->addr, 0, 863 memhdr->len); 864 if (ret) { 865 TESTPMD_LOG(DEBUG, 866 "unable to DMA unmap addr 0x%p " 867 "for device %s\n", 868 memhdr->addr, dev->data->name); 869 } 870 } 871 ret = rte_extmem_unregister(memhdr->addr, memhdr->len); 872 if (ret) { 873 TESTPMD_LOG(DEBUG, 874 "unable to un-register addr 0x%p\n", memhdr->addr); 875 } 876 } 877 878 static void 879 dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 880 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 881 { 882 uint16_t pid = 0; 883 size_t page_size = sysconf(_SC_PAGESIZE); 884 int ret; 885 886 ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0, 887 page_size); 888 if (ret) { 889 TESTPMD_LOG(DEBUG, 890 "unable to register addr 0x%p\n", memhdr->addr); 891 return; 892 } 893 RTE_ETH_FOREACH_DEV(pid) { 894 struct rte_eth_dev *dev = 895 &rte_eth_devices[pid]; 896 897 ret = rte_dev_dma_map(dev->device, memhdr->addr, 0, 898 memhdr->len); 899 if (ret) { 900 TESTPMD_LOG(DEBUG, 901 "unable to DMA map addr 0x%p " 902 "for device %s\n", 903 memhdr->addr, dev->data->name); 904 } 905 } 906 } 907 908 static unsigned int 909 setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id, 910 char *pool_name, struct rte_pktmbuf_extmem **ext_mem) 911 { 912 struct rte_pktmbuf_extmem *xmem; 913 unsigned int ext_num, zone_num, elt_num; 914 uint16_t elt_size; 915 916 elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE); 917 elt_num = EXTBUF_ZONE_SIZE / elt_size; 918 zone_num = (nb_mbufs + elt_num - 1) / elt_num; 919 920 xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num); 921 if (xmem == NULL) { 922 TESTPMD_LOG(ERR, "Cannot allocate memory for " 923 "external buffer descriptors\n"); 924 *ext_mem = NULL; 925 return 0; 926 } 927 for (ext_num = 0; ext_num < zone_num; ext_num++) { 928 struct rte_pktmbuf_extmem *xseg = xmem + ext_num; 929 const struct rte_memzone *mz; 930 char mz_name[RTE_MEMZONE_NAMESIZE]; 931 int ret; 932 933 ret = snprintf(mz_name, sizeof(mz_name), 934 RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num); 935 if (ret < 0 || ret >= (int)sizeof(mz_name)) { 936 errno = ENAMETOOLONG; 937 ext_num = 0; 938 break; 939 } 940 mz = rte_memzone_reserve_aligned(mz_name, EXTBUF_ZONE_SIZE, 941 socket_id, 942 RTE_MEMZONE_IOVA_CONTIG | 943 RTE_MEMZONE_1GB | 944 RTE_MEMZONE_SIZE_HINT_ONLY, 945 EXTBUF_ZONE_SIZE); 946 if (mz == NULL) { 947 /* 948 * The caller exits on external buffer creation 949 * error, so there is no need to free memzones. 950 */ 951 errno = ENOMEM; 952 ext_num = 0; 953 break; 954 } 955 xseg->buf_ptr = mz->addr; 956 xseg->buf_iova = mz->iova; 957 xseg->buf_len = EXTBUF_ZONE_SIZE; 958 xseg->elt_size = elt_size; 959 } 960 if (ext_num == 0 && xmem != NULL) { 961 free(xmem); 962 xmem = NULL; 963 } 964 *ext_mem = xmem; 965 return ext_num; 966 } 967 968 /* 969 * Configuration initialisation done once at init time. 970 */ 971 static struct rte_mempool * 972 mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf, 973 unsigned int socket_id, uint16_t size_idx) 974 { 975 char pool_name[RTE_MEMPOOL_NAMESIZE]; 976 struct rte_mempool *rte_mp = NULL; 977 uint32_t mb_size; 978 979 mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size; 980 mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name), size_idx); 981 982 TESTPMD_LOG(INFO, 983 "create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n", 984 pool_name, nb_mbuf, mbuf_seg_size, socket_id); 985 986 switch (mp_alloc_type) { 987 case MP_ALLOC_NATIVE: 988 { 989 /* wrapper to rte_mempool_create() */ 990 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 991 rte_mbuf_best_mempool_ops()); 992 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 993 mb_mempool_cache, 0, mbuf_seg_size, socket_id); 994 break; 995 } 996 case MP_ALLOC_ANON: 997 { 998 rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf, 999 mb_size, (unsigned int) mb_mempool_cache, 1000 sizeof(struct rte_pktmbuf_pool_private), 1001 socket_id, mempool_flags); 1002 if (rte_mp == NULL) 1003 goto err; 1004 1005 if (rte_mempool_populate_anon(rte_mp) == 0) { 1006 rte_mempool_free(rte_mp); 1007 rte_mp = NULL; 1008 goto err; 1009 } 1010 rte_pktmbuf_pool_init(rte_mp, NULL); 1011 rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL); 1012 rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL); 1013 break; 1014 } 1015 case MP_ALLOC_XMEM: 1016 case MP_ALLOC_XMEM_HUGE: 1017 { 1018 int heap_socket; 1019 bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE; 1020 1021 if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0) 1022 rte_exit(EXIT_FAILURE, "Could not create external memory\n"); 1023 1024 heap_socket = 1025 rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 1026 if (heap_socket < 0) 1027 rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n"); 1028 1029 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1030 rte_mbuf_best_mempool_ops()); 1031 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 1032 mb_mempool_cache, 0, mbuf_seg_size, 1033 heap_socket); 1034 break; 1035 } 1036 case MP_ALLOC_XBUF: 1037 { 1038 struct rte_pktmbuf_extmem *ext_mem; 1039 unsigned int ext_num; 1040 1041 ext_num = setup_extbuf(nb_mbuf, mbuf_seg_size, 1042 socket_id, pool_name, &ext_mem); 1043 if (ext_num == 0) 1044 rte_exit(EXIT_FAILURE, 1045 "Can't create pinned data buffers\n"); 1046 1047 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1048 rte_mbuf_best_mempool_ops()); 1049 rte_mp = rte_pktmbuf_pool_create_extbuf 1050 (pool_name, nb_mbuf, mb_mempool_cache, 1051 0, mbuf_seg_size, socket_id, 1052 ext_mem, ext_num); 1053 free(ext_mem); 1054 break; 1055 } 1056 default: 1057 { 1058 rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n"); 1059 } 1060 } 1061 1062 err: 1063 if (rte_mp == NULL) { 1064 rte_exit(EXIT_FAILURE, 1065 "Creation of mbuf pool for socket %u failed: %s\n", 1066 socket_id, rte_strerror(rte_errno)); 1067 } else if (verbose_level > 0) { 1068 rte_mempool_dump(stdout, rte_mp); 1069 } 1070 return rte_mp; 1071 } 1072 1073 /* 1074 * Check given socket id is valid or not with NUMA mode, 1075 * if valid, return 0, else return -1 1076 */ 1077 static int 1078 check_socket_id(const unsigned int socket_id) 1079 { 1080 static int warning_once = 0; 1081 1082 if (new_socket_id(socket_id)) { 1083 if (!warning_once && numa_support) 1084 printf("Warning: NUMA should be configured manually by" 1085 " using --port-numa-config and" 1086 " --ring-numa-config parameters along with" 1087 " --numa.\n"); 1088 warning_once = 1; 1089 return -1; 1090 } 1091 return 0; 1092 } 1093 1094 /* 1095 * Get the allowed maximum number of RX queues. 1096 * *pid return the port id which has minimal value of 1097 * max_rx_queues in all ports. 1098 */ 1099 queueid_t 1100 get_allowed_max_nb_rxq(portid_t *pid) 1101 { 1102 queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT; 1103 bool max_rxq_valid = false; 1104 portid_t pi; 1105 struct rte_eth_dev_info dev_info; 1106 1107 RTE_ETH_FOREACH_DEV(pi) { 1108 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1109 continue; 1110 1111 max_rxq_valid = true; 1112 if (dev_info.max_rx_queues < allowed_max_rxq) { 1113 allowed_max_rxq = dev_info.max_rx_queues; 1114 *pid = pi; 1115 } 1116 } 1117 return max_rxq_valid ? allowed_max_rxq : 0; 1118 } 1119 1120 /* 1121 * Check input rxq is valid or not. 1122 * If input rxq is not greater than any of maximum number 1123 * of RX queues of all ports, it is valid. 1124 * if valid, return 0, else return -1 1125 */ 1126 int 1127 check_nb_rxq(queueid_t rxq) 1128 { 1129 queueid_t allowed_max_rxq; 1130 portid_t pid = 0; 1131 1132 allowed_max_rxq = get_allowed_max_nb_rxq(&pid); 1133 if (rxq > allowed_max_rxq) { 1134 printf("Fail: input rxq (%u) can't be greater " 1135 "than max_rx_queues (%u) of port %u\n", 1136 rxq, 1137 allowed_max_rxq, 1138 pid); 1139 return -1; 1140 } 1141 return 0; 1142 } 1143 1144 /* 1145 * Get the allowed maximum number of TX queues. 1146 * *pid return the port id which has minimal value of 1147 * max_tx_queues in all ports. 1148 */ 1149 queueid_t 1150 get_allowed_max_nb_txq(portid_t *pid) 1151 { 1152 queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT; 1153 bool max_txq_valid = false; 1154 portid_t pi; 1155 struct rte_eth_dev_info dev_info; 1156 1157 RTE_ETH_FOREACH_DEV(pi) { 1158 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1159 continue; 1160 1161 max_txq_valid = true; 1162 if (dev_info.max_tx_queues < allowed_max_txq) { 1163 allowed_max_txq = dev_info.max_tx_queues; 1164 *pid = pi; 1165 } 1166 } 1167 return max_txq_valid ? allowed_max_txq : 0; 1168 } 1169 1170 /* 1171 * Check input txq is valid or not. 1172 * If input txq is not greater than any of maximum number 1173 * of TX queues of all ports, it is valid. 1174 * if valid, return 0, else return -1 1175 */ 1176 int 1177 check_nb_txq(queueid_t txq) 1178 { 1179 queueid_t allowed_max_txq; 1180 portid_t pid = 0; 1181 1182 allowed_max_txq = get_allowed_max_nb_txq(&pid); 1183 if (txq > allowed_max_txq) { 1184 printf("Fail: input txq (%u) can't be greater " 1185 "than max_tx_queues (%u) of port %u\n", 1186 txq, 1187 allowed_max_txq, 1188 pid); 1189 return -1; 1190 } 1191 return 0; 1192 } 1193 1194 /* 1195 * Get the allowed maximum number of RXDs of every rx queue. 1196 * *pid return the port id which has minimal value of 1197 * max_rxd in all queues of all ports. 1198 */ 1199 static uint16_t 1200 get_allowed_max_nb_rxd(portid_t *pid) 1201 { 1202 uint16_t allowed_max_rxd = UINT16_MAX; 1203 portid_t pi; 1204 struct rte_eth_dev_info dev_info; 1205 1206 RTE_ETH_FOREACH_DEV(pi) { 1207 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1208 continue; 1209 1210 if (dev_info.rx_desc_lim.nb_max < allowed_max_rxd) { 1211 allowed_max_rxd = dev_info.rx_desc_lim.nb_max; 1212 *pid = pi; 1213 } 1214 } 1215 return allowed_max_rxd; 1216 } 1217 1218 /* 1219 * Get the allowed minimal number of RXDs of every rx queue. 1220 * *pid return the port id which has minimal value of 1221 * min_rxd in all queues of all ports. 1222 */ 1223 static uint16_t 1224 get_allowed_min_nb_rxd(portid_t *pid) 1225 { 1226 uint16_t allowed_min_rxd = 0; 1227 portid_t pi; 1228 struct rte_eth_dev_info dev_info; 1229 1230 RTE_ETH_FOREACH_DEV(pi) { 1231 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1232 continue; 1233 1234 if (dev_info.rx_desc_lim.nb_min > allowed_min_rxd) { 1235 allowed_min_rxd = dev_info.rx_desc_lim.nb_min; 1236 *pid = pi; 1237 } 1238 } 1239 1240 return allowed_min_rxd; 1241 } 1242 1243 /* 1244 * Check input rxd is valid or not. 1245 * If input rxd is not greater than any of maximum number 1246 * of RXDs of every Rx queues and is not less than any of 1247 * minimal number of RXDs of every Rx queues, it is valid. 1248 * if valid, return 0, else return -1 1249 */ 1250 int 1251 check_nb_rxd(queueid_t rxd) 1252 { 1253 uint16_t allowed_max_rxd; 1254 uint16_t allowed_min_rxd; 1255 portid_t pid = 0; 1256 1257 allowed_max_rxd = get_allowed_max_nb_rxd(&pid); 1258 if (rxd > allowed_max_rxd) { 1259 printf("Fail: input rxd (%u) can't be greater " 1260 "than max_rxds (%u) of port %u\n", 1261 rxd, 1262 allowed_max_rxd, 1263 pid); 1264 return -1; 1265 } 1266 1267 allowed_min_rxd = get_allowed_min_nb_rxd(&pid); 1268 if (rxd < allowed_min_rxd) { 1269 printf("Fail: input rxd (%u) can't be less " 1270 "than min_rxds (%u) of port %u\n", 1271 rxd, 1272 allowed_min_rxd, 1273 pid); 1274 return -1; 1275 } 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * Get the allowed maximum number of TXDs of every rx queues. 1282 * *pid return the port id which has minimal value of 1283 * max_txd in every tx queue. 1284 */ 1285 static uint16_t 1286 get_allowed_max_nb_txd(portid_t *pid) 1287 { 1288 uint16_t allowed_max_txd = UINT16_MAX; 1289 portid_t pi; 1290 struct rte_eth_dev_info dev_info; 1291 1292 RTE_ETH_FOREACH_DEV(pi) { 1293 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1294 continue; 1295 1296 if (dev_info.tx_desc_lim.nb_max < allowed_max_txd) { 1297 allowed_max_txd = dev_info.tx_desc_lim.nb_max; 1298 *pid = pi; 1299 } 1300 } 1301 return allowed_max_txd; 1302 } 1303 1304 /* 1305 * Get the allowed maximum number of TXDs of every tx queues. 1306 * *pid return the port id which has minimal value of 1307 * min_txd in every tx queue. 1308 */ 1309 static uint16_t 1310 get_allowed_min_nb_txd(portid_t *pid) 1311 { 1312 uint16_t allowed_min_txd = 0; 1313 portid_t pi; 1314 struct rte_eth_dev_info dev_info; 1315 1316 RTE_ETH_FOREACH_DEV(pi) { 1317 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1318 continue; 1319 1320 if (dev_info.tx_desc_lim.nb_min > allowed_min_txd) { 1321 allowed_min_txd = dev_info.tx_desc_lim.nb_min; 1322 *pid = pi; 1323 } 1324 } 1325 1326 return allowed_min_txd; 1327 } 1328 1329 /* 1330 * Check input txd is valid or not. 1331 * If input txd is not greater than any of maximum number 1332 * of TXDs of every Rx queues, it is valid. 1333 * if valid, return 0, else return -1 1334 */ 1335 int 1336 check_nb_txd(queueid_t txd) 1337 { 1338 uint16_t allowed_max_txd; 1339 uint16_t allowed_min_txd; 1340 portid_t pid = 0; 1341 1342 allowed_max_txd = get_allowed_max_nb_txd(&pid); 1343 if (txd > allowed_max_txd) { 1344 printf("Fail: input txd (%u) can't be greater " 1345 "than max_txds (%u) of port %u\n", 1346 txd, 1347 allowed_max_txd, 1348 pid); 1349 return -1; 1350 } 1351 1352 allowed_min_txd = get_allowed_min_nb_txd(&pid); 1353 if (txd < allowed_min_txd) { 1354 printf("Fail: input txd (%u) can't be less " 1355 "than min_txds (%u) of port %u\n", 1356 txd, 1357 allowed_min_txd, 1358 pid); 1359 return -1; 1360 } 1361 return 0; 1362 } 1363 1364 1365 /* 1366 * Get the allowed maximum number of hairpin queues. 1367 * *pid return the port id which has minimal value of 1368 * max_hairpin_queues in all ports. 1369 */ 1370 queueid_t 1371 get_allowed_max_nb_hairpinq(portid_t *pid) 1372 { 1373 queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT; 1374 portid_t pi; 1375 struct rte_eth_hairpin_cap cap; 1376 1377 RTE_ETH_FOREACH_DEV(pi) { 1378 if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) { 1379 *pid = pi; 1380 return 0; 1381 } 1382 if (cap.max_nb_queues < allowed_max_hairpinq) { 1383 allowed_max_hairpinq = cap.max_nb_queues; 1384 *pid = pi; 1385 } 1386 } 1387 return allowed_max_hairpinq; 1388 } 1389 1390 /* 1391 * Check input hairpin is valid or not. 1392 * If input hairpin is not greater than any of maximum number 1393 * of hairpin queues of all ports, it is valid. 1394 * if valid, return 0, else return -1 1395 */ 1396 int 1397 check_nb_hairpinq(queueid_t hairpinq) 1398 { 1399 queueid_t allowed_max_hairpinq; 1400 portid_t pid = 0; 1401 1402 allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid); 1403 if (hairpinq > allowed_max_hairpinq) { 1404 printf("Fail: input hairpin (%u) can't be greater " 1405 "than max_hairpin_queues (%u) of port %u\n", 1406 hairpinq, allowed_max_hairpinq, pid); 1407 return -1; 1408 } 1409 return 0; 1410 } 1411 1412 static void 1413 init_config(void) 1414 { 1415 portid_t pid; 1416 struct rte_port *port; 1417 struct rte_mempool *mbp; 1418 unsigned int nb_mbuf_per_pool; 1419 lcoreid_t lc_id; 1420 uint8_t port_per_socket[RTE_MAX_NUMA_NODES]; 1421 struct rte_gro_param gro_param; 1422 uint32_t gso_types; 1423 uint16_t data_size; 1424 bool warning = 0; 1425 int k; 1426 int ret; 1427 1428 memset(port_per_socket,0,RTE_MAX_NUMA_NODES); 1429 1430 /* Configuration of logical cores. */ 1431 fwd_lcores = rte_zmalloc("testpmd: fwd_lcores", 1432 sizeof(struct fwd_lcore *) * nb_lcores, 1433 RTE_CACHE_LINE_SIZE); 1434 if (fwd_lcores == NULL) { 1435 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) " 1436 "failed\n", nb_lcores); 1437 } 1438 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1439 fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore", 1440 sizeof(struct fwd_lcore), 1441 RTE_CACHE_LINE_SIZE); 1442 if (fwd_lcores[lc_id] == NULL) { 1443 rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) " 1444 "failed\n"); 1445 } 1446 fwd_lcores[lc_id]->cpuid_idx = lc_id; 1447 } 1448 1449 RTE_ETH_FOREACH_DEV(pid) { 1450 port = &ports[pid]; 1451 /* Apply default TxRx configuration for all ports */ 1452 port->dev_conf.txmode = tx_mode; 1453 port->dev_conf.rxmode = rx_mode; 1454 1455 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 1456 if (ret != 0) 1457 rte_exit(EXIT_FAILURE, 1458 "rte_eth_dev_info_get() failed\n"); 1459 1460 if (!(port->dev_info.tx_offload_capa & 1461 DEV_TX_OFFLOAD_MBUF_FAST_FREE)) 1462 port->dev_conf.txmode.offloads &= 1463 ~DEV_TX_OFFLOAD_MBUF_FAST_FREE; 1464 if (numa_support) { 1465 if (port_numa[pid] != NUMA_NO_CONFIG) 1466 port_per_socket[port_numa[pid]]++; 1467 else { 1468 uint32_t socket_id = rte_eth_dev_socket_id(pid); 1469 1470 /* 1471 * if socket_id is invalid, 1472 * set to the first available socket. 1473 */ 1474 if (check_socket_id(socket_id) < 0) 1475 socket_id = socket_ids[0]; 1476 port_per_socket[socket_id]++; 1477 } 1478 } 1479 1480 /* Apply Rx offloads configuration */ 1481 for (k = 0; k < port->dev_info.max_rx_queues; k++) 1482 port->rx_conf[k].offloads = 1483 port->dev_conf.rxmode.offloads; 1484 /* Apply Tx offloads configuration */ 1485 for (k = 0; k < port->dev_info.max_tx_queues; k++) 1486 port->tx_conf[k].offloads = 1487 port->dev_conf.txmode.offloads; 1488 1489 /* set flag to initialize port/queue */ 1490 port->need_reconfig = 1; 1491 port->need_reconfig_queues = 1; 1492 port->tx_metadata = 0; 1493 1494 /* Check for maximum number of segments per MTU. Accordingly 1495 * update the mbuf data size. 1496 */ 1497 if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX && 1498 port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) { 1499 data_size = rx_mode.max_rx_pkt_len / 1500 port->dev_info.rx_desc_lim.nb_mtu_seg_max; 1501 1502 if ((data_size + RTE_PKTMBUF_HEADROOM) > 1503 mbuf_data_size[0]) { 1504 mbuf_data_size[0] = data_size + 1505 RTE_PKTMBUF_HEADROOM; 1506 warning = 1; 1507 } 1508 } 1509 } 1510 1511 if (warning) 1512 TESTPMD_LOG(WARNING, 1513 "Configured mbuf size of the first segment %hu\n", 1514 mbuf_data_size[0]); 1515 /* 1516 * Create pools of mbuf. 1517 * If NUMA support is disabled, create a single pool of mbuf in 1518 * socket 0 memory by default. 1519 * Otherwise, create a pool of mbuf in the memory of sockets 0 and 1. 1520 * 1521 * Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and 1522 * nb_txd can be configured at run time. 1523 */ 1524 if (param_total_num_mbufs) 1525 nb_mbuf_per_pool = param_total_num_mbufs; 1526 else { 1527 nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX + 1528 (nb_lcores * mb_mempool_cache) + 1529 RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST; 1530 nb_mbuf_per_pool *= RTE_MAX_ETHPORTS; 1531 } 1532 1533 if (numa_support) { 1534 uint8_t i, j; 1535 1536 for (i = 0; i < num_sockets; i++) 1537 for (j = 0; j < mbuf_data_size_n; j++) 1538 mempools[i * MAX_SEGS_BUFFER_SPLIT + j] = 1539 mbuf_pool_create(mbuf_data_size[j], 1540 nb_mbuf_per_pool, 1541 socket_ids[i], j); 1542 } else { 1543 uint8_t i; 1544 1545 for (i = 0; i < mbuf_data_size_n; i++) 1546 mempools[i] = mbuf_pool_create 1547 (mbuf_data_size[i], 1548 nb_mbuf_per_pool, 1549 socket_num == UMA_NO_CONFIG ? 1550 0 : socket_num, i); 1551 } 1552 1553 init_port_config(); 1554 1555 gso_types = DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | 1556 DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_UDP_TSO; 1557 /* 1558 * Records which Mbuf pool to use by each logical core, if needed. 1559 */ 1560 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1561 mbp = mbuf_pool_find( 1562 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 0); 1563 1564 if (mbp == NULL) 1565 mbp = mbuf_pool_find(0, 0); 1566 fwd_lcores[lc_id]->mbp = mbp; 1567 /* initialize GSO context */ 1568 fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp; 1569 fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp; 1570 fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types; 1571 fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN - 1572 RTE_ETHER_CRC_LEN; 1573 fwd_lcores[lc_id]->gso_ctx.flag = 0; 1574 } 1575 1576 /* Configuration of packet forwarding streams. */ 1577 if (init_fwd_streams() < 0) 1578 rte_exit(EXIT_FAILURE, "FAIL from init_fwd_streams()\n"); 1579 1580 fwd_config_setup(); 1581 1582 /* create a gro context for each lcore */ 1583 gro_param.gro_types = RTE_GRO_TCP_IPV4; 1584 gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES; 1585 gro_param.max_item_per_flow = MAX_PKT_BURST; 1586 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1587 gro_param.socket_id = rte_lcore_to_socket_id( 1588 fwd_lcores_cpuids[lc_id]); 1589 fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param); 1590 if (fwd_lcores[lc_id]->gro_ctx == NULL) { 1591 rte_exit(EXIT_FAILURE, 1592 "rte_gro_ctx_create() failed\n"); 1593 } 1594 } 1595 } 1596 1597 1598 void 1599 reconfig(portid_t new_port_id, unsigned socket_id) 1600 { 1601 struct rte_port *port; 1602 int ret; 1603 1604 /* Reconfiguration of Ethernet ports. */ 1605 port = &ports[new_port_id]; 1606 1607 ret = eth_dev_info_get_print_err(new_port_id, &port->dev_info); 1608 if (ret != 0) 1609 return; 1610 1611 /* set flag to initialize port/queue */ 1612 port->need_reconfig = 1; 1613 port->need_reconfig_queues = 1; 1614 port->socket_id = socket_id; 1615 1616 init_port_config(); 1617 } 1618 1619 1620 int 1621 init_fwd_streams(void) 1622 { 1623 portid_t pid; 1624 struct rte_port *port; 1625 streamid_t sm_id, nb_fwd_streams_new; 1626 queueid_t q; 1627 1628 /* set socket id according to numa or not */ 1629 RTE_ETH_FOREACH_DEV(pid) { 1630 port = &ports[pid]; 1631 if (nb_rxq > port->dev_info.max_rx_queues) { 1632 printf("Fail: nb_rxq(%d) is greater than " 1633 "max_rx_queues(%d)\n", nb_rxq, 1634 port->dev_info.max_rx_queues); 1635 return -1; 1636 } 1637 if (nb_txq > port->dev_info.max_tx_queues) { 1638 printf("Fail: nb_txq(%d) is greater than " 1639 "max_tx_queues(%d)\n", nb_txq, 1640 port->dev_info.max_tx_queues); 1641 return -1; 1642 } 1643 if (numa_support) { 1644 if (port_numa[pid] != NUMA_NO_CONFIG) 1645 port->socket_id = port_numa[pid]; 1646 else { 1647 port->socket_id = rte_eth_dev_socket_id(pid); 1648 1649 /* 1650 * if socket_id is invalid, 1651 * set to the first available socket. 1652 */ 1653 if (check_socket_id(port->socket_id) < 0) 1654 port->socket_id = socket_ids[0]; 1655 } 1656 } 1657 else { 1658 if (socket_num == UMA_NO_CONFIG) 1659 port->socket_id = 0; 1660 else 1661 port->socket_id = socket_num; 1662 } 1663 } 1664 1665 q = RTE_MAX(nb_rxq, nb_txq); 1666 if (q == 0) { 1667 printf("Fail: Cannot allocate fwd streams as number of queues is 0\n"); 1668 return -1; 1669 } 1670 nb_fwd_streams_new = (streamid_t)(nb_ports * q); 1671 if (nb_fwd_streams_new == nb_fwd_streams) 1672 return 0; 1673 /* clear the old */ 1674 if (fwd_streams != NULL) { 1675 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1676 if (fwd_streams[sm_id] == NULL) 1677 continue; 1678 rte_free(fwd_streams[sm_id]); 1679 fwd_streams[sm_id] = NULL; 1680 } 1681 rte_free(fwd_streams); 1682 fwd_streams = NULL; 1683 } 1684 1685 /* init new */ 1686 nb_fwd_streams = nb_fwd_streams_new; 1687 if (nb_fwd_streams) { 1688 fwd_streams = rte_zmalloc("testpmd: fwd_streams", 1689 sizeof(struct fwd_stream *) * nb_fwd_streams, 1690 RTE_CACHE_LINE_SIZE); 1691 if (fwd_streams == NULL) 1692 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d" 1693 " (struct fwd_stream *)) failed\n", 1694 nb_fwd_streams); 1695 1696 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1697 fwd_streams[sm_id] = rte_zmalloc("testpmd:" 1698 " struct fwd_stream", sizeof(struct fwd_stream), 1699 RTE_CACHE_LINE_SIZE); 1700 if (fwd_streams[sm_id] == NULL) 1701 rte_exit(EXIT_FAILURE, "rte_zmalloc" 1702 "(struct fwd_stream) failed\n"); 1703 } 1704 } 1705 1706 return 0; 1707 } 1708 1709 static void 1710 pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs) 1711 { 1712 uint64_t total_burst, sburst; 1713 uint64_t nb_burst; 1714 uint64_t burst_stats[4]; 1715 uint16_t pktnb_stats[4]; 1716 uint16_t nb_pkt; 1717 int burst_percent[4], sburstp; 1718 int i; 1719 1720 /* 1721 * First compute the total number of packet bursts and the 1722 * two highest numbers of bursts of the same number of packets. 1723 */ 1724 memset(&burst_stats, 0x0, sizeof(burst_stats)); 1725 memset(&pktnb_stats, 0x0, sizeof(pktnb_stats)); 1726 1727 /* Show stats for 0 burst size always */ 1728 total_burst = pbs->pkt_burst_spread[0]; 1729 burst_stats[0] = pbs->pkt_burst_spread[0]; 1730 pktnb_stats[0] = 0; 1731 1732 /* Find the next 2 burst sizes with highest occurrences. */ 1733 for (nb_pkt = 1; nb_pkt < MAX_PKT_BURST; nb_pkt++) { 1734 nb_burst = pbs->pkt_burst_spread[nb_pkt]; 1735 1736 if (nb_burst == 0) 1737 continue; 1738 1739 total_burst += nb_burst; 1740 1741 if (nb_burst > burst_stats[1]) { 1742 burst_stats[2] = burst_stats[1]; 1743 pktnb_stats[2] = pktnb_stats[1]; 1744 burst_stats[1] = nb_burst; 1745 pktnb_stats[1] = nb_pkt; 1746 } else if (nb_burst > burst_stats[2]) { 1747 burst_stats[2] = nb_burst; 1748 pktnb_stats[2] = nb_pkt; 1749 } 1750 } 1751 if (total_burst == 0) 1752 return; 1753 1754 printf(" %s-bursts : %"PRIu64" [", rx_tx, total_burst); 1755 for (i = 0, sburst = 0, sburstp = 0; i < 4; i++) { 1756 if (i == 3) { 1757 printf("%d%% of other]\n", 100 - sburstp); 1758 return; 1759 } 1760 1761 sburst += burst_stats[i]; 1762 if (sburst == total_burst) { 1763 printf("%d%% of %d pkts]\n", 1764 100 - sburstp, (int) pktnb_stats[i]); 1765 return; 1766 } 1767 1768 burst_percent[i] = 1769 (double)burst_stats[i] / total_burst * 100; 1770 printf("%d%% of %d pkts + ", 1771 burst_percent[i], (int) pktnb_stats[i]); 1772 sburstp += burst_percent[i]; 1773 } 1774 } 1775 1776 static void 1777 fwd_stream_stats_display(streamid_t stream_id) 1778 { 1779 struct fwd_stream *fs; 1780 static const char *fwd_top_stats_border = "-------"; 1781 1782 fs = fwd_streams[stream_id]; 1783 if ((fs->rx_packets == 0) && (fs->tx_packets == 0) && 1784 (fs->fwd_dropped == 0)) 1785 return; 1786 printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> " 1787 "TX Port=%2d/Queue=%2d %s\n", 1788 fwd_top_stats_border, fs->rx_port, fs->rx_queue, 1789 fs->tx_port, fs->tx_queue, fwd_top_stats_border); 1790 printf(" RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64 1791 " TX-dropped: %-14"PRIu64, 1792 fs->rx_packets, fs->tx_packets, fs->fwd_dropped); 1793 1794 /* if checksum mode */ 1795 if (cur_fwd_eng == &csum_fwd_engine) { 1796 printf(" RX- bad IP checksum: %-14"PRIu64 1797 " Rx- bad L4 checksum: %-14"PRIu64 1798 " Rx- bad outer L4 checksum: %-14"PRIu64"\n", 1799 fs->rx_bad_ip_csum, fs->rx_bad_l4_csum, 1800 fs->rx_bad_outer_l4_csum); 1801 } else { 1802 printf("\n"); 1803 } 1804 1805 if (record_burst_stats) { 1806 pkt_burst_stats_display("RX", &fs->rx_burst_stats); 1807 pkt_burst_stats_display("TX", &fs->tx_burst_stats); 1808 } 1809 } 1810 1811 void 1812 fwd_stats_display(void) 1813 { 1814 static const char *fwd_stats_border = "----------------------"; 1815 static const char *acc_stats_border = "+++++++++++++++"; 1816 struct { 1817 struct fwd_stream *rx_stream; 1818 struct fwd_stream *tx_stream; 1819 uint64_t tx_dropped; 1820 uint64_t rx_bad_ip_csum; 1821 uint64_t rx_bad_l4_csum; 1822 uint64_t rx_bad_outer_l4_csum; 1823 } ports_stats[RTE_MAX_ETHPORTS]; 1824 uint64_t total_rx_dropped = 0; 1825 uint64_t total_tx_dropped = 0; 1826 uint64_t total_rx_nombuf = 0; 1827 struct rte_eth_stats stats; 1828 uint64_t fwd_cycles = 0; 1829 uint64_t total_recv = 0; 1830 uint64_t total_xmit = 0; 1831 struct rte_port *port; 1832 streamid_t sm_id; 1833 portid_t pt_id; 1834 int i; 1835 1836 memset(ports_stats, 0, sizeof(ports_stats)); 1837 1838 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1839 struct fwd_stream *fs = fwd_streams[sm_id]; 1840 1841 if (cur_fwd_config.nb_fwd_streams > 1842 cur_fwd_config.nb_fwd_ports) { 1843 fwd_stream_stats_display(sm_id); 1844 } else { 1845 ports_stats[fs->tx_port].tx_stream = fs; 1846 ports_stats[fs->rx_port].rx_stream = fs; 1847 } 1848 1849 ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped; 1850 1851 ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum; 1852 ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum; 1853 ports_stats[fs->rx_port].rx_bad_outer_l4_csum += 1854 fs->rx_bad_outer_l4_csum; 1855 1856 if (record_core_cycles) 1857 fwd_cycles += fs->core_cycles; 1858 } 1859 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 1860 uint8_t j; 1861 1862 pt_id = fwd_ports_ids[i]; 1863 port = &ports[pt_id]; 1864 1865 rte_eth_stats_get(pt_id, &stats); 1866 stats.ipackets -= port->stats.ipackets; 1867 stats.opackets -= port->stats.opackets; 1868 stats.ibytes -= port->stats.ibytes; 1869 stats.obytes -= port->stats.obytes; 1870 stats.imissed -= port->stats.imissed; 1871 stats.oerrors -= port->stats.oerrors; 1872 stats.rx_nombuf -= port->stats.rx_nombuf; 1873 1874 total_recv += stats.ipackets; 1875 total_xmit += stats.opackets; 1876 total_rx_dropped += stats.imissed; 1877 total_tx_dropped += ports_stats[pt_id].tx_dropped; 1878 total_tx_dropped += stats.oerrors; 1879 total_rx_nombuf += stats.rx_nombuf; 1880 1881 printf("\n %s Forward statistics for port %-2d %s\n", 1882 fwd_stats_border, pt_id, fwd_stats_border); 1883 1884 if (!port->rx_queue_stats_mapping_enabled && 1885 !port->tx_queue_stats_mapping_enabled) { 1886 printf(" RX-packets: %-14"PRIu64 1887 " RX-dropped: %-14"PRIu64 1888 "RX-total: %-"PRIu64"\n", 1889 stats.ipackets, stats.imissed, 1890 stats.ipackets + stats.imissed); 1891 1892 if (cur_fwd_eng == &csum_fwd_engine) 1893 printf(" Bad-ipcsum: %-14"PRIu64 1894 " Bad-l4csum: %-14"PRIu64 1895 "Bad-outer-l4csum: %-14"PRIu64"\n", 1896 ports_stats[pt_id].rx_bad_ip_csum, 1897 ports_stats[pt_id].rx_bad_l4_csum, 1898 ports_stats[pt_id].rx_bad_outer_l4_csum); 1899 if (stats.ierrors + stats.rx_nombuf > 0) { 1900 printf(" RX-error: %-"PRIu64"\n", 1901 stats.ierrors); 1902 printf(" RX-nombufs: %-14"PRIu64"\n", 1903 stats.rx_nombuf); 1904 } 1905 1906 printf(" TX-packets: %-14"PRIu64 1907 " TX-dropped: %-14"PRIu64 1908 "TX-total: %-"PRIu64"\n", 1909 stats.opackets, ports_stats[pt_id].tx_dropped, 1910 stats.opackets + ports_stats[pt_id].tx_dropped); 1911 } else { 1912 printf(" RX-packets: %14"PRIu64 1913 " RX-dropped:%14"PRIu64 1914 " RX-total:%14"PRIu64"\n", 1915 stats.ipackets, stats.imissed, 1916 stats.ipackets + stats.imissed); 1917 1918 if (cur_fwd_eng == &csum_fwd_engine) 1919 printf(" Bad-ipcsum:%14"PRIu64 1920 " Bad-l4csum:%14"PRIu64 1921 " Bad-outer-l4csum: %-14"PRIu64"\n", 1922 ports_stats[pt_id].rx_bad_ip_csum, 1923 ports_stats[pt_id].rx_bad_l4_csum, 1924 ports_stats[pt_id].rx_bad_outer_l4_csum); 1925 if ((stats.ierrors + stats.rx_nombuf) > 0) { 1926 printf(" RX-error:%"PRIu64"\n", stats.ierrors); 1927 printf(" RX-nombufs: %14"PRIu64"\n", 1928 stats.rx_nombuf); 1929 } 1930 1931 printf(" TX-packets: %14"PRIu64 1932 " TX-dropped:%14"PRIu64 1933 " TX-total:%14"PRIu64"\n", 1934 stats.opackets, ports_stats[pt_id].tx_dropped, 1935 stats.opackets + ports_stats[pt_id].tx_dropped); 1936 } 1937 1938 if (record_burst_stats) { 1939 if (ports_stats[pt_id].rx_stream) 1940 pkt_burst_stats_display("RX", 1941 &ports_stats[pt_id].rx_stream->rx_burst_stats); 1942 if (ports_stats[pt_id].tx_stream) 1943 pkt_burst_stats_display("TX", 1944 &ports_stats[pt_id].tx_stream->tx_burst_stats); 1945 } 1946 1947 if (port->rx_queue_stats_mapping_enabled) { 1948 printf("\n"); 1949 for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) { 1950 printf(" Stats reg %2d RX-packets:%14"PRIu64 1951 " RX-errors:%14"PRIu64 1952 " RX-bytes:%14"PRIu64"\n", 1953 j, stats.q_ipackets[j], 1954 stats.q_errors[j], stats.q_ibytes[j]); 1955 } 1956 printf("\n"); 1957 } 1958 if (port->tx_queue_stats_mapping_enabled) { 1959 for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) { 1960 printf(" Stats reg %2d TX-packets:%14"PRIu64 1961 " TX-bytes:%14" 1962 PRIu64"\n", 1963 j, stats.q_opackets[j], 1964 stats.q_obytes[j]); 1965 } 1966 } 1967 1968 printf(" %s--------------------------------%s\n", 1969 fwd_stats_border, fwd_stats_border); 1970 } 1971 1972 printf("\n %s Accumulated forward statistics for all ports" 1973 "%s\n", 1974 acc_stats_border, acc_stats_border); 1975 printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: " 1976 "%-"PRIu64"\n" 1977 " TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: " 1978 "%-"PRIu64"\n", 1979 total_recv, total_rx_dropped, total_recv + total_rx_dropped, 1980 total_xmit, total_tx_dropped, total_xmit + total_tx_dropped); 1981 if (total_rx_nombuf > 0) 1982 printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf); 1983 printf(" %s++++++++++++++++++++++++++++++++++++++++++++++" 1984 "%s\n", 1985 acc_stats_border, acc_stats_border); 1986 if (record_core_cycles) { 1987 #define CYC_PER_MHZ 1E6 1988 if (total_recv > 0 || total_xmit > 0) { 1989 uint64_t total_pkts = 0; 1990 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 || 1991 strcmp(cur_fwd_eng->fwd_mode_name, "flowgen") == 0) 1992 total_pkts = total_xmit; 1993 else 1994 total_pkts = total_recv; 1995 1996 printf("\n CPU cycles/packet=%.2F (total cycles=" 1997 "%"PRIu64" / total %s packets=%"PRIu64") at %"PRIu64 1998 " MHz Clock\n", 1999 (double) fwd_cycles / total_pkts, 2000 fwd_cycles, cur_fwd_eng->fwd_mode_name, total_pkts, 2001 (uint64_t)(rte_get_tsc_hz() / CYC_PER_MHZ)); 2002 } 2003 } 2004 } 2005 2006 void 2007 fwd_stats_reset(void) 2008 { 2009 streamid_t sm_id; 2010 portid_t pt_id; 2011 int i; 2012 2013 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2014 pt_id = fwd_ports_ids[i]; 2015 rte_eth_stats_get(pt_id, &ports[pt_id].stats); 2016 } 2017 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 2018 struct fwd_stream *fs = fwd_streams[sm_id]; 2019 2020 fs->rx_packets = 0; 2021 fs->tx_packets = 0; 2022 fs->fwd_dropped = 0; 2023 fs->rx_bad_ip_csum = 0; 2024 fs->rx_bad_l4_csum = 0; 2025 fs->rx_bad_outer_l4_csum = 0; 2026 2027 memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats)); 2028 memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats)); 2029 fs->core_cycles = 0; 2030 } 2031 } 2032 2033 static void 2034 flush_fwd_rx_queues(void) 2035 { 2036 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2037 portid_t rxp; 2038 portid_t port_id; 2039 queueid_t rxq; 2040 uint16_t nb_rx; 2041 uint16_t i; 2042 uint8_t j; 2043 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 2044 uint64_t timer_period; 2045 2046 /* convert to number of cycles */ 2047 timer_period = rte_get_timer_hz(); /* 1 second timeout */ 2048 2049 for (j = 0; j < 2; j++) { 2050 for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) { 2051 for (rxq = 0; rxq < nb_rxq; rxq++) { 2052 port_id = fwd_ports_ids[rxp]; 2053 /** 2054 * testpmd can stuck in the below do while loop 2055 * if rte_eth_rx_burst() always returns nonzero 2056 * packets. So timer is added to exit this loop 2057 * after 1sec timer expiry. 2058 */ 2059 prev_tsc = rte_rdtsc(); 2060 do { 2061 nb_rx = rte_eth_rx_burst(port_id, rxq, 2062 pkts_burst, MAX_PKT_BURST); 2063 for (i = 0; i < nb_rx; i++) 2064 rte_pktmbuf_free(pkts_burst[i]); 2065 2066 cur_tsc = rte_rdtsc(); 2067 diff_tsc = cur_tsc - prev_tsc; 2068 timer_tsc += diff_tsc; 2069 } while ((nb_rx > 0) && 2070 (timer_tsc < timer_period)); 2071 timer_tsc = 0; 2072 } 2073 } 2074 rte_delay_ms(10); /* wait 10 milli-seconds before retrying */ 2075 } 2076 } 2077 2078 static void 2079 run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd) 2080 { 2081 struct fwd_stream **fsm; 2082 streamid_t nb_fs; 2083 streamid_t sm_id; 2084 #ifdef RTE_LIB_BITRATESTATS 2085 uint64_t tics_per_1sec; 2086 uint64_t tics_datum; 2087 uint64_t tics_current; 2088 uint16_t i, cnt_ports; 2089 2090 cnt_ports = nb_ports; 2091 tics_datum = rte_rdtsc(); 2092 tics_per_1sec = rte_get_timer_hz(); 2093 #endif 2094 fsm = &fwd_streams[fc->stream_idx]; 2095 nb_fs = fc->stream_nb; 2096 do { 2097 for (sm_id = 0; sm_id < nb_fs; sm_id++) 2098 (*pkt_fwd)(fsm[sm_id]); 2099 #ifdef RTE_LIB_BITRATESTATS 2100 if (bitrate_enabled != 0 && 2101 bitrate_lcore_id == rte_lcore_id()) { 2102 tics_current = rte_rdtsc(); 2103 if (tics_current - tics_datum >= tics_per_1sec) { 2104 /* Periodic bitrate calculation */ 2105 for (i = 0; i < cnt_ports; i++) 2106 rte_stats_bitrate_calc(bitrate_data, 2107 ports_ids[i]); 2108 tics_datum = tics_current; 2109 } 2110 } 2111 #endif 2112 #ifdef RTE_LIB_LATENCYSTATS 2113 if (latencystats_enabled != 0 && 2114 latencystats_lcore_id == rte_lcore_id()) 2115 rte_latencystats_update(); 2116 #endif 2117 2118 } while (! fc->stopped); 2119 } 2120 2121 static int 2122 start_pkt_forward_on_core(void *fwd_arg) 2123 { 2124 run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg, 2125 cur_fwd_config.fwd_eng->packet_fwd); 2126 return 0; 2127 } 2128 2129 /* 2130 * Run the TXONLY packet forwarding engine to send a single burst of packets. 2131 * Used to start communication flows in network loopback test configurations. 2132 */ 2133 static int 2134 run_one_txonly_burst_on_core(void *fwd_arg) 2135 { 2136 struct fwd_lcore *fwd_lc; 2137 struct fwd_lcore tmp_lcore; 2138 2139 fwd_lc = (struct fwd_lcore *) fwd_arg; 2140 tmp_lcore = *fwd_lc; 2141 tmp_lcore.stopped = 1; 2142 run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd); 2143 return 0; 2144 } 2145 2146 /* 2147 * Launch packet forwarding: 2148 * - Setup per-port forwarding context. 2149 * - launch logical cores with their forwarding configuration. 2150 */ 2151 static void 2152 launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore) 2153 { 2154 port_fwd_begin_t port_fwd_begin; 2155 unsigned int i; 2156 unsigned int lc_id; 2157 int diag; 2158 2159 port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin; 2160 if (port_fwd_begin != NULL) { 2161 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2162 (*port_fwd_begin)(fwd_ports_ids[i]); 2163 } 2164 for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) { 2165 lc_id = fwd_lcores_cpuids[i]; 2166 if ((interactive == 0) || (lc_id != rte_lcore_id())) { 2167 fwd_lcores[i]->stopped = 0; 2168 diag = rte_eal_remote_launch(pkt_fwd_on_lcore, 2169 fwd_lcores[i], lc_id); 2170 if (diag != 0) 2171 printf("launch lcore %u failed - diag=%d\n", 2172 lc_id, diag); 2173 } 2174 } 2175 } 2176 2177 /* 2178 * Launch packet forwarding configuration. 2179 */ 2180 void 2181 start_packet_forwarding(int with_tx_first) 2182 { 2183 port_fwd_begin_t port_fwd_begin; 2184 port_fwd_end_t port_fwd_end; 2185 struct rte_port *port; 2186 unsigned int i; 2187 portid_t pt_id; 2188 2189 if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq) 2190 rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n"); 2191 2192 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq) 2193 rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n"); 2194 2195 if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 && 2196 strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) && 2197 (!nb_rxq || !nb_txq)) 2198 rte_exit(EXIT_FAILURE, 2199 "Either rxq or txq are 0, cannot use %s fwd mode\n", 2200 cur_fwd_eng->fwd_mode_name); 2201 2202 if (all_ports_started() == 0) { 2203 printf("Not all ports were started\n"); 2204 return; 2205 } 2206 if (test_done == 0) { 2207 printf("Packet forwarding already started\n"); 2208 return; 2209 } 2210 2211 2212 if(dcb_test) { 2213 for (i = 0; i < nb_fwd_ports; i++) { 2214 pt_id = fwd_ports_ids[i]; 2215 port = &ports[pt_id]; 2216 if (!port->dcb_flag) { 2217 printf("In DCB mode, all forwarding ports must " 2218 "be configured in this mode.\n"); 2219 return; 2220 } 2221 } 2222 if (nb_fwd_lcores == 1) { 2223 printf("In DCB mode,the nb forwarding cores " 2224 "should be larger than 1.\n"); 2225 return; 2226 } 2227 } 2228 test_done = 0; 2229 2230 fwd_config_setup(); 2231 2232 if(!no_flush_rx) 2233 flush_fwd_rx_queues(); 2234 2235 pkt_fwd_config_display(&cur_fwd_config); 2236 rxtx_config_display(); 2237 2238 fwd_stats_reset(); 2239 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2240 pt_id = fwd_ports_ids[i]; 2241 port = &ports[pt_id]; 2242 map_port_queue_stats_mapping_registers(pt_id, port); 2243 } 2244 if (with_tx_first) { 2245 port_fwd_begin = tx_only_engine.port_fwd_begin; 2246 if (port_fwd_begin != NULL) { 2247 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2248 (*port_fwd_begin)(fwd_ports_ids[i]); 2249 } 2250 while (with_tx_first--) { 2251 launch_packet_forwarding( 2252 run_one_txonly_burst_on_core); 2253 rte_eal_mp_wait_lcore(); 2254 } 2255 port_fwd_end = tx_only_engine.port_fwd_end; 2256 if (port_fwd_end != NULL) { 2257 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2258 (*port_fwd_end)(fwd_ports_ids[i]); 2259 } 2260 } 2261 launch_packet_forwarding(start_pkt_forward_on_core); 2262 } 2263 2264 void 2265 stop_packet_forwarding(void) 2266 { 2267 port_fwd_end_t port_fwd_end; 2268 lcoreid_t lc_id; 2269 portid_t pt_id; 2270 int i; 2271 2272 if (test_done) { 2273 printf("Packet forwarding not started\n"); 2274 return; 2275 } 2276 printf("Telling cores to stop..."); 2277 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) 2278 fwd_lcores[lc_id]->stopped = 1; 2279 printf("\nWaiting for lcores to finish...\n"); 2280 rte_eal_mp_wait_lcore(); 2281 port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end; 2282 if (port_fwd_end != NULL) { 2283 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2284 pt_id = fwd_ports_ids[i]; 2285 (*port_fwd_end)(pt_id); 2286 } 2287 } 2288 2289 fwd_stats_display(); 2290 2291 printf("\nDone.\n"); 2292 test_done = 1; 2293 } 2294 2295 void 2296 dev_set_link_up(portid_t pid) 2297 { 2298 if (rte_eth_dev_set_link_up(pid) < 0) 2299 printf("\nSet link up fail.\n"); 2300 } 2301 2302 void 2303 dev_set_link_down(portid_t pid) 2304 { 2305 if (rte_eth_dev_set_link_down(pid) < 0) 2306 printf("\nSet link down fail.\n"); 2307 } 2308 2309 static int 2310 all_ports_started(void) 2311 { 2312 portid_t pi; 2313 struct rte_port *port; 2314 2315 RTE_ETH_FOREACH_DEV(pi) { 2316 port = &ports[pi]; 2317 /* Check if there is a port which is not started */ 2318 if ((port->port_status != RTE_PORT_STARTED) && 2319 (port->slave_flag == 0)) 2320 return 0; 2321 } 2322 2323 /* No port is not started */ 2324 return 1; 2325 } 2326 2327 int 2328 port_is_stopped(portid_t port_id) 2329 { 2330 struct rte_port *port = &ports[port_id]; 2331 2332 if ((port->port_status != RTE_PORT_STOPPED) && 2333 (port->slave_flag == 0)) 2334 return 0; 2335 return 1; 2336 } 2337 2338 int 2339 all_ports_stopped(void) 2340 { 2341 portid_t pi; 2342 2343 RTE_ETH_FOREACH_DEV(pi) { 2344 if (!port_is_stopped(pi)) 2345 return 0; 2346 } 2347 2348 return 1; 2349 } 2350 2351 int 2352 port_is_started(portid_t port_id) 2353 { 2354 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2355 return 0; 2356 2357 if (ports[port_id].port_status != RTE_PORT_STARTED) 2358 return 0; 2359 2360 return 1; 2361 } 2362 2363 /* Configure the Rx and Tx hairpin queues for the selected port. */ 2364 static int 2365 setup_hairpin_queues(portid_t pi, portid_t p_pi, uint16_t cnt_pi) 2366 { 2367 queueid_t qi; 2368 struct rte_eth_hairpin_conf hairpin_conf = { 2369 .peer_count = 1, 2370 }; 2371 int i; 2372 int diag; 2373 struct rte_port *port = &ports[pi]; 2374 uint16_t peer_rx_port = pi; 2375 uint16_t peer_tx_port = pi; 2376 uint32_t manual = 1; 2377 uint32_t tx_exp = hairpin_mode & 0x10; 2378 2379 if (!(hairpin_mode & 0xf)) { 2380 peer_rx_port = pi; 2381 peer_tx_port = pi; 2382 manual = 0; 2383 } else if (hairpin_mode & 0x1) { 2384 peer_tx_port = rte_eth_find_next_owned_by(pi + 1, 2385 RTE_ETH_DEV_NO_OWNER); 2386 if (peer_tx_port >= RTE_MAX_ETHPORTS) 2387 peer_tx_port = rte_eth_find_next_owned_by(0, 2388 RTE_ETH_DEV_NO_OWNER); 2389 if (p_pi != RTE_MAX_ETHPORTS) { 2390 peer_rx_port = p_pi; 2391 } else { 2392 uint16_t next_pi; 2393 2394 /* Last port will be the peer RX port of the first. */ 2395 RTE_ETH_FOREACH_DEV(next_pi) 2396 peer_rx_port = next_pi; 2397 } 2398 manual = 1; 2399 } else if (hairpin_mode & 0x2) { 2400 if (cnt_pi & 0x1) { 2401 peer_rx_port = p_pi; 2402 } else { 2403 peer_rx_port = rte_eth_find_next_owned_by(pi + 1, 2404 RTE_ETH_DEV_NO_OWNER); 2405 if (peer_rx_port >= RTE_MAX_ETHPORTS) 2406 peer_rx_port = pi; 2407 } 2408 peer_tx_port = peer_rx_port; 2409 manual = 1; 2410 } 2411 2412 for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) { 2413 hairpin_conf.peers[0].port = peer_rx_port; 2414 hairpin_conf.peers[0].queue = i + nb_rxq; 2415 hairpin_conf.manual_bind = !!manual; 2416 hairpin_conf.tx_explicit = !!tx_exp; 2417 diag = rte_eth_tx_hairpin_queue_setup 2418 (pi, qi, nb_txd, &hairpin_conf); 2419 i++; 2420 if (diag == 0) 2421 continue; 2422 2423 /* Fail to setup rx queue, return */ 2424 if (rte_atomic16_cmpset(&(port->port_status), 2425 RTE_PORT_HANDLING, 2426 RTE_PORT_STOPPED) == 0) 2427 printf("Port %d can not be set back " 2428 "to stopped\n", pi); 2429 printf("Fail to configure port %d hairpin " 2430 "queues\n", pi); 2431 /* try to reconfigure queues next time */ 2432 port->need_reconfig_queues = 1; 2433 return -1; 2434 } 2435 for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) { 2436 hairpin_conf.peers[0].port = peer_tx_port; 2437 hairpin_conf.peers[0].queue = i + nb_txq; 2438 hairpin_conf.manual_bind = !!manual; 2439 hairpin_conf.tx_explicit = !!tx_exp; 2440 diag = rte_eth_rx_hairpin_queue_setup 2441 (pi, qi, nb_rxd, &hairpin_conf); 2442 i++; 2443 if (diag == 0) 2444 continue; 2445 2446 /* Fail to setup rx queue, return */ 2447 if (rte_atomic16_cmpset(&(port->port_status), 2448 RTE_PORT_HANDLING, 2449 RTE_PORT_STOPPED) == 0) 2450 printf("Port %d can not be set back " 2451 "to stopped\n", pi); 2452 printf("Fail to configure port %d hairpin " 2453 "queues\n", pi); 2454 /* try to reconfigure queues next time */ 2455 port->need_reconfig_queues = 1; 2456 return -1; 2457 } 2458 return 0; 2459 } 2460 2461 /* Configure the Rx with optional split. */ 2462 int 2463 rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, 2464 uint16_t nb_rx_desc, unsigned int socket_id, 2465 struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) 2466 { 2467 union rte_eth_rxseg rx_useg[MAX_SEGS_BUFFER_SPLIT] = {}; 2468 unsigned int i, mp_n; 2469 int ret; 2470 2471 if (rx_pkt_nb_segs <= 1 || 2472 (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) == 0) { 2473 rx_conf->rx_seg = NULL; 2474 rx_conf->rx_nseg = 0; 2475 ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, 2476 nb_rx_desc, socket_id, 2477 rx_conf, mp); 2478 return ret; 2479 } 2480 for (i = 0; i < rx_pkt_nb_segs; i++) { 2481 struct rte_eth_rxseg_split *rx_seg = &rx_useg[i].split; 2482 struct rte_mempool *mpx; 2483 /* 2484 * Use last valid pool for the segments with number 2485 * exceeding the pool index. 2486 */ 2487 mp_n = (i > mbuf_data_size_n) ? mbuf_data_size_n - 1 : i; 2488 mpx = mbuf_pool_find(socket_id, mp_n); 2489 /* Handle zero as mbuf data buffer size. */ 2490 rx_seg->length = rx_pkt_seg_lengths[i] ? 2491 rx_pkt_seg_lengths[i] : 2492 mbuf_data_size[mp_n]; 2493 rx_seg->offset = i < rx_pkt_nb_offs ? 2494 rx_pkt_seg_offsets[i] : 0; 2495 rx_seg->mp = mpx ? mpx : mp; 2496 } 2497 rx_conf->rx_nseg = rx_pkt_nb_segs; 2498 rx_conf->rx_seg = rx_useg; 2499 ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, nb_rx_desc, 2500 socket_id, rx_conf, NULL); 2501 rx_conf->rx_seg = NULL; 2502 rx_conf->rx_nseg = 0; 2503 return ret; 2504 } 2505 2506 int 2507 start_port(portid_t pid) 2508 { 2509 int diag, need_check_link_status = -1; 2510 portid_t pi; 2511 portid_t p_pi = RTE_MAX_ETHPORTS; 2512 portid_t pl[RTE_MAX_ETHPORTS]; 2513 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2514 uint16_t cnt_pi = 0; 2515 uint16_t cfg_pi = 0; 2516 int peer_pi; 2517 queueid_t qi; 2518 struct rte_port *port; 2519 struct rte_ether_addr mac_addr; 2520 struct rte_eth_hairpin_cap cap; 2521 2522 if (port_id_is_invalid(pid, ENABLED_WARN)) 2523 return 0; 2524 2525 if(dcb_config) 2526 dcb_test = 1; 2527 RTE_ETH_FOREACH_DEV(pi) { 2528 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2529 continue; 2530 2531 need_check_link_status = 0; 2532 port = &ports[pi]; 2533 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED, 2534 RTE_PORT_HANDLING) == 0) { 2535 printf("Port %d is now not stopped\n", pi); 2536 continue; 2537 } 2538 2539 if (port->need_reconfig > 0) { 2540 uint16_t mtu = RTE_ETHER_MTU; 2541 2542 port->need_reconfig = 0; 2543 2544 if (flow_isolate_all) { 2545 int ret = port_flow_isolate(pi, 1); 2546 if (ret) { 2547 printf("Failed to apply isolated" 2548 " mode on port %d\n", pi); 2549 return -1; 2550 } 2551 } 2552 configure_rxtx_dump_callbacks(0); 2553 printf("Configuring Port %d (socket %u)\n", pi, 2554 port->socket_id); 2555 if (nb_hairpinq > 0 && 2556 rte_eth_dev_hairpin_capability_get(pi, &cap)) { 2557 printf("Port %d doesn't support hairpin " 2558 "queues\n", pi); 2559 return -1; 2560 } 2561 /* configure port */ 2562 diag = rte_eth_dev_configure(pi, nb_rxq + nb_hairpinq, 2563 nb_txq + nb_hairpinq, 2564 &(port->dev_conf)); 2565 if (diag != 0) { 2566 if (rte_atomic16_cmpset(&(port->port_status), 2567 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2568 printf("Port %d can not be set back " 2569 "to stopped\n", pi); 2570 printf("Fail to configure port %d\n", pi); 2571 /* try to reconfigure port next time */ 2572 port->need_reconfig = 1; 2573 return -1; 2574 } 2575 2576 /* 2577 * Workaround for rte_eth_dev_configure(), max_rx_pkt_len 2578 * set MTU wrong for the PMDs that have frame overhead 2579 * bigger than RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN. 2580 * For a PMD that has 26 bytes overhead, rte_eth_dev_configure() 2581 * can set MTU to max 1492, not to expected 1500 bytes. 2582 * Using rte_eth_dev_set_mtu() to be able to set MTU correctly, 2583 * default MTU value is 1500. 2584 */ 2585 diag = rte_eth_dev_get_mtu(pi, &mtu); 2586 if (diag) 2587 printf("Failed to get MTU for port %d\n", pi); 2588 diag = rte_eth_dev_set_mtu(pi, mtu); 2589 if (diag != 0 && diag != -ENOTSUP) 2590 printf("Failed to set MTU to %u for port %d\n", 2591 mtu, pi); 2592 } 2593 if (port->need_reconfig_queues > 0) { 2594 port->need_reconfig_queues = 0; 2595 /* setup tx queues */ 2596 for (qi = 0; qi < nb_txq; qi++) { 2597 if ((numa_support) && 2598 (txring_numa[pi] != NUMA_NO_CONFIG)) 2599 diag = rte_eth_tx_queue_setup(pi, qi, 2600 port->nb_tx_desc[qi], 2601 txring_numa[pi], 2602 &(port->tx_conf[qi])); 2603 else 2604 diag = rte_eth_tx_queue_setup(pi, qi, 2605 port->nb_tx_desc[qi], 2606 port->socket_id, 2607 &(port->tx_conf[qi])); 2608 2609 if (diag == 0) 2610 continue; 2611 2612 /* Fail to setup tx queue, return */ 2613 if (rte_atomic16_cmpset(&(port->port_status), 2614 RTE_PORT_HANDLING, 2615 RTE_PORT_STOPPED) == 0) 2616 printf("Port %d can not be set back " 2617 "to stopped\n", pi); 2618 printf("Fail to configure port %d tx queues\n", 2619 pi); 2620 /* try to reconfigure queues next time */ 2621 port->need_reconfig_queues = 1; 2622 return -1; 2623 } 2624 for (qi = 0; qi < nb_rxq; qi++) { 2625 /* setup rx queues */ 2626 if ((numa_support) && 2627 (rxring_numa[pi] != NUMA_NO_CONFIG)) { 2628 struct rte_mempool * mp = 2629 mbuf_pool_find 2630 (rxring_numa[pi], 0); 2631 if (mp == NULL) { 2632 printf("Failed to setup RX queue:" 2633 "No mempool allocation" 2634 " on the socket %d\n", 2635 rxring_numa[pi]); 2636 return -1; 2637 } 2638 2639 diag = rx_queue_setup(pi, qi, 2640 port->nb_rx_desc[qi], 2641 rxring_numa[pi], 2642 &(port->rx_conf[qi]), 2643 mp); 2644 } else { 2645 struct rte_mempool *mp = 2646 mbuf_pool_find 2647 (port->socket_id, 0); 2648 if (mp == NULL) { 2649 printf("Failed to setup RX queue:" 2650 "No mempool allocation" 2651 " on the socket %d\n", 2652 port->socket_id); 2653 return -1; 2654 } 2655 diag = rx_queue_setup(pi, qi, 2656 port->nb_rx_desc[qi], 2657 port->socket_id, 2658 &(port->rx_conf[qi]), 2659 mp); 2660 } 2661 if (diag == 0) 2662 continue; 2663 2664 /* Fail to setup rx queue, return */ 2665 if (rte_atomic16_cmpset(&(port->port_status), 2666 RTE_PORT_HANDLING, 2667 RTE_PORT_STOPPED) == 0) 2668 printf("Port %d can not be set back " 2669 "to stopped\n", pi); 2670 printf("Fail to configure port %d rx queues\n", 2671 pi); 2672 /* try to reconfigure queues next time */ 2673 port->need_reconfig_queues = 1; 2674 return -1; 2675 } 2676 /* setup hairpin queues */ 2677 if (setup_hairpin_queues(pi, p_pi, cnt_pi) != 0) 2678 return -1; 2679 } 2680 configure_rxtx_dump_callbacks(verbose_level); 2681 if (clear_ptypes) { 2682 diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN, 2683 NULL, 0); 2684 if (diag < 0) 2685 printf( 2686 "Port %d: Failed to disable Ptype parsing\n", 2687 pi); 2688 } 2689 2690 p_pi = pi; 2691 cnt_pi++; 2692 2693 /* start port */ 2694 if (rte_eth_dev_start(pi) < 0) { 2695 printf("Fail to start port %d\n", pi); 2696 2697 /* Fail to setup rx queue, return */ 2698 if (rte_atomic16_cmpset(&(port->port_status), 2699 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2700 printf("Port %d can not be set back to " 2701 "stopped\n", pi); 2702 continue; 2703 } 2704 2705 if (rte_atomic16_cmpset(&(port->port_status), 2706 RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0) 2707 printf("Port %d can not be set into started\n", pi); 2708 2709 if (eth_macaddr_get_print_err(pi, &mac_addr) == 0) 2710 printf("Port %d: %02X:%02X:%02X:%02X:%02X:%02X\n", pi, 2711 mac_addr.addr_bytes[0], mac_addr.addr_bytes[1], 2712 mac_addr.addr_bytes[2], mac_addr.addr_bytes[3], 2713 mac_addr.addr_bytes[4], mac_addr.addr_bytes[5]); 2714 2715 /* at least one port started, need checking link status */ 2716 need_check_link_status = 1; 2717 2718 pl[cfg_pi++] = pi; 2719 } 2720 2721 if (need_check_link_status == 1 && !no_link_check) 2722 check_all_ports_link_status(RTE_PORT_ALL); 2723 else if (need_check_link_status == 0) 2724 printf("Please stop the ports first\n"); 2725 2726 if (hairpin_mode & 0xf) { 2727 uint16_t i; 2728 int j; 2729 2730 /* bind all started hairpin ports */ 2731 for (i = 0; i < cfg_pi; i++) { 2732 pi = pl[i]; 2733 /* bind current Tx to all peer Rx */ 2734 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2735 RTE_MAX_ETHPORTS, 1); 2736 if (peer_pi < 0) 2737 return peer_pi; 2738 for (j = 0; j < peer_pi; j++) { 2739 if (!port_is_started(peer_pl[j])) 2740 continue; 2741 diag = rte_eth_hairpin_bind(pi, peer_pl[j]); 2742 if (diag < 0) { 2743 printf("Error during binding hairpin" 2744 " Tx port %u to %u: %s\n", 2745 pi, peer_pl[j], 2746 rte_strerror(-diag)); 2747 return -1; 2748 } 2749 } 2750 /* bind all peer Tx to current Rx */ 2751 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2752 RTE_MAX_ETHPORTS, 0); 2753 if (peer_pi < 0) 2754 return peer_pi; 2755 for (j = 0; j < peer_pi; j++) { 2756 if (!port_is_started(peer_pl[j])) 2757 continue; 2758 diag = rte_eth_hairpin_bind(peer_pl[j], pi); 2759 if (diag < 0) { 2760 printf("Error during binding hairpin" 2761 " Tx port %u to %u: %s\n", 2762 peer_pl[j], pi, 2763 rte_strerror(-diag)); 2764 return -1; 2765 } 2766 } 2767 } 2768 } 2769 2770 printf("Done\n"); 2771 return 0; 2772 } 2773 2774 void 2775 stop_port(portid_t pid) 2776 { 2777 portid_t pi; 2778 struct rte_port *port; 2779 int need_check_link_status = 0; 2780 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2781 int peer_pi; 2782 2783 if (dcb_test) { 2784 dcb_test = 0; 2785 dcb_config = 0; 2786 } 2787 2788 if (port_id_is_invalid(pid, ENABLED_WARN)) 2789 return; 2790 2791 printf("Stopping ports...\n"); 2792 2793 RTE_ETH_FOREACH_DEV(pi) { 2794 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2795 continue; 2796 2797 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2798 printf("Please remove port %d from forwarding configuration.\n", pi); 2799 continue; 2800 } 2801 2802 if (port_is_bonding_slave(pi)) { 2803 printf("Please remove port %d from bonded device.\n", pi); 2804 continue; 2805 } 2806 2807 port = &ports[pi]; 2808 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED, 2809 RTE_PORT_HANDLING) == 0) 2810 continue; 2811 2812 if (hairpin_mode & 0xf) { 2813 int j; 2814 2815 rte_eth_hairpin_unbind(pi, RTE_MAX_ETHPORTS); 2816 /* unbind all peer Tx from current Rx */ 2817 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2818 RTE_MAX_ETHPORTS, 0); 2819 if (peer_pi < 0) 2820 continue; 2821 for (j = 0; j < peer_pi; j++) { 2822 if (!port_is_started(peer_pl[j])) 2823 continue; 2824 rte_eth_hairpin_unbind(peer_pl[j], pi); 2825 } 2826 } 2827 2828 if (rte_eth_dev_stop(pi) != 0) 2829 RTE_LOG(ERR, EAL, "rte_eth_dev_stop failed for port %u\n", 2830 pi); 2831 2832 if (rte_atomic16_cmpset(&(port->port_status), 2833 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2834 printf("Port %d can not be set into stopped\n", pi); 2835 need_check_link_status = 1; 2836 } 2837 if (need_check_link_status && !no_link_check) 2838 check_all_ports_link_status(RTE_PORT_ALL); 2839 2840 printf("Done\n"); 2841 } 2842 2843 static void 2844 remove_invalid_ports_in(portid_t *array, portid_t *total) 2845 { 2846 portid_t i; 2847 portid_t new_total = 0; 2848 2849 for (i = 0; i < *total; i++) 2850 if (!port_id_is_invalid(array[i], DISABLED_WARN)) { 2851 array[new_total] = array[i]; 2852 new_total++; 2853 } 2854 *total = new_total; 2855 } 2856 2857 static void 2858 remove_invalid_ports(void) 2859 { 2860 remove_invalid_ports_in(ports_ids, &nb_ports); 2861 remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports); 2862 nb_cfg_ports = nb_fwd_ports; 2863 } 2864 2865 void 2866 close_port(portid_t pid) 2867 { 2868 portid_t pi; 2869 struct rte_port *port; 2870 2871 if (port_id_is_invalid(pid, ENABLED_WARN)) 2872 return; 2873 2874 printf("Closing ports...\n"); 2875 2876 RTE_ETH_FOREACH_DEV(pi) { 2877 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2878 continue; 2879 2880 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2881 printf("Please remove port %d from forwarding configuration.\n", pi); 2882 continue; 2883 } 2884 2885 if (port_is_bonding_slave(pi)) { 2886 printf("Please remove port %d from bonded device.\n", pi); 2887 continue; 2888 } 2889 2890 port = &ports[pi]; 2891 if (rte_atomic16_cmpset(&(port->port_status), 2892 RTE_PORT_CLOSED, RTE_PORT_CLOSED) == 1) { 2893 printf("Port %d is already closed\n", pi); 2894 continue; 2895 } 2896 2897 port_flow_flush(pi); 2898 rte_eth_dev_close(pi); 2899 } 2900 2901 remove_invalid_ports(); 2902 printf("Done\n"); 2903 } 2904 2905 void 2906 reset_port(portid_t pid) 2907 { 2908 int diag; 2909 portid_t pi; 2910 struct rte_port *port; 2911 2912 if (port_id_is_invalid(pid, ENABLED_WARN)) 2913 return; 2914 2915 if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) || 2916 (pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) { 2917 printf("Can not reset port(s), please stop port(s) first.\n"); 2918 return; 2919 } 2920 2921 printf("Resetting ports...\n"); 2922 2923 RTE_ETH_FOREACH_DEV(pi) { 2924 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2925 continue; 2926 2927 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2928 printf("Please remove port %d from forwarding " 2929 "configuration.\n", pi); 2930 continue; 2931 } 2932 2933 if (port_is_bonding_slave(pi)) { 2934 printf("Please remove port %d from bonded device.\n", 2935 pi); 2936 continue; 2937 } 2938 2939 diag = rte_eth_dev_reset(pi); 2940 if (diag == 0) { 2941 port = &ports[pi]; 2942 port->need_reconfig = 1; 2943 port->need_reconfig_queues = 1; 2944 } else { 2945 printf("Failed to reset port %d. diag=%d\n", pi, diag); 2946 } 2947 } 2948 2949 printf("Done\n"); 2950 } 2951 2952 void 2953 attach_port(char *identifier) 2954 { 2955 portid_t pi; 2956 struct rte_dev_iterator iterator; 2957 2958 printf("Attaching a new port...\n"); 2959 2960 if (identifier == NULL) { 2961 printf("Invalid parameters are specified\n"); 2962 return; 2963 } 2964 2965 if (rte_dev_probe(identifier) < 0) { 2966 TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier); 2967 return; 2968 } 2969 2970 /* first attach mode: event */ 2971 if (setup_on_probe_event) { 2972 /* new ports are detected on RTE_ETH_EVENT_NEW event */ 2973 for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++) 2974 if (ports[pi].port_status == RTE_PORT_HANDLING && 2975 ports[pi].need_setup != 0) 2976 setup_attached_port(pi); 2977 return; 2978 } 2979 2980 /* second attach mode: iterator */ 2981 RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) { 2982 /* setup ports matching the devargs used for probing */ 2983 if (port_is_forwarding(pi)) 2984 continue; /* port was already attached before */ 2985 setup_attached_port(pi); 2986 } 2987 } 2988 2989 static void 2990 setup_attached_port(portid_t pi) 2991 { 2992 unsigned int socket_id; 2993 int ret; 2994 2995 socket_id = (unsigned)rte_eth_dev_socket_id(pi); 2996 /* if socket_id is invalid, set to the first available socket. */ 2997 if (check_socket_id(socket_id) < 0) 2998 socket_id = socket_ids[0]; 2999 reconfig(pi, socket_id); 3000 ret = rte_eth_promiscuous_enable(pi); 3001 if (ret != 0) 3002 printf("Error during enabling promiscuous mode for port %u: %s - ignore\n", 3003 pi, rte_strerror(-ret)); 3004 3005 ports_ids[nb_ports++] = pi; 3006 fwd_ports_ids[nb_fwd_ports++] = pi; 3007 nb_cfg_ports = nb_fwd_ports; 3008 ports[pi].need_setup = 0; 3009 ports[pi].port_status = RTE_PORT_STOPPED; 3010 3011 printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports); 3012 printf("Done\n"); 3013 } 3014 3015 static void 3016 detach_device(struct rte_device *dev) 3017 { 3018 portid_t sibling; 3019 3020 if (dev == NULL) { 3021 printf("Device already removed\n"); 3022 return; 3023 } 3024 3025 printf("Removing a device...\n"); 3026 3027 RTE_ETH_FOREACH_DEV_OF(sibling, dev) { 3028 if (ports[sibling].port_status != RTE_PORT_CLOSED) { 3029 if (ports[sibling].port_status != RTE_PORT_STOPPED) { 3030 printf("Port %u not stopped\n", sibling); 3031 return; 3032 } 3033 port_flow_flush(sibling); 3034 } 3035 } 3036 3037 if (rte_dev_remove(dev) < 0) { 3038 TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name); 3039 return; 3040 } 3041 remove_invalid_ports(); 3042 3043 printf("Device is detached\n"); 3044 printf("Now total ports is %d\n", nb_ports); 3045 printf("Done\n"); 3046 return; 3047 } 3048 3049 void 3050 detach_port_device(portid_t port_id) 3051 { 3052 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3053 return; 3054 3055 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3056 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3057 printf("Port not stopped\n"); 3058 return; 3059 } 3060 printf("Port was not closed\n"); 3061 } 3062 3063 detach_device(rte_eth_devices[port_id].device); 3064 } 3065 3066 void 3067 detach_devargs(char *identifier) 3068 { 3069 struct rte_dev_iterator iterator; 3070 struct rte_devargs da; 3071 portid_t port_id; 3072 3073 printf("Removing a device...\n"); 3074 3075 memset(&da, 0, sizeof(da)); 3076 if (rte_devargs_parsef(&da, "%s", identifier)) { 3077 printf("cannot parse identifier\n"); 3078 if (da.args) 3079 free(da.args); 3080 return; 3081 } 3082 3083 RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) { 3084 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3085 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3086 printf("Port %u not stopped\n", port_id); 3087 rte_eth_iterator_cleanup(&iterator); 3088 return; 3089 } 3090 port_flow_flush(port_id); 3091 } 3092 } 3093 3094 if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) { 3095 TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n", 3096 da.name, da.bus->name); 3097 return; 3098 } 3099 3100 remove_invalid_ports(); 3101 3102 printf("Device %s is detached\n", identifier); 3103 printf("Now total ports is %d\n", nb_ports); 3104 printf("Done\n"); 3105 } 3106 3107 void 3108 pmd_test_exit(void) 3109 { 3110 portid_t pt_id; 3111 unsigned int i; 3112 int ret; 3113 3114 if (test_done == 0) 3115 stop_packet_forwarding(); 3116 3117 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3118 if (mempools[i]) { 3119 if (mp_alloc_type == MP_ALLOC_ANON) 3120 rte_mempool_mem_iter(mempools[i], dma_unmap_cb, 3121 NULL); 3122 } 3123 } 3124 if (ports != NULL) { 3125 no_link_check = 1; 3126 RTE_ETH_FOREACH_DEV(pt_id) { 3127 printf("\nStopping port %d...\n", pt_id); 3128 fflush(stdout); 3129 stop_port(pt_id); 3130 } 3131 RTE_ETH_FOREACH_DEV(pt_id) { 3132 printf("\nShutting down port %d...\n", pt_id); 3133 fflush(stdout); 3134 close_port(pt_id); 3135 } 3136 } 3137 3138 if (hot_plug) { 3139 ret = rte_dev_event_monitor_stop(); 3140 if (ret) { 3141 RTE_LOG(ERR, EAL, 3142 "fail to stop device event monitor."); 3143 return; 3144 } 3145 3146 ret = rte_dev_event_callback_unregister(NULL, 3147 dev_event_callback, NULL); 3148 if (ret < 0) { 3149 RTE_LOG(ERR, EAL, 3150 "fail to unregister device event callback.\n"); 3151 return; 3152 } 3153 3154 ret = rte_dev_hotplug_handle_disable(); 3155 if (ret) { 3156 RTE_LOG(ERR, EAL, 3157 "fail to disable hotplug handling.\n"); 3158 return; 3159 } 3160 } 3161 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3162 if (mempools[i]) 3163 rte_mempool_free(mempools[i]); 3164 } 3165 3166 printf("\nBye...\n"); 3167 } 3168 3169 typedef void (*cmd_func_t)(void); 3170 struct pmd_test_command { 3171 const char *cmd_name; 3172 cmd_func_t cmd_func; 3173 }; 3174 3175 /* Check the link status of all ports in up to 9s, and print them finally */ 3176 static void 3177 check_all_ports_link_status(uint32_t port_mask) 3178 { 3179 #define CHECK_INTERVAL 100 /* 100ms */ 3180 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 3181 portid_t portid; 3182 uint8_t count, all_ports_up, print_flag = 0; 3183 struct rte_eth_link link; 3184 int ret; 3185 char link_status[RTE_ETH_LINK_MAX_STR_LEN]; 3186 3187 printf("Checking link statuses...\n"); 3188 fflush(stdout); 3189 for (count = 0; count <= MAX_CHECK_TIME; count++) { 3190 all_ports_up = 1; 3191 RTE_ETH_FOREACH_DEV(portid) { 3192 if ((port_mask & (1 << portid)) == 0) 3193 continue; 3194 memset(&link, 0, sizeof(link)); 3195 ret = rte_eth_link_get_nowait(portid, &link); 3196 if (ret < 0) { 3197 all_ports_up = 0; 3198 if (print_flag == 1) 3199 printf("Port %u link get failed: %s\n", 3200 portid, rte_strerror(-ret)); 3201 continue; 3202 } 3203 /* print link status if flag set */ 3204 if (print_flag == 1) { 3205 rte_eth_link_to_str(link_status, 3206 sizeof(link_status), &link); 3207 printf("Port %d %s\n", portid, link_status); 3208 continue; 3209 } 3210 /* clear all_ports_up flag if any link down */ 3211 if (link.link_status == ETH_LINK_DOWN) { 3212 all_ports_up = 0; 3213 break; 3214 } 3215 } 3216 /* after finally printing all link status, get out */ 3217 if (print_flag == 1) 3218 break; 3219 3220 if (all_ports_up == 0) { 3221 fflush(stdout); 3222 rte_delay_ms(CHECK_INTERVAL); 3223 } 3224 3225 /* set the print_flag if all ports up or timeout */ 3226 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 3227 print_flag = 1; 3228 } 3229 3230 if (lsc_interrupt) 3231 break; 3232 } 3233 } 3234 3235 static void 3236 rmv_port_callback(void *arg) 3237 { 3238 int need_to_start = 0; 3239 int org_no_link_check = no_link_check; 3240 portid_t port_id = (intptr_t)arg; 3241 struct rte_device *dev; 3242 3243 RTE_ETH_VALID_PORTID_OR_RET(port_id); 3244 3245 if (!test_done && port_is_forwarding(port_id)) { 3246 need_to_start = 1; 3247 stop_packet_forwarding(); 3248 } 3249 no_link_check = 1; 3250 stop_port(port_id); 3251 no_link_check = org_no_link_check; 3252 3253 /* Save rte_device pointer before closing ethdev port */ 3254 dev = rte_eth_devices[port_id].device; 3255 close_port(port_id); 3256 detach_device(dev); /* might be already removed or have more ports */ 3257 3258 if (need_to_start) 3259 start_packet_forwarding(0); 3260 } 3261 3262 /* This function is used by the interrupt thread */ 3263 static int 3264 eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param, 3265 void *ret_param) 3266 { 3267 RTE_SET_USED(param); 3268 RTE_SET_USED(ret_param); 3269 3270 if (type >= RTE_ETH_EVENT_MAX) { 3271 fprintf(stderr, "\nPort %" PRIu16 ": %s called upon invalid event %d\n", 3272 port_id, __func__, type); 3273 fflush(stderr); 3274 } else if (event_print_mask & (UINT32_C(1) << type)) { 3275 printf("\nPort %" PRIu16 ": %s event\n", port_id, 3276 eth_event_desc[type]); 3277 fflush(stdout); 3278 } 3279 3280 switch (type) { 3281 case RTE_ETH_EVENT_NEW: 3282 ports[port_id].need_setup = 1; 3283 ports[port_id].port_status = RTE_PORT_HANDLING; 3284 break; 3285 case RTE_ETH_EVENT_INTR_RMV: 3286 if (port_id_is_invalid(port_id, DISABLED_WARN)) 3287 break; 3288 if (rte_eal_alarm_set(100000, 3289 rmv_port_callback, (void *)(intptr_t)port_id)) 3290 fprintf(stderr, "Could not set up deferred device removal\n"); 3291 break; 3292 case RTE_ETH_EVENT_DESTROY: 3293 ports[port_id].port_status = RTE_PORT_CLOSED; 3294 printf("Port %u is closed\n", port_id); 3295 break; 3296 default: 3297 break; 3298 } 3299 return 0; 3300 } 3301 3302 static int 3303 register_eth_event_callback(void) 3304 { 3305 int ret; 3306 enum rte_eth_event_type event; 3307 3308 for (event = RTE_ETH_EVENT_UNKNOWN; 3309 event < RTE_ETH_EVENT_MAX; event++) { 3310 ret = rte_eth_dev_callback_register(RTE_ETH_ALL, 3311 event, 3312 eth_event_callback, 3313 NULL); 3314 if (ret != 0) { 3315 TESTPMD_LOG(ERR, "Failed to register callback for " 3316 "%s event\n", eth_event_desc[event]); 3317 return -1; 3318 } 3319 } 3320 3321 return 0; 3322 } 3323 3324 /* This function is used by the interrupt thread */ 3325 static void 3326 dev_event_callback(const char *device_name, enum rte_dev_event_type type, 3327 __rte_unused void *arg) 3328 { 3329 uint16_t port_id; 3330 int ret; 3331 3332 if (type >= RTE_DEV_EVENT_MAX) { 3333 fprintf(stderr, "%s called upon invalid event %d\n", 3334 __func__, type); 3335 fflush(stderr); 3336 } 3337 3338 switch (type) { 3339 case RTE_DEV_EVENT_REMOVE: 3340 RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n", 3341 device_name); 3342 ret = rte_eth_dev_get_port_by_name(device_name, &port_id); 3343 if (ret) { 3344 RTE_LOG(ERR, EAL, "can not get port by device %s!\n", 3345 device_name); 3346 return; 3347 } 3348 /* 3349 * Because the user's callback is invoked in eal interrupt 3350 * callback, the interrupt callback need to be finished before 3351 * it can be unregistered when detaching device. So finish 3352 * callback soon and use a deferred removal to detach device 3353 * is need. It is a workaround, once the device detaching be 3354 * moved into the eal in the future, the deferred removal could 3355 * be deleted. 3356 */ 3357 if (rte_eal_alarm_set(100000, 3358 rmv_port_callback, (void *)(intptr_t)port_id)) 3359 RTE_LOG(ERR, EAL, 3360 "Could not set up deferred device removal\n"); 3361 break; 3362 case RTE_DEV_EVENT_ADD: 3363 RTE_LOG(ERR, EAL, "The device: %s has been added!\n", 3364 device_name); 3365 /* TODO: After finish kernel driver binding, 3366 * begin to attach port. 3367 */ 3368 break; 3369 default: 3370 break; 3371 } 3372 } 3373 3374 static int 3375 set_tx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port) 3376 { 3377 uint16_t i; 3378 int diag; 3379 uint8_t mapping_found = 0; 3380 3381 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 3382 if ((tx_queue_stats_mappings[i].port_id == port_id) && 3383 (tx_queue_stats_mappings[i].queue_id < nb_txq )) { 3384 diag = rte_eth_dev_set_tx_queue_stats_mapping(port_id, 3385 tx_queue_stats_mappings[i].queue_id, 3386 tx_queue_stats_mappings[i].stats_counter_id); 3387 if (diag != 0) 3388 return diag; 3389 mapping_found = 1; 3390 } 3391 } 3392 if (mapping_found) 3393 port->tx_queue_stats_mapping_enabled = 1; 3394 return 0; 3395 } 3396 3397 static int 3398 set_rx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port) 3399 { 3400 uint16_t i; 3401 int diag; 3402 uint8_t mapping_found = 0; 3403 3404 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 3405 if ((rx_queue_stats_mappings[i].port_id == port_id) && 3406 (rx_queue_stats_mappings[i].queue_id < nb_rxq )) { 3407 diag = rte_eth_dev_set_rx_queue_stats_mapping(port_id, 3408 rx_queue_stats_mappings[i].queue_id, 3409 rx_queue_stats_mappings[i].stats_counter_id); 3410 if (diag != 0) 3411 return diag; 3412 mapping_found = 1; 3413 } 3414 } 3415 if (mapping_found) 3416 port->rx_queue_stats_mapping_enabled = 1; 3417 return 0; 3418 } 3419 3420 static void 3421 map_port_queue_stats_mapping_registers(portid_t pi, struct rte_port *port) 3422 { 3423 int diag = 0; 3424 3425 diag = set_tx_queue_stats_mapping_registers(pi, port); 3426 if (diag != 0) { 3427 if (diag == -ENOTSUP) { 3428 port->tx_queue_stats_mapping_enabled = 0; 3429 printf("TX queue stats mapping not supported port id=%d\n", pi); 3430 } 3431 else 3432 rte_exit(EXIT_FAILURE, 3433 "set_tx_queue_stats_mapping_registers " 3434 "failed for port id=%d diag=%d\n", 3435 pi, diag); 3436 } 3437 3438 diag = set_rx_queue_stats_mapping_registers(pi, port); 3439 if (diag != 0) { 3440 if (diag == -ENOTSUP) { 3441 port->rx_queue_stats_mapping_enabled = 0; 3442 printf("RX queue stats mapping not supported port id=%d\n", pi); 3443 } 3444 else 3445 rte_exit(EXIT_FAILURE, 3446 "set_rx_queue_stats_mapping_registers " 3447 "failed for port id=%d diag=%d\n", 3448 pi, diag); 3449 } 3450 } 3451 3452 static void 3453 rxtx_port_config(struct rte_port *port) 3454 { 3455 uint16_t qid; 3456 uint64_t offloads; 3457 3458 for (qid = 0; qid < nb_rxq; qid++) { 3459 offloads = port->rx_conf[qid].offloads; 3460 port->rx_conf[qid] = port->dev_info.default_rxconf; 3461 if (offloads != 0) 3462 port->rx_conf[qid].offloads = offloads; 3463 3464 /* Check if any Rx parameters have been passed */ 3465 if (rx_pthresh != RTE_PMD_PARAM_UNSET) 3466 port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh; 3467 3468 if (rx_hthresh != RTE_PMD_PARAM_UNSET) 3469 port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh; 3470 3471 if (rx_wthresh != RTE_PMD_PARAM_UNSET) 3472 port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh; 3473 3474 if (rx_free_thresh != RTE_PMD_PARAM_UNSET) 3475 port->rx_conf[qid].rx_free_thresh = rx_free_thresh; 3476 3477 if (rx_drop_en != RTE_PMD_PARAM_UNSET) 3478 port->rx_conf[qid].rx_drop_en = rx_drop_en; 3479 3480 port->nb_rx_desc[qid] = nb_rxd; 3481 } 3482 3483 for (qid = 0; qid < nb_txq; qid++) { 3484 offloads = port->tx_conf[qid].offloads; 3485 port->tx_conf[qid] = port->dev_info.default_txconf; 3486 if (offloads != 0) 3487 port->tx_conf[qid].offloads = offloads; 3488 3489 /* Check if any Tx parameters have been passed */ 3490 if (tx_pthresh != RTE_PMD_PARAM_UNSET) 3491 port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh; 3492 3493 if (tx_hthresh != RTE_PMD_PARAM_UNSET) 3494 port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh; 3495 3496 if (tx_wthresh != RTE_PMD_PARAM_UNSET) 3497 port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh; 3498 3499 if (tx_rs_thresh != RTE_PMD_PARAM_UNSET) 3500 port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh; 3501 3502 if (tx_free_thresh != RTE_PMD_PARAM_UNSET) 3503 port->tx_conf[qid].tx_free_thresh = tx_free_thresh; 3504 3505 port->nb_tx_desc[qid] = nb_txd; 3506 } 3507 } 3508 3509 void 3510 init_port_config(void) 3511 { 3512 portid_t pid; 3513 struct rte_port *port; 3514 int ret; 3515 3516 RTE_ETH_FOREACH_DEV(pid) { 3517 port = &ports[pid]; 3518 port->dev_conf.fdir_conf = fdir_conf; 3519 3520 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 3521 if (ret != 0) 3522 return; 3523 3524 if (nb_rxq > 1) { 3525 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3526 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 3527 rss_hf & port->dev_info.flow_type_rss_offloads; 3528 } else { 3529 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3530 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0; 3531 } 3532 3533 if (port->dcb_flag == 0) { 3534 if( port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) 3535 port->dev_conf.rxmode.mq_mode = 3536 (enum rte_eth_rx_mq_mode) 3537 (rx_mq_mode & ETH_MQ_RX_RSS); 3538 else 3539 port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE; 3540 } 3541 3542 rxtx_port_config(port); 3543 3544 ret = eth_macaddr_get_print_err(pid, &port->eth_addr); 3545 if (ret != 0) 3546 return; 3547 3548 map_port_queue_stats_mapping_registers(pid, port); 3549 #if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS 3550 rte_pmd_ixgbe_bypass_init(pid); 3551 #endif 3552 3553 if (lsc_interrupt && 3554 (rte_eth_devices[pid].data->dev_flags & 3555 RTE_ETH_DEV_INTR_LSC)) 3556 port->dev_conf.intr_conf.lsc = 1; 3557 if (rmv_interrupt && 3558 (rte_eth_devices[pid].data->dev_flags & 3559 RTE_ETH_DEV_INTR_RMV)) 3560 port->dev_conf.intr_conf.rmv = 1; 3561 } 3562 } 3563 3564 void set_port_slave_flag(portid_t slave_pid) 3565 { 3566 struct rte_port *port; 3567 3568 port = &ports[slave_pid]; 3569 port->slave_flag = 1; 3570 } 3571 3572 void clear_port_slave_flag(portid_t slave_pid) 3573 { 3574 struct rte_port *port; 3575 3576 port = &ports[slave_pid]; 3577 port->slave_flag = 0; 3578 } 3579 3580 uint8_t port_is_bonding_slave(portid_t slave_pid) 3581 { 3582 struct rte_port *port; 3583 3584 port = &ports[slave_pid]; 3585 if ((rte_eth_devices[slave_pid].data->dev_flags & 3586 RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1)) 3587 return 1; 3588 return 0; 3589 } 3590 3591 const uint16_t vlan_tags[] = { 3592 0, 1, 2, 3, 4, 5, 6, 7, 3593 8, 9, 10, 11, 12, 13, 14, 15, 3594 16, 17, 18, 19, 20, 21, 22, 23, 3595 24, 25, 26, 27, 28, 29, 30, 31 3596 }; 3597 3598 static int 3599 get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf, 3600 enum dcb_mode_enable dcb_mode, 3601 enum rte_eth_nb_tcs num_tcs, 3602 uint8_t pfc_en) 3603 { 3604 uint8_t i; 3605 int32_t rc; 3606 struct rte_eth_rss_conf rss_conf; 3607 3608 /* 3609 * Builds up the correct configuration for dcb+vt based on the vlan tags array 3610 * given above, and the number of traffic classes available for use. 3611 */ 3612 if (dcb_mode == DCB_VT_ENABLED) { 3613 struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf = 3614 ð_conf->rx_adv_conf.vmdq_dcb_conf; 3615 struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf = 3616 ð_conf->tx_adv_conf.vmdq_dcb_tx_conf; 3617 3618 /* VMDQ+DCB RX and TX configurations */ 3619 vmdq_rx_conf->enable_default_pool = 0; 3620 vmdq_rx_conf->default_pool = 0; 3621 vmdq_rx_conf->nb_queue_pools = 3622 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3623 vmdq_tx_conf->nb_queue_pools = 3624 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3625 3626 vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools; 3627 for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) { 3628 vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i]; 3629 vmdq_rx_conf->pool_map[i].pools = 3630 1 << (i % vmdq_rx_conf->nb_queue_pools); 3631 } 3632 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3633 vmdq_rx_conf->dcb_tc[i] = i % num_tcs; 3634 vmdq_tx_conf->dcb_tc[i] = i % num_tcs; 3635 } 3636 3637 /* set DCB mode of RX and TX of multiple queues */ 3638 eth_conf->rxmode.mq_mode = 3639 (enum rte_eth_rx_mq_mode) 3640 (rx_mq_mode & ETH_MQ_RX_VMDQ_DCB); 3641 eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB; 3642 } else { 3643 struct rte_eth_dcb_rx_conf *rx_conf = 3644 ð_conf->rx_adv_conf.dcb_rx_conf; 3645 struct rte_eth_dcb_tx_conf *tx_conf = 3646 ð_conf->tx_adv_conf.dcb_tx_conf; 3647 3648 memset(&rss_conf, 0, sizeof(struct rte_eth_rss_conf)); 3649 3650 rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf); 3651 if (rc != 0) 3652 return rc; 3653 3654 rx_conf->nb_tcs = num_tcs; 3655 tx_conf->nb_tcs = num_tcs; 3656 3657 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3658 rx_conf->dcb_tc[i] = i % num_tcs; 3659 tx_conf->dcb_tc[i] = i % num_tcs; 3660 } 3661 3662 eth_conf->rxmode.mq_mode = 3663 (enum rte_eth_rx_mq_mode) 3664 (rx_mq_mode & ETH_MQ_RX_DCB_RSS); 3665 eth_conf->rx_adv_conf.rss_conf = rss_conf; 3666 eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB; 3667 } 3668 3669 if (pfc_en) 3670 eth_conf->dcb_capability_en = 3671 ETH_DCB_PG_SUPPORT | ETH_DCB_PFC_SUPPORT; 3672 else 3673 eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT; 3674 3675 return 0; 3676 } 3677 3678 int 3679 init_port_dcb_config(portid_t pid, 3680 enum dcb_mode_enable dcb_mode, 3681 enum rte_eth_nb_tcs num_tcs, 3682 uint8_t pfc_en) 3683 { 3684 struct rte_eth_conf port_conf; 3685 struct rte_port *rte_port; 3686 int retval; 3687 uint16_t i; 3688 3689 rte_port = &ports[pid]; 3690 3691 memset(&port_conf, 0, sizeof(struct rte_eth_conf)); 3692 /* Enter DCB configuration status */ 3693 dcb_config = 1; 3694 3695 port_conf.rxmode = rte_port->dev_conf.rxmode; 3696 port_conf.txmode = rte_port->dev_conf.txmode; 3697 3698 /*set configuration of DCB in vt mode and DCB in non-vt mode*/ 3699 retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en); 3700 if (retval < 0) 3701 return retval; 3702 port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3703 3704 /* re-configure the device . */ 3705 retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf); 3706 if (retval < 0) 3707 return retval; 3708 3709 retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info); 3710 if (retval != 0) 3711 return retval; 3712 3713 /* If dev_info.vmdq_pool_base is greater than 0, 3714 * the queue id of vmdq pools is started after pf queues. 3715 */ 3716 if (dcb_mode == DCB_VT_ENABLED && 3717 rte_port->dev_info.vmdq_pool_base > 0) { 3718 printf("VMDQ_DCB multi-queue mode is nonsensical" 3719 " for port %d.", pid); 3720 return -1; 3721 } 3722 3723 /* Assume the ports in testpmd have the same dcb capability 3724 * and has the same number of rxq and txq in dcb mode 3725 */ 3726 if (dcb_mode == DCB_VT_ENABLED) { 3727 if (rte_port->dev_info.max_vfs > 0) { 3728 nb_rxq = rte_port->dev_info.nb_rx_queues; 3729 nb_txq = rte_port->dev_info.nb_tx_queues; 3730 } else { 3731 nb_rxq = rte_port->dev_info.max_rx_queues; 3732 nb_txq = rte_port->dev_info.max_tx_queues; 3733 } 3734 } else { 3735 /*if vt is disabled, use all pf queues */ 3736 if (rte_port->dev_info.vmdq_pool_base == 0) { 3737 nb_rxq = rte_port->dev_info.max_rx_queues; 3738 nb_txq = rte_port->dev_info.max_tx_queues; 3739 } else { 3740 nb_rxq = (queueid_t)num_tcs; 3741 nb_txq = (queueid_t)num_tcs; 3742 3743 } 3744 } 3745 rx_free_thresh = 64; 3746 3747 memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf)); 3748 3749 rxtx_port_config(rte_port); 3750 /* VLAN filter */ 3751 rte_port->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3752 for (i = 0; i < RTE_DIM(vlan_tags); i++) 3753 rx_vft_set(pid, vlan_tags[i], 1); 3754 3755 retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr); 3756 if (retval != 0) 3757 return retval; 3758 3759 map_port_queue_stats_mapping_registers(pid, rte_port); 3760 3761 rte_port->dcb_flag = 1; 3762 3763 return 0; 3764 } 3765 3766 static void 3767 init_port(void) 3768 { 3769 int i; 3770 3771 /* Configuration of Ethernet ports. */ 3772 ports = rte_zmalloc("testpmd: ports", 3773 sizeof(struct rte_port) * RTE_MAX_ETHPORTS, 3774 RTE_CACHE_LINE_SIZE); 3775 if (ports == NULL) { 3776 rte_exit(EXIT_FAILURE, 3777 "rte_zmalloc(%d struct rte_port) failed\n", 3778 RTE_MAX_ETHPORTS); 3779 } 3780 for (i = 0; i < RTE_MAX_ETHPORTS; i++) 3781 LIST_INIT(&ports[i].flow_tunnel_list); 3782 /* Initialize ports NUMA structures */ 3783 memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3784 memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3785 memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3786 } 3787 3788 static void 3789 force_quit(void) 3790 { 3791 pmd_test_exit(); 3792 prompt_exit(); 3793 } 3794 3795 static void 3796 print_stats(void) 3797 { 3798 uint8_t i; 3799 const char clr[] = { 27, '[', '2', 'J', '\0' }; 3800 const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 3801 3802 /* Clear screen and move to top left */ 3803 printf("%s%s", clr, top_left); 3804 3805 printf("\nPort statistics ===================================="); 3806 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 3807 nic_stats_display(fwd_ports_ids[i]); 3808 3809 fflush(stdout); 3810 } 3811 3812 static void 3813 signal_handler(int signum) 3814 { 3815 if (signum == SIGINT || signum == SIGTERM) { 3816 printf("\nSignal %d received, preparing to exit...\n", 3817 signum); 3818 #ifdef RTE_LIB_PDUMP 3819 /* uninitialize packet capture framework */ 3820 rte_pdump_uninit(); 3821 #endif 3822 #ifdef RTE_LIB_LATENCYSTATS 3823 if (latencystats_enabled != 0) 3824 rte_latencystats_uninit(); 3825 #endif 3826 force_quit(); 3827 /* Set flag to indicate the force termination. */ 3828 f_quit = 1; 3829 /* exit with the expected status */ 3830 signal(signum, SIG_DFL); 3831 kill(getpid(), signum); 3832 } 3833 } 3834 3835 int 3836 main(int argc, char** argv) 3837 { 3838 int diag; 3839 portid_t port_id; 3840 uint16_t count; 3841 int ret; 3842 3843 signal(SIGINT, signal_handler); 3844 signal(SIGTERM, signal_handler); 3845 3846 testpmd_logtype = rte_log_register("testpmd"); 3847 if (testpmd_logtype < 0) 3848 rte_exit(EXIT_FAILURE, "Cannot register log type"); 3849 rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG); 3850 3851 diag = rte_eal_init(argc, argv); 3852 if (diag < 0) 3853 rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n", 3854 rte_strerror(rte_errno)); 3855 3856 if (rte_eal_process_type() == RTE_PROC_SECONDARY) 3857 rte_exit(EXIT_FAILURE, 3858 "Secondary process type not supported.\n"); 3859 3860 ret = register_eth_event_callback(); 3861 if (ret != 0) 3862 rte_exit(EXIT_FAILURE, "Cannot register for ethdev events"); 3863 3864 #ifdef RTE_LIB_PDUMP 3865 /* initialize packet capture framework */ 3866 rte_pdump_init(); 3867 #endif 3868 3869 count = 0; 3870 RTE_ETH_FOREACH_DEV(port_id) { 3871 ports_ids[count] = port_id; 3872 count++; 3873 } 3874 nb_ports = (portid_t) count; 3875 if (nb_ports == 0) 3876 TESTPMD_LOG(WARNING, "No probed ethernet devices\n"); 3877 3878 /* allocate port structures, and init them */ 3879 init_port(); 3880 3881 set_def_fwd_config(); 3882 if (nb_lcores == 0) 3883 rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n" 3884 "Check the core mask argument\n"); 3885 3886 /* Bitrate/latency stats disabled by default */ 3887 #ifdef RTE_LIB_BITRATESTATS 3888 bitrate_enabled = 0; 3889 #endif 3890 #ifdef RTE_LIB_LATENCYSTATS 3891 latencystats_enabled = 0; 3892 #endif 3893 3894 /* on FreeBSD, mlockall() is disabled by default */ 3895 #ifdef RTE_EXEC_ENV_FREEBSD 3896 do_mlockall = 0; 3897 #else 3898 do_mlockall = 1; 3899 #endif 3900 3901 argc -= diag; 3902 argv += diag; 3903 if (argc > 1) 3904 launch_args_parse(argc, argv); 3905 3906 if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) { 3907 TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n", 3908 strerror(errno)); 3909 } 3910 3911 if (tx_first && interactive) 3912 rte_exit(EXIT_FAILURE, "--tx-first cannot be used on " 3913 "interactive mode.\n"); 3914 3915 if (tx_first && lsc_interrupt) { 3916 printf("Warning: lsc_interrupt needs to be off when " 3917 " using tx_first. Disabling.\n"); 3918 lsc_interrupt = 0; 3919 } 3920 3921 if (!nb_rxq && !nb_txq) 3922 printf("Warning: Either rx or tx queues should be non-zero\n"); 3923 3924 if (nb_rxq > 1 && nb_rxq > nb_txq) 3925 printf("Warning: nb_rxq=%d enables RSS configuration, " 3926 "but nb_txq=%d will prevent to fully test it.\n", 3927 nb_rxq, nb_txq); 3928 3929 init_config(); 3930 3931 if (hot_plug) { 3932 ret = rte_dev_hotplug_handle_enable(); 3933 if (ret) { 3934 RTE_LOG(ERR, EAL, 3935 "fail to enable hotplug handling."); 3936 return -1; 3937 } 3938 3939 ret = rte_dev_event_monitor_start(); 3940 if (ret) { 3941 RTE_LOG(ERR, EAL, 3942 "fail to start device event monitoring."); 3943 return -1; 3944 } 3945 3946 ret = rte_dev_event_callback_register(NULL, 3947 dev_event_callback, NULL); 3948 if (ret) { 3949 RTE_LOG(ERR, EAL, 3950 "fail to register device event callback\n"); 3951 return -1; 3952 } 3953 } 3954 3955 if (!no_device_start && start_port(RTE_PORT_ALL) != 0) 3956 rte_exit(EXIT_FAILURE, "Start ports failed\n"); 3957 3958 /* set all ports to promiscuous mode by default */ 3959 RTE_ETH_FOREACH_DEV(port_id) { 3960 ret = rte_eth_promiscuous_enable(port_id); 3961 if (ret != 0) 3962 printf("Error during enabling promiscuous mode for port %u: %s - ignore\n", 3963 port_id, rte_strerror(-ret)); 3964 } 3965 3966 /* Init metrics library */ 3967 rte_metrics_init(rte_socket_id()); 3968 3969 #ifdef RTE_LIB_LATENCYSTATS 3970 if (latencystats_enabled != 0) { 3971 int ret = rte_latencystats_init(1, NULL); 3972 if (ret) 3973 printf("Warning: latencystats init()" 3974 " returned error %d\n", ret); 3975 printf("Latencystats running on lcore %d\n", 3976 latencystats_lcore_id); 3977 } 3978 #endif 3979 3980 /* Setup bitrate stats */ 3981 #ifdef RTE_LIB_BITRATESTATS 3982 if (bitrate_enabled != 0) { 3983 bitrate_data = rte_stats_bitrate_create(); 3984 if (bitrate_data == NULL) 3985 rte_exit(EXIT_FAILURE, 3986 "Could not allocate bitrate data.\n"); 3987 rte_stats_bitrate_reg(bitrate_data); 3988 } 3989 #endif 3990 3991 #ifdef RTE_LIB_CMDLINE 3992 if (strlen(cmdline_filename) != 0) 3993 cmdline_read_from_file(cmdline_filename); 3994 3995 if (interactive == 1) { 3996 if (auto_start) { 3997 printf("Start automatic packet forwarding\n"); 3998 start_packet_forwarding(0); 3999 } 4000 prompt(); 4001 pmd_test_exit(); 4002 } else 4003 #endif 4004 { 4005 char c; 4006 int rc; 4007 4008 f_quit = 0; 4009 4010 printf("No commandline core given, start packet forwarding\n"); 4011 start_packet_forwarding(tx_first); 4012 if (stats_period != 0) { 4013 uint64_t prev_time = 0, cur_time, diff_time = 0; 4014 uint64_t timer_period; 4015 4016 /* Convert to number of cycles */ 4017 timer_period = stats_period * rte_get_timer_hz(); 4018 4019 while (f_quit == 0) { 4020 cur_time = rte_get_timer_cycles(); 4021 diff_time += cur_time - prev_time; 4022 4023 if (diff_time >= timer_period) { 4024 print_stats(); 4025 /* Reset the timer */ 4026 diff_time = 0; 4027 } 4028 /* Sleep to avoid unnecessary checks */ 4029 prev_time = cur_time; 4030 sleep(1); 4031 } 4032 } 4033 4034 printf("Press enter to exit\n"); 4035 rc = read(0, &c, 1); 4036 pmd_test_exit(); 4037 if (rc < 0) 4038 return 1; 4039 } 4040 4041 ret = rte_eal_cleanup(); 4042 if (ret != 0) 4043 rte_exit(EXIT_FAILURE, 4044 "EAL cleanup failed: %s\n", strerror(-ret)); 4045 4046 return EXIT_SUCCESS; 4047 } 4048