1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2017 Intel Corporation 3 */ 4 5 #include <stdarg.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <signal.h> 9 #include <string.h> 10 #include <time.h> 11 #include <fcntl.h> 12 #ifndef RTE_EXEC_ENV_WINDOWS 13 #include <sys/mman.h> 14 #endif 15 #include <sys/types.h> 16 #include <errno.h> 17 #include <stdbool.h> 18 19 #include <sys/queue.h> 20 #include <sys/stat.h> 21 22 #include <stdint.h> 23 #include <unistd.h> 24 #include <inttypes.h> 25 26 #include <rte_common.h> 27 #include <rte_errno.h> 28 #include <rte_byteorder.h> 29 #include <rte_log.h> 30 #include <rte_debug.h> 31 #include <rte_cycles.h> 32 #include <rte_memory.h> 33 #include <rte_memcpy.h> 34 #include <rte_launch.h> 35 #include <rte_eal.h> 36 #include <rte_alarm.h> 37 #include <rte_per_lcore.h> 38 #include <rte_lcore.h> 39 #include <rte_atomic.h> 40 #include <rte_branch_prediction.h> 41 #include <rte_mempool.h> 42 #include <rte_malloc.h> 43 #include <rte_mbuf.h> 44 #include <rte_mbuf_pool_ops.h> 45 #include <rte_interrupts.h> 46 #include <rte_pci.h> 47 #include <rte_ether.h> 48 #include <rte_ethdev.h> 49 #include <rte_dev.h> 50 #include <rte_string_fns.h> 51 #ifdef RTE_NET_IXGBE 52 #include <rte_pmd_ixgbe.h> 53 #endif 54 #ifdef RTE_LIB_PDUMP 55 #include <rte_pdump.h> 56 #endif 57 #include <rte_flow.h> 58 #include <rte_metrics.h> 59 #ifdef RTE_LIB_BITRATESTATS 60 #include <rte_bitrate.h> 61 #endif 62 #ifdef RTE_LIB_LATENCYSTATS 63 #include <rte_latencystats.h> 64 #endif 65 #ifdef RTE_EXEC_ENV_WINDOWS 66 #include <process.h> 67 #endif 68 69 #include "testpmd.h" 70 71 #ifndef MAP_HUGETLB 72 /* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */ 73 #define HUGE_FLAG (0x40000) 74 #else 75 #define HUGE_FLAG MAP_HUGETLB 76 #endif 77 78 #ifndef MAP_HUGE_SHIFT 79 /* older kernels (or FreeBSD) will not have this define */ 80 #define HUGE_SHIFT (26) 81 #else 82 #define HUGE_SHIFT MAP_HUGE_SHIFT 83 #endif 84 85 #define EXTMEM_HEAP_NAME "extmem" 86 #define EXTBUF_ZONE_SIZE RTE_PGSIZE_2M 87 88 uint16_t verbose_level = 0; /**< Silent by default. */ 89 int testpmd_logtype; /**< Log type for testpmd logs */ 90 91 /* use main core for command line ? */ 92 uint8_t interactive = 0; 93 uint8_t auto_start = 0; 94 uint8_t tx_first; 95 char cmdline_filename[PATH_MAX] = {0}; 96 97 /* 98 * NUMA support configuration. 99 * When set, the NUMA support attempts to dispatch the allocation of the 100 * RX and TX memory rings, and of the DMA memory buffers (mbufs) for the 101 * probed ports among the CPU sockets 0 and 1. 102 * Otherwise, all memory is allocated from CPU socket 0. 103 */ 104 uint8_t numa_support = 1; /**< numa enabled by default */ 105 106 /* 107 * In UMA mode,all memory is allocated from socket 0 if --socket-num is 108 * not configured. 109 */ 110 uint8_t socket_num = UMA_NO_CONFIG; 111 112 /* 113 * Select mempool allocation type: 114 * - native: use regular DPDK memory 115 * - anon: use regular DPDK memory to create mempool, but populate using 116 * anonymous memory (may not be IOVA-contiguous) 117 * - xmem: use externally allocated hugepage memory 118 */ 119 uint8_t mp_alloc_type = MP_ALLOC_NATIVE; 120 121 /* 122 * Store specified sockets on which memory pool to be used by ports 123 * is allocated. 124 */ 125 uint8_t port_numa[RTE_MAX_ETHPORTS]; 126 127 /* 128 * Store specified sockets on which RX ring to be used by ports 129 * is allocated. 130 */ 131 uint8_t rxring_numa[RTE_MAX_ETHPORTS]; 132 133 /* 134 * Store specified sockets on which TX ring to be used by ports 135 * is allocated. 136 */ 137 uint8_t txring_numa[RTE_MAX_ETHPORTS]; 138 139 /* 140 * Record the Ethernet address of peer target ports to which packets are 141 * forwarded. 142 * Must be instantiated with the ethernet addresses of peer traffic generator 143 * ports. 144 */ 145 struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS]; 146 portid_t nb_peer_eth_addrs = 0; 147 148 /* 149 * Probed Target Environment. 150 */ 151 struct rte_port *ports; /**< For all probed ethernet ports. */ 152 portid_t nb_ports; /**< Number of probed ethernet ports. */ 153 struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */ 154 lcoreid_t nb_lcores; /**< Number of probed logical cores. */ 155 156 portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */ 157 158 /* 159 * Test Forwarding Configuration. 160 * nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores 161 * nb_fwd_ports <= nb_cfg_ports <= nb_ports 162 */ 163 lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */ 164 lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */ 165 portid_t nb_cfg_ports; /**< Number of configured ports. */ 166 portid_t nb_fwd_ports; /**< Number of forwarding ports. */ 167 168 unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */ 169 portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */ 170 171 struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */ 172 streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */ 173 174 /* 175 * Forwarding engines. 176 */ 177 struct fwd_engine * fwd_engines[] = { 178 &io_fwd_engine, 179 &mac_fwd_engine, 180 &mac_swap_engine, 181 &flow_gen_engine, 182 &rx_only_engine, 183 &tx_only_engine, 184 &csum_fwd_engine, 185 &icmp_echo_engine, 186 &noisy_vnf_engine, 187 &five_tuple_swap_fwd_engine, 188 #ifdef RTE_LIBRTE_IEEE1588 189 &ieee1588_fwd_engine, 190 #endif 191 NULL, 192 }; 193 194 struct rte_mempool *mempools[RTE_MAX_NUMA_NODES * MAX_SEGS_BUFFER_SPLIT]; 195 uint16_t mempool_flags; 196 197 struct fwd_config cur_fwd_config; 198 struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */ 199 uint32_t retry_enabled; 200 uint32_t burst_tx_delay_time = BURST_TX_WAIT_US; 201 uint32_t burst_tx_retry_num = BURST_TX_RETRIES; 202 203 uint32_t mbuf_data_size_n = 1; /* Number of specified mbuf sizes. */ 204 uint16_t mbuf_data_size[MAX_SEGS_BUFFER_SPLIT] = { 205 DEFAULT_MBUF_DATA_SIZE 206 }; /**< Mbuf data space size. */ 207 uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if 208 * specified on command-line. */ 209 uint16_t stats_period; /**< Period to show statistics (disabled by default) */ 210 211 /* 212 * In container, it cannot terminate the process which running with 'stats-period' 213 * option. Set flag to exit stats period loop after received SIGINT/SIGTERM. 214 */ 215 uint8_t f_quit; 216 217 /* 218 * Configuration of packet segments used to scatter received packets 219 * if some of split features is configured. 220 */ 221 uint16_t rx_pkt_seg_lengths[MAX_SEGS_BUFFER_SPLIT]; 222 uint8_t rx_pkt_nb_segs; /**< Number of segments to split */ 223 uint16_t rx_pkt_seg_offsets[MAX_SEGS_BUFFER_SPLIT]; 224 uint8_t rx_pkt_nb_offs; /**< Number of specified offsets */ 225 226 /* 227 * Configuration of packet segments used by the "txonly" processing engine. 228 */ 229 uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */ 230 uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = { 231 TXONLY_DEF_PACKET_LEN, 232 }; 233 uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */ 234 235 enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF; 236 /**< Split policy for packets to TX. */ 237 238 uint8_t txonly_multi_flow; 239 /**< Whether multiple flows are generated in TXONLY mode. */ 240 241 uint32_t tx_pkt_times_inter; 242 /**< Timings for send scheduling in TXONLY mode, time between bursts. */ 243 244 uint32_t tx_pkt_times_intra; 245 /**< Timings for send scheduling in TXONLY mode, time between packets. */ 246 247 uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */ 248 uint16_t nb_pkt_flowgen_clones; /**< Number of Tx packet clones to send in flowgen mode. */ 249 int nb_flows_flowgen = 1024; /**< Number of flows in flowgen mode. */ 250 uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */ 251 252 /* current configuration is in DCB or not,0 means it is not in DCB mode */ 253 uint8_t dcb_config = 0; 254 255 /* 256 * Configurable number of RX/TX queues. 257 */ 258 queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */ 259 queueid_t nb_rxq = 1; /**< Number of RX queues per port. */ 260 queueid_t nb_txq = 1; /**< Number of TX queues per port. */ 261 262 /* 263 * Configurable number of RX/TX ring descriptors. 264 * Defaults are supplied by drivers via ethdev. 265 */ 266 #define RTE_TEST_RX_DESC_DEFAULT 0 267 #define RTE_TEST_TX_DESC_DEFAULT 0 268 uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */ 269 uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */ 270 271 #define RTE_PMD_PARAM_UNSET -1 272 /* 273 * Configurable values of RX and TX ring threshold registers. 274 */ 275 276 int8_t rx_pthresh = RTE_PMD_PARAM_UNSET; 277 int8_t rx_hthresh = RTE_PMD_PARAM_UNSET; 278 int8_t rx_wthresh = RTE_PMD_PARAM_UNSET; 279 280 int8_t tx_pthresh = RTE_PMD_PARAM_UNSET; 281 int8_t tx_hthresh = RTE_PMD_PARAM_UNSET; 282 int8_t tx_wthresh = RTE_PMD_PARAM_UNSET; 283 284 /* 285 * Configurable value of RX free threshold. 286 */ 287 int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET; 288 289 /* 290 * Configurable value of RX drop enable. 291 */ 292 int8_t rx_drop_en = RTE_PMD_PARAM_UNSET; 293 294 /* 295 * Configurable value of TX free threshold. 296 */ 297 int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET; 298 299 /* 300 * Configurable value of TX RS bit threshold. 301 */ 302 int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET; 303 304 /* 305 * Configurable value of buffered packets before sending. 306 */ 307 uint16_t noisy_tx_sw_bufsz; 308 309 /* 310 * Configurable value of packet buffer timeout. 311 */ 312 uint16_t noisy_tx_sw_buf_flush_time; 313 314 /* 315 * Configurable value for size of VNF internal memory area 316 * used for simulating noisy neighbour behaviour 317 */ 318 uint64_t noisy_lkup_mem_sz; 319 320 /* 321 * Configurable value of number of random writes done in 322 * VNF simulation memory area. 323 */ 324 uint64_t noisy_lkup_num_writes; 325 326 /* 327 * Configurable value of number of random reads done in 328 * VNF simulation memory area. 329 */ 330 uint64_t noisy_lkup_num_reads; 331 332 /* 333 * Configurable value of number of random reads/writes done in 334 * VNF simulation memory area. 335 */ 336 uint64_t noisy_lkup_num_reads_writes; 337 338 /* 339 * Receive Side Scaling (RSS) configuration. 340 */ 341 uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */ 342 343 /* 344 * Port topology configuration 345 */ 346 uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */ 347 348 /* 349 * Avoids to flush all the RX streams before starts forwarding. 350 */ 351 uint8_t no_flush_rx = 0; /* flush by default */ 352 353 /* 354 * Flow API isolated mode. 355 */ 356 uint8_t flow_isolate_all; 357 358 /* 359 * Avoids to check link status when starting/stopping a port. 360 */ 361 uint8_t no_link_check = 0; /* check by default */ 362 363 /* 364 * Don't automatically start all ports in interactive mode. 365 */ 366 uint8_t no_device_start = 0; 367 368 /* 369 * Enable link status change notification 370 */ 371 uint8_t lsc_interrupt = 1; /* enabled by default */ 372 373 /* 374 * Enable device removal notification. 375 */ 376 uint8_t rmv_interrupt = 1; /* enabled by default */ 377 378 uint8_t hot_plug = 0; /**< hotplug disabled by default. */ 379 380 /* After attach, port setup is called on event or by iterator */ 381 bool setup_on_probe_event = true; 382 383 /* Clear ptypes on port initialization. */ 384 uint8_t clear_ptypes = true; 385 386 /* Hairpin ports configuration mode. */ 387 uint16_t hairpin_mode; 388 389 /* Pretty printing of ethdev events */ 390 static const char * const eth_event_desc[] = { 391 [RTE_ETH_EVENT_UNKNOWN] = "unknown", 392 [RTE_ETH_EVENT_INTR_LSC] = "link state change", 393 [RTE_ETH_EVENT_QUEUE_STATE] = "queue state", 394 [RTE_ETH_EVENT_INTR_RESET] = "reset", 395 [RTE_ETH_EVENT_VF_MBOX] = "VF mbox", 396 [RTE_ETH_EVENT_IPSEC] = "IPsec", 397 [RTE_ETH_EVENT_MACSEC] = "MACsec", 398 [RTE_ETH_EVENT_INTR_RMV] = "device removal", 399 [RTE_ETH_EVENT_NEW] = "device probed", 400 [RTE_ETH_EVENT_DESTROY] = "device released", 401 [RTE_ETH_EVENT_FLOW_AGED] = "flow aged", 402 [RTE_ETH_EVENT_MAX] = NULL, 403 }; 404 405 /* 406 * Display or mask ether events 407 * Default to all events except VF_MBOX 408 */ 409 uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) | 410 (UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) | 411 (UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) | 412 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) | 413 (UINT32_C(1) << RTE_ETH_EVENT_IPSEC) | 414 (UINT32_C(1) << RTE_ETH_EVENT_MACSEC) | 415 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV) | 416 (UINT32_C(1) << RTE_ETH_EVENT_FLOW_AGED); 417 /* 418 * Decide if all memory are locked for performance. 419 */ 420 int do_mlockall = 0; 421 422 /* 423 * NIC bypass mode configuration options. 424 */ 425 426 #if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS 427 /* The NIC bypass watchdog timeout. */ 428 uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF; 429 #endif 430 431 432 #ifdef RTE_LIB_LATENCYSTATS 433 434 /* 435 * Set when latency stats is enabled in the commandline 436 */ 437 uint8_t latencystats_enabled; 438 439 /* 440 * Lcore ID to serive latency statistics. 441 */ 442 lcoreid_t latencystats_lcore_id = -1; 443 444 #endif 445 446 /* 447 * Ethernet device configuration. 448 */ 449 struct rte_eth_rxmode rx_mode = { 450 /* Default maximum frame length. 451 * Zero is converted to "RTE_ETHER_MTU + PMD Ethernet overhead" 452 * in init_config(). 453 */ 454 .max_rx_pkt_len = 0, 455 }; 456 457 struct rte_eth_txmode tx_mode = { 458 .offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE, 459 }; 460 461 struct rte_fdir_conf fdir_conf = { 462 .mode = RTE_FDIR_MODE_NONE, 463 .pballoc = RTE_FDIR_PBALLOC_64K, 464 .status = RTE_FDIR_REPORT_STATUS, 465 .mask = { 466 .vlan_tci_mask = 0xFFEF, 467 .ipv4_mask = { 468 .src_ip = 0xFFFFFFFF, 469 .dst_ip = 0xFFFFFFFF, 470 }, 471 .ipv6_mask = { 472 .src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 473 .dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 474 }, 475 .src_port_mask = 0xFFFF, 476 .dst_port_mask = 0xFFFF, 477 .mac_addr_byte_mask = 0xFF, 478 .tunnel_type_mask = 1, 479 .tunnel_id_mask = 0xFFFFFFFF, 480 }, 481 .drop_queue = 127, 482 }; 483 484 volatile int test_done = 1; /* stop packet forwarding when set to 1. */ 485 486 /* 487 * Display zero values by default for xstats 488 */ 489 uint8_t xstats_hide_zero; 490 491 /* 492 * Measure of CPU cycles disabled by default 493 */ 494 uint8_t record_core_cycles; 495 496 /* 497 * Display of RX and TX bursts disabled by default 498 */ 499 uint8_t record_burst_stats; 500 501 unsigned int num_sockets = 0; 502 unsigned int socket_ids[RTE_MAX_NUMA_NODES]; 503 504 #ifdef RTE_LIB_BITRATESTATS 505 /* Bitrate statistics */ 506 struct rte_stats_bitrates *bitrate_data; 507 lcoreid_t bitrate_lcore_id; 508 uint8_t bitrate_enabled; 509 #endif 510 511 struct gro_status gro_ports[RTE_MAX_ETHPORTS]; 512 uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES; 513 514 /* 515 * hexadecimal bitmask of RX mq mode can be enabled. 516 */ 517 enum rte_eth_rx_mq_mode rx_mq_mode = ETH_MQ_RX_VMDQ_DCB_RSS; 518 519 /* 520 * Used to set forced link speed 521 */ 522 uint32_t eth_link_speed; 523 524 /* 525 * ID of the current process in multi-process, used to 526 * configure the queues to be polled. 527 */ 528 int proc_id; 529 530 /* 531 * Number of processes in multi-process, used to 532 * configure the queues to be polled. 533 */ 534 unsigned int num_procs = 1; 535 536 static int 537 eth_dev_configure_mp(uint16_t port_id, uint16_t nb_rx_q, uint16_t nb_tx_q, 538 const struct rte_eth_conf *dev_conf) 539 { 540 if (is_proc_primary()) 541 return rte_eth_dev_configure(port_id, nb_rx_q, nb_tx_q, 542 dev_conf); 543 return 0; 544 } 545 546 static int 547 eth_dev_start_mp(uint16_t port_id) 548 { 549 if (is_proc_primary()) 550 return rte_eth_dev_start(port_id); 551 552 return 0; 553 } 554 555 static int 556 eth_dev_stop_mp(uint16_t port_id) 557 { 558 if (is_proc_primary()) 559 return rte_eth_dev_stop(port_id); 560 561 return 0; 562 } 563 564 static void 565 mempool_free_mp(struct rte_mempool *mp) 566 { 567 if (is_proc_primary()) 568 rte_mempool_free(mp); 569 } 570 571 static int 572 eth_dev_set_mtu_mp(uint16_t port_id, uint16_t mtu) 573 { 574 if (is_proc_primary()) 575 return rte_eth_dev_set_mtu(port_id, mtu); 576 577 return 0; 578 } 579 580 /* Forward function declarations */ 581 static void setup_attached_port(portid_t pi); 582 static void check_all_ports_link_status(uint32_t port_mask); 583 static int eth_event_callback(portid_t port_id, 584 enum rte_eth_event_type type, 585 void *param, void *ret_param); 586 static void dev_event_callback(const char *device_name, 587 enum rte_dev_event_type type, 588 void *param); 589 590 /* 591 * Check if all the ports are started. 592 * If yes, return positive value. If not, return zero. 593 */ 594 static int all_ports_started(void); 595 596 struct gso_status gso_ports[RTE_MAX_ETHPORTS]; 597 uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN; 598 599 /* Holds the registered mbuf dynamic flags names. */ 600 char dynf_names[64][RTE_MBUF_DYN_NAMESIZE]; 601 602 /* 603 * Helper function to check if socket is already discovered. 604 * If yes, return positive value. If not, return zero. 605 */ 606 int 607 new_socket_id(unsigned int socket_id) 608 { 609 unsigned int i; 610 611 for (i = 0; i < num_sockets; i++) { 612 if (socket_ids[i] == socket_id) 613 return 0; 614 } 615 return 1; 616 } 617 618 /* 619 * Setup default configuration. 620 */ 621 static void 622 set_default_fwd_lcores_config(void) 623 { 624 unsigned int i; 625 unsigned int nb_lc; 626 unsigned int sock_num; 627 628 nb_lc = 0; 629 for (i = 0; i < RTE_MAX_LCORE; i++) { 630 if (!rte_lcore_is_enabled(i)) 631 continue; 632 sock_num = rte_lcore_to_socket_id(i); 633 if (new_socket_id(sock_num)) { 634 if (num_sockets >= RTE_MAX_NUMA_NODES) { 635 rte_exit(EXIT_FAILURE, 636 "Total sockets greater than %u\n", 637 RTE_MAX_NUMA_NODES); 638 } 639 socket_ids[num_sockets++] = sock_num; 640 } 641 if (i == rte_get_main_lcore()) 642 continue; 643 fwd_lcores_cpuids[nb_lc++] = i; 644 } 645 nb_lcores = (lcoreid_t) nb_lc; 646 nb_cfg_lcores = nb_lcores; 647 nb_fwd_lcores = 1; 648 } 649 650 static void 651 set_def_peer_eth_addrs(void) 652 { 653 portid_t i; 654 655 for (i = 0; i < RTE_MAX_ETHPORTS; i++) { 656 peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR; 657 peer_eth_addrs[i].addr_bytes[5] = i; 658 } 659 } 660 661 static void 662 set_default_fwd_ports_config(void) 663 { 664 portid_t pt_id; 665 int i = 0; 666 667 RTE_ETH_FOREACH_DEV(pt_id) { 668 fwd_ports_ids[i++] = pt_id; 669 670 /* Update sockets info according to the attached device */ 671 int socket_id = rte_eth_dev_socket_id(pt_id); 672 if (socket_id >= 0 && new_socket_id(socket_id)) { 673 if (num_sockets >= RTE_MAX_NUMA_NODES) { 674 rte_exit(EXIT_FAILURE, 675 "Total sockets greater than %u\n", 676 RTE_MAX_NUMA_NODES); 677 } 678 socket_ids[num_sockets++] = socket_id; 679 } 680 } 681 682 nb_cfg_ports = nb_ports; 683 nb_fwd_ports = nb_ports; 684 } 685 686 void 687 set_def_fwd_config(void) 688 { 689 set_default_fwd_lcores_config(); 690 set_def_peer_eth_addrs(); 691 set_default_fwd_ports_config(); 692 } 693 694 #ifndef RTE_EXEC_ENV_WINDOWS 695 /* extremely pessimistic estimation of memory required to create a mempool */ 696 static int 697 calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out) 698 { 699 unsigned int n_pages, mbuf_per_pg, leftover; 700 uint64_t total_mem, mbuf_mem, obj_sz; 701 702 /* there is no good way to predict how much space the mempool will 703 * occupy because it will allocate chunks on the fly, and some of those 704 * will come from default DPDK memory while some will come from our 705 * external memory, so just assume 128MB will be enough for everyone. 706 */ 707 uint64_t hdr_mem = 128 << 20; 708 709 /* account for possible non-contiguousness */ 710 obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL); 711 if (obj_sz > pgsz) { 712 TESTPMD_LOG(ERR, "Object size is bigger than page size\n"); 713 return -1; 714 } 715 716 mbuf_per_pg = pgsz / obj_sz; 717 leftover = (nb_mbufs % mbuf_per_pg) > 0; 718 n_pages = (nb_mbufs / mbuf_per_pg) + leftover; 719 720 mbuf_mem = n_pages * pgsz; 721 722 total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz); 723 724 if (total_mem > SIZE_MAX) { 725 TESTPMD_LOG(ERR, "Memory size too big\n"); 726 return -1; 727 } 728 *out = (size_t)total_mem; 729 730 return 0; 731 } 732 733 static int 734 pagesz_flags(uint64_t page_sz) 735 { 736 /* as per mmap() manpage, all page sizes are log2 of page size 737 * shifted by MAP_HUGE_SHIFT 738 */ 739 int log2 = rte_log2_u64(page_sz); 740 741 return (log2 << HUGE_SHIFT); 742 } 743 744 static void * 745 alloc_mem(size_t memsz, size_t pgsz, bool huge) 746 { 747 void *addr; 748 int flags; 749 750 /* allocate anonymous hugepages */ 751 flags = MAP_ANONYMOUS | MAP_PRIVATE; 752 if (huge) 753 flags |= HUGE_FLAG | pagesz_flags(pgsz); 754 755 addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0); 756 if (addr == MAP_FAILED) 757 return NULL; 758 759 return addr; 760 } 761 762 struct extmem_param { 763 void *addr; 764 size_t len; 765 size_t pgsz; 766 rte_iova_t *iova_table; 767 unsigned int iova_table_len; 768 }; 769 770 static int 771 create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param, 772 bool huge) 773 { 774 uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */ 775 RTE_PGSIZE_16M, RTE_PGSIZE_16G}; /* POWER */ 776 unsigned int cur_page, n_pages, pgsz_idx; 777 size_t mem_sz, cur_pgsz; 778 rte_iova_t *iovas = NULL; 779 void *addr; 780 int ret; 781 782 for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) { 783 /* skip anything that is too big */ 784 if (pgsizes[pgsz_idx] > SIZE_MAX) 785 continue; 786 787 cur_pgsz = pgsizes[pgsz_idx]; 788 789 /* if we were told not to allocate hugepages, override */ 790 if (!huge) 791 cur_pgsz = sysconf(_SC_PAGESIZE); 792 793 ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz); 794 if (ret < 0) { 795 TESTPMD_LOG(ERR, "Cannot calculate memory size\n"); 796 return -1; 797 } 798 799 /* allocate our memory */ 800 addr = alloc_mem(mem_sz, cur_pgsz, huge); 801 802 /* if we couldn't allocate memory with a specified page size, 803 * that doesn't mean we can't do it with other page sizes, so 804 * try another one. 805 */ 806 if (addr == NULL) 807 continue; 808 809 /* store IOVA addresses for every page in this memory area */ 810 n_pages = mem_sz / cur_pgsz; 811 812 iovas = malloc(sizeof(*iovas) * n_pages); 813 814 if (iovas == NULL) { 815 TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n"); 816 goto fail; 817 } 818 /* lock memory if it's not huge pages */ 819 if (!huge) 820 mlock(addr, mem_sz); 821 822 /* populate IOVA addresses */ 823 for (cur_page = 0; cur_page < n_pages; cur_page++) { 824 rte_iova_t iova; 825 size_t offset; 826 void *cur; 827 828 offset = cur_pgsz * cur_page; 829 cur = RTE_PTR_ADD(addr, offset); 830 831 /* touch the page before getting its IOVA */ 832 *(volatile char *)cur = 0; 833 834 iova = rte_mem_virt2iova(cur); 835 836 iovas[cur_page] = iova; 837 } 838 839 break; 840 } 841 /* if we couldn't allocate anything */ 842 if (iovas == NULL) 843 return -1; 844 845 param->addr = addr; 846 param->len = mem_sz; 847 param->pgsz = cur_pgsz; 848 param->iova_table = iovas; 849 param->iova_table_len = n_pages; 850 851 return 0; 852 fail: 853 if (iovas) 854 free(iovas); 855 if (addr) 856 munmap(addr, mem_sz); 857 858 return -1; 859 } 860 861 static int 862 setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge) 863 { 864 struct extmem_param param; 865 int socket_id, ret; 866 867 memset(¶m, 0, sizeof(param)); 868 869 /* check if our heap exists */ 870 socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 871 if (socket_id < 0) { 872 /* create our heap */ 873 ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME); 874 if (ret < 0) { 875 TESTPMD_LOG(ERR, "Cannot create heap\n"); 876 return -1; 877 } 878 } 879 880 ret = create_extmem(nb_mbufs, mbuf_sz, ¶m, huge); 881 if (ret < 0) { 882 TESTPMD_LOG(ERR, "Cannot create memory area\n"); 883 return -1; 884 } 885 886 /* we now have a valid memory area, so add it to heap */ 887 ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME, 888 param.addr, param.len, param.iova_table, 889 param.iova_table_len, param.pgsz); 890 891 /* when using VFIO, memory is automatically mapped for DMA by EAL */ 892 893 /* not needed any more */ 894 free(param.iova_table); 895 896 if (ret < 0) { 897 TESTPMD_LOG(ERR, "Cannot add memory to heap\n"); 898 munmap(param.addr, param.len); 899 return -1; 900 } 901 902 /* success */ 903 904 TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n", 905 param.len >> 20); 906 907 return 0; 908 } 909 static void 910 dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 911 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 912 { 913 uint16_t pid = 0; 914 int ret; 915 916 RTE_ETH_FOREACH_DEV(pid) { 917 struct rte_eth_dev_info dev_info; 918 919 ret = eth_dev_info_get_print_err(pid, &dev_info); 920 if (ret != 0) { 921 TESTPMD_LOG(DEBUG, 922 "unable to get device info for port %d on addr 0x%p," 923 "mempool unmapping will not be performed\n", 924 pid, memhdr->addr); 925 continue; 926 } 927 928 ret = rte_dev_dma_unmap(dev_info.device, memhdr->addr, 0, memhdr->len); 929 if (ret) { 930 TESTPMD_LOG(DEBUG, 931 "unable to DMA unmap addr 0x%p " 932 "for device %s\n", 933 memhdr->addr, dev_info.device->name); 934 } 935 } 936 ret = rte_extmem_unregister(memhdr->addr, memhdr->len); 937 if (ret) { 938 TESTPMD_LOG(DEBUG, 939 "unable to un-register addr 0x%p\n", memhdr->addr); 940 } 941 } 942 943 static void 944 dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 945 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 946 { 947 uint16_t pid = 0; 948 size_t page_size = sysconf(_SC_PAGESIZE); 949 int ret; 950 951 ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0, 952 page_size); 953 if (ret) { 954 TESTPMD_LOG(DEBUG, 955 "unable to register addr 0x%p\n", memhdr->addr); 956 return; 957 } 958 RTE_ETH_FOREACH_DEV(pid) { 959 struct rte_eth_dev_info dev_info; 960 961 ret = eth_dev_info_get_print_err(pid, &dev_info); 962 if (ret != 0) { 963 TESTPMD_LOG(DEBUG, 964 "unable to get device info for port %d on addr 0x%p," 965 "mempool mapping will not be performed\n", 966 pid, memhdr->addr); 967 continue; 968 } 969 ret = rte_dev_dma_map(dev_info.device, memhdr->addr, 0, memhdr->len); 970 if (ret) { 971 TESTPMD_LOG(DEBUG, 972 "unable to DMA map addr 0x%p " 973 "for device %s\n", 974 memhdr->addr, dev_info.device->name); 975 } 976 } 977 } 978 #endif 979 980 static unsigned int 981 setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id, 982 char *pool_name, struct rte_pktmbuf_extmem **ext_mem) 983 { 984 struct rte_pktmbuf_extmem *xmem; 985 unsigned int ext_num, zone_num, elt_num; 986 uint16_t elt_size; 987 988 elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE); 989 elt_num = EXTBUF_ZONE_SIZE / elt_size; 990 zone_num = (nb_mbufs + elt_num - 1) / elt_num; 991 992 xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num); 993 if (xmem == NULL) { 994 TESTPMD_LOG(ERR, "Cannot allocate memory for " 995 "external buffer descriptors\n"); 996 *ext_mem = NULL; 997 return 0; 998 } 999 for (ext_num = 0; ext_num < zone_num; ext_num++) { 1000 struct rte_pktmbuf_extmem *xseg = xmem + ext_num; 1001 const struct rte_memzone *mz; 1002 char mz_name[RTE_MEMZONE_NAMESIZE]; 1003 int ret; 1004 1005 ret = snprintf(mz_name, sizeof(mz_name), 1006 RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num); 1007 if (ret < 0 || ret >= (int)sizeof(mz_name)) { 1008 errno = ENAMETOOLONG; 1009 ext_num = 0; 1010 break; 1011 } 1012 mz = rte_memzone_reserve_aligned(mz_name, EXTBUF_ZONE_SIZE, 1013 socket_id, 1014 RTE_MEMZONE_IOVA_CONTIG | 1015 RTE_MEMZONE_1GB | 1016 RTE_MEMZONE_SIZE_HINT_ONLY, 1017 EXTBUF_ZONE_SIZE); 1018 if (mz == NULL) { 1019 /* 1020 * The caller exits on external buffer creation 1021 * error, so there is no need to free memzones. 1022 */ 1023 errno = ENOMEM; 1024 ext_num = 0; 1025 break; 1026 } 1027 xseg->buf_ptr = mz->addr; 1028 xseg->buf_iova = mz->iova; 1029 xseg->buf_len = EXTBUF_ZONE_SIZE; 1030 xseg->elt_size = elt_size; 1031 } 1032 if (ext_num == 0 && xmem != NULL) { 1033 free(xmem); 1034 xmem = NULL; 1035 } 1036 *ext_mem = xmem; 1037 return ext_num; 1038 } 1039 1040 /* 1041 * Configuration initialisation done once at init time. 1042 */ 1043 static struct rte_mempool * 1044 mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf, 1045 unsigned int socket_id, uint16_t size_idx) 1046 { 1047 char pool_name[RTE_MEMPOOL_NAMESIZE]; 1048 struct rte_mempool *rte_mp = NULL; 1049 #ifndef RTE_EXEC_ENV_WINDOWS 1050 uint32_t mb_size; 1051 1052 mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size; 1053 #endif 1054 mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name), size_idx); 1055 if (!is_proc_primary()) { 1056 rte_mp = rte_mempool_lookup(pool_name); 1057 if (rte_mp == NULL) 1058 rte_exit(EXIT_FAILURE, 1059 "Get mbuf pool for socket %u failed: %s\n", 1060 socket_id, rte_strerror(rte_errno)); 1061 return rte_mp; 1062 } 1063 1064 TESTPMD_LOG(INFO, 1065 "create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n", 1066 pool_name, nb_mbuf, mbuf_seg_size, socket_id); 1067 1068 switch (mp_alloc_type) { 1069 case MP_ALLOC_NATIVE: 1070 { 1071 /* wrapper to rte_mempool_create() */ 1072 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1073 rte_mbuf_best_mempool_ops()); 1074 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 1075 mb_mempool_cache, 0, mbuf_seg_size, socket_id); 1076 break; 1077 } 1078 #ifndef RTE_EXEC_ENV_WINDOWS 1079 case MP_ALLOC_ANON: 1080 { 1081 rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf, 1082 mb_size, (unsigned int) mb_mempool_cache, 1083 sizeof(struct rte_pktmbuf_pool_private), 1084 socket_id, mempool_flags); 1085 if (rte_mp == NULL) 1086 goto err; 1087 1088 if (rte_mempool_populate_anon(rte_mp) == 0) { 1089 rte_mempool_free(rte_mp); 1090 rte_mp = NULL; 1091 goto err; 1092 } 1093 rte_pktmbuf_pool_init(rte_mp, NULL); 1094 rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL); 1095 rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL); 1096 break; 1097 } 1098 case MP_ALLOC_XMEM: 1099 case MP_ALLOC_XMEM_HUGE: 1100 { 1101 int heap_socket; 1102 bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE; 1103 1104 if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0) 1105 rte_exit(EXIT_FAILURE, "Could not create external memory\n"); 1106 1107 heap_socket = 1108 rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 1109 if (heap_socket < 0) 1110 rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n"); 1111 1112 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1113 rte_mbuf_best_mempool_ops()); 1114 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 1115 mb_mempool_cache, 0, mbuf_seg_size, 1116 heap_socket); 1117 break; 1118 } 1119 #endif 1120 case MP_ALLOC_XBUF: 1121 { 1122 struct rte_pktmbuf_extmem *ext_mem; 1123 unsigned int ext_num; 1124 1125 ext_num = setup_extbuf(nb_mbuf, mbuf_seg_size, 1126 socket_id, pool_name, &ext_mem); 1127 if (ext_num == 0) 1128 rte_exit(EXIT_FAILURE, 1129 "Can't create pinned data buffers\n"); 1130 1131 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1132 rte_mbuf_best_mempool_ops()); 1133 rte_mp = rte_pktmbuf_pool_create_extbuf 1134 (pool_name, nb_mbuf, mb_mempool_cache, 1135 0, mbuf_seg_size, socket_id, 1136 ext_mem, ext_num); 1137 free(ext_mem); 1138 break; 1139 } 1140 default: 1141 { 1142 rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n"); 1143 } 1144 } 1145 1146 #ifndef RTE_EXEC_ENV_WINDOWS 1147 err: 1148 #endif 1149 if (rte_mp == NULL) { 1150 rte_exit(EXIT_FAILURE, 1151 "Creation of mbuf pool for socket %u failed: %s\n", 1152 socket_id, rte_strerror(rte_errno)); 1153 } else if (verbose_level > 0) { 1154 rte_mempool_dump(stdout, rte_mp); 1155 } 1156 return rte_mp; 1157 } 1158 1159 /* 1160 * Check given socket id is valid or not with NUMA mode, 1161 * if valid, return 0, else return -1 1162 */ 1163 static int 1164 check_socket_id(const unsigned int socket_id) 1165 { 1166 static int warning_once = 0; 1167 1168 if (new_socket_id(socket_id)) { 1169 if (!warning_once && numa_support) 1170 fprintf(stderr, 1171 "Warning: NUMA should be configured manually by using --port-numa-config and --ring-numa-config parameters along with --numa.\n"); 1172 warning_once = 1; 1173 return -1; 1174 } 1175 return 0; 1176 } 1177 1178 /* 1179 * Get the allowed maximum number of RX queues. 1180 * *pid return the port id which has minimal value of 1181 * max_rx_queues in all ports. 1182 */ 1183 queueid_t 1184 get_allowed_max_nb_rxq(portid_t *pid) 1185 { 1186 queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT; 1187 bool max_rxq_valid = false; 1188 portid_t pi; 1189 struct rte_eth_dev_info dev_info; 1190 1191 RTE_ETH_FOREACH_DEV(pi) { 1192 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1193 continue; 1194 1195 max_rxq_valid = true; 1196 if (dev_info.max_rx_queues < allowed_max_rxq) { 1197 allowed_max_rxq = dev_info.max_rx_queues; 1198 *pid = pi; 1199 } 1200 } 1201 return max_rxq_valid ? allowed_max_rxq : 0; 1202 } 1203 1204 /* 1205 * Check input rxq is valid or not. 1206 * If input rxq is not greater than any of maximum number 1207 * of RX queues of all ports, it is valid. 1208 * if valid, return 0, else return -1 1209 */ 1210 int 1211 check_nb_rxq(queueid_t rxq) 1212 { 1213 queueid_t allowed_max_rxq; 1214 portid_t pid = 0; 1215 1216 allowed_max_rxq = get_allowed_max_nb_rxq(&pid); 1217 if (rxq > allowed_max_rxq) { 1218 fprintf(stderr, 1219 "Fail: input rxq (%u) can't be greater than max_rx_queues (%u) of port %u\n", 1220 rxq, allowed_max_rxq, pid); 1221 return -1; 1222 } 1223 return 0; 1224 } 1225 1226 /* 1227 * Get the allowed maximum number of TX queues. 1228 * *pid return the port id which has minimal value of 1229 * max_tx_queues in all ports. 1230 */ 1231 queueid_t 1232 get_allowed_max_nb_txq(portid_t *pid) 1233 { 1234 queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT; 1235 bool max_txq_valid = false; 1236 portid_t pi; 1237 struct rte_eth_dev_info dev_info; 1238 1239 RTE_ETH_FOREACH_DEV(pi) { 1240 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1241 continue; 1242 1243 max_txq_valid = true; 1244 if (dev_info.max_tx_queues < allowed_max_txq) { 1245 allowed_max_txq = dev_info.max_tx_queues; 1246 *pid = pi; 1247 } 1248 } 1249 return max_txq_valid ? allowed_max_txq : 0; 1250 } 1251 1252 /* 1253 * Check input txq is valid or not. 1254 * If input txq is not greater than any of maximum number 1255 * of TX queues of all ports, it is valid. 1256 * if valid, return 0, else return -1 1257 */ 1258 int 1259 check_nb_txq(queueid_t txq) 1260 { 1261 queueid_t allowed_max_txq; 1262 portid_t pid = 0; 1263 1264 allowed_max_txq = get_allowed_max_nb_txq(&pid); 1265 if (txq > allowed_max_txq) { 1266 fprintf(stderr, 1267 "Fail: input txq (%u) can't be greater than max_tx_queues (%u) of port %u\n", 1268 txq, allowed_max_txq, pid); 1269 return -1; 1270 } 1271 return 0; 1272 } 1273 1274 /* 1275 * Get the allowed maximum number of RXDs of every rx queue. 1276 * *pid return the port id which has minimal value of 1277 * max_rxd in all queues of all ports. 1278 */ 1279 static uint16_t 1280 get_allowed_max_nb_rxd(portid_t *pid) 1281 { 1282 uint16_t allowed_max_rxd = UINT16_MAX; 1283 portid_t pi; 1284 struct rte_eth_dev_info dev_info; 1285 1286 RTE_ETH_FOREACH_DEV(pi) { 1287 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1288 continue; 1289 1290 if (dev_info.rx_desc_lim.nb_max < allowed_max_rxd) { 1291 allowed_max_rxd = dev_info.rx_desc_lim.nb_max; 1292 *pid = pi; 1293 } 1294 } 1295 return allowed_max_rxd; 1296 } 1297 1298 /* 1299 * Get the allowed minimal number of RXDs of every rx queue. 1300 * *pid return the port id which has minimal value of 1301 * min_rxd in all queues of all ports. 1302 */ 1303 static uint16_t 1304 get_allowed_min_nb_rxd(portid_t *pid) 1305 { 1306 uint16_t allowed_min_rxd = 0; 1307 portid_t pi; 1308 struct rte_eth_dev_info dev_info; 1309 1310 RTE_ETH_FOREACH_DEV(pi) { 1311 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1312 continue; 1313 1314 if (dev_info.rx_desc_lim.nb_min > allowed_min_rxd) { 1315 allowed_min_rxd = dev_info.rx_desc_lim.nb_min; 1316 *pid = pi; 1317 } 1318 } 1319 1320 return allowed_min_rxd; 1321 } 1322 1323 /* 1324 * Check input rxd is valid or not. 1325 * If input rxd is not greater than any of maximum number 1326 * of RXDs of every Rx queues and is not less than any of 1327 * minimal number of RXDs of every Rx queues, it is valid. 1328 * if valid, return 0, else return -1 1329 */ 1330 int 1331 check_nb_rxd(queueid_t rxd) 1332 { 1333 uint16_t allowed_max_rxd; 1334 uint16_t allowed_min_rxd; 1335 portid_t pid = 0; 1336 1337 allowed_max_rxd = get_allowed_max_nb_rxd(&pid); 1338 if (rxd > allowed_max_rxd) { 1339 fprintf(stderr, 1340 "Fail: input rxd (%u) can't be greater than max_rxds (%u) of port %u\n", 1341 rxd, allowed_max_rxd, pid); 1342 return -1; 1343 } 1344 1345 allowed_min_rxd = get_allowed_min_nb_rxd(&pid); 1346 if (rxd < allowed_min_rxd) { 1347 fprintf(stderr, 1348 "Fail: input rxd (%u) can't be less than min_rxds (%u) of port %u\n", 1349 rxd, allowed_min_rxd, pid); 1350 return -1; 1351 } 1352 1353 return 0; 1354 } 1355 1356 /* 1357 * Get the allowed maximum number of TXDs of every rx queues. 1358 * *pid return the port id which has minimal value of 1359 * max_txd in every tx queue. 1360 */ 1361 static uint16_t 1362 get_allowed_max_nb_txd(portid_t *pid) 1363 { 1364 uint16_t allowed_max_txd = UINT16_MAX; 1365 portid_t pi; 1366 struct rte_eth_dev_info dev_info; 1367 1368 RTE_ETH_FOREACH_DEV(pi) { 1369 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1370 continue; 1371 1372 if (dev_info.tx_desc_lim.nb_max < allowed_max_txd) { 1373 allowed_max_txd = dev_info.tx_desc_lim.nb_max; 1374 *pid = pi; 1375 } 1376 } 1377 return allowed_max_txd; 1378 } 1379 1380 /* 1381 * Get the allowed maximum number of TXDs of every tx queues. 1382 * *pid return the port id which has minimal value of 1383 * min_txd in every tx queue. 1384 */ 1385 static uint16_t 1386 get_allowed_min_nb_txd(portid_t *pid) 1387 { 1388 uint16_t allowed_min_txd = 0; 1389 portid_t pi; 1390 struct rte_eth_dev_info dev_info; 1391 1392 RTE_ETH_FOREACH_DEV(pi) { 1393 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1394 continue; 1395 1396 if (dev_info.tx_desc_lim.nb_min > allowed_min_txd) { 1397 allowed_min_txd = dev_info.tx_desc_lim.nb_min; 1398 *pid = pi; 1399 } 1400 } 1401 1402 return allowed_min_txd; 1403 } 1404 1405 /* 1406 * Check input txd is valid or not. 1407 * If input txd is not greater than any of maximum number 1408 * of TXDs of every Rx queues, it is valid. 1409 * if valid, return 0, else return -1 1410 */ 1411 int 1412 check_nb_txd(queueid_t txd) 1413 { 1414 uint16_t allowed_max_txd; 1415 uint16_t allowed_min_txd; 1416 portid_t pid = 0; 1417 1418 allowed_max_txd = get_allowed_max_nb_txd(&pid); 1419 if (txd > allowed_max_txd) { 1420 fprintf(stderr, 1421 "Fail: input txd (%u) can't be greater than max_txds (%u) of port %u\n", 1422 txd, allowed_max_txd, pid); 1423 return -1; 1424 } 1425 1426 allowed_min_txd = get_allowed_min_nb_txd(&pid); 1427 if (txd < allowed_min_txd) { 1428 fprintf(stderr, 1429 "Fail: input txd (%u) can't be less than min_txds (%u) of port %u\n", 1430 txd, allowed_min_txd, pid); 1431 return -1; 1432 } 1433 return 0; 1434 } 1435 1436 1437 /* 1438 * Get the allowed maximum number of hairpin queues. 1439 * *pid return the port id which has minimal value of 1440 * max_hairpin_queues in all ports. 1441 */ 1442 queueid_t 1443 get_allowed_max_nb_hairpinq(portid_t *pid) 1444 { 1445 queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT; 1446 portid_t pi; 1447 struct rte_eth_hairpin_cap cap; 1448 1449 RTE_ETH_FOREACH_DEV(pi) { 1450 if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) { 1451 *pid = pi; 1452 return 0; 1453 } 1454 if (cap.max_nb_queues < allowed_max_hairpinq) { 1455 allowed_max_hairpinq = cap.max_nb_queues; 1456 *pid = pi; 1457 } 1458 } 1459 return allowed_max_hairpinq; 1460 } 1461 1462 /* 1463 * Check input hairpin is valid or not. 1464 * If input hairpin is not greater than any of maximum number 1465 * of hairpin queues of all ports, it is valid. 1466 * if valid, return 0, else return -1 1467 */ 1468 int 1469 check_nb_hairpinq(queueid_t hairpinq) 1470 { 1471 queueid_t allowed_max_hairpinq; 1472 portid_t pid = 0; 1473 1474 allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid); 1475 if (hairpinq > allowed_max_hairpinq) { 1476 fprintf(stderr, 1477 "Fail: input hairpin (%u) can't be greater than max_hairpin_queues (%u) of port %u\n", 1478 hairpinq, allowed_max_hairpinq, pid); 1479 return -1; 1480 } 1481 return 0; 1482 } 1483 1484 static void 1485 init_config_port_offloads(portid_t pid, uint32_t socket_id) 1486 { 1487 struct rte_port *port = &ports[pid]; 1488 uint16_t data_size; 1489 int ret; 1490 int i; 1491 1492 port->dev_conf.txmode = tx_mode; 1493 port->dev_conf.rxmode = rx_mode; 1494 1495 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 1496 if (ret != 0) 1497 rte_exit(EXIT_FAILURE, "rte_eth_dev_info_get() failed\n"); 1498 1499 ret = update_jumbo_frame_offload(pid); 1500 if (ret != 0) 1501 fprintf(stderr, 1502 "Updating jumbo frame offload failed for port %u\n", 1503 pid); 1504 1505 if (!(port->dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)) 1506 port->dev_conf.txmode.offloads &= 1507 ~DEV_TX_OFFLOAD_MBUF_FAST_FREE; 1508 1509 /* Apply Rx offloads configuration */ 1510 for (i = 0; i < port->dev_info.max_rx_queues; i++) 1511 port->rx_conf[i].offloads = port->dev_conf.rxmode.offloads; 1512 /* Apply Tx offloads configuration */ 1513 for (i = 0; i < port->dev_info.max_tx_queues; i++) 1514 port->tx_conf[i].offloads = port->dev_conf.txmode.offloads; 1515 1516 if (eth_link_speed) 1517 port->dev_conf.link_speeds = eth_link_speed; 1518 1519 /* set flag to initialize port/queue */ 1520 port->need_reconfig = 1; 1521 port->need_reconfig_queues = 1; 1522 port->socket_id = socket_id; 1523 port->tx_metadata = 0; 1524 1525 /* 1526 * Check for maximum number of segments per MTU. 1527 * Accordingly update the mbuf data size. 1528 */ 1529 if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX && 1530 port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) { 1531 data_size = rx_mode.max_rx_pkt_len / 1532 port->dev_info.rx_desc_lim.nb_mtu_seg_max; 1533 1534 if ((data_size + RTE_PKTMBUF_HEADROOM) > mbuf_data_size[0]) { 1535 mbuf_data_size[0] = data_size + RTE_PKTMBUF_HEADROOM; 1536 TESTPMD_LOG(WARNING, 1537 "Configured mbuf size of the first segment %hu\n", 1538 mbuf_data_size[0]); 1539 } 1540 } 1541 } 1542 1543 static void 1544 init_config(void) 1545 { 1546 portid_t pid; 1547 struct rte_mempool *mbp; 1548 unsigned int nb_mbuf_per_pool; 1549 lcoreid_t lc_id; 1550 struct rte_gro_param gro_param; 1551 uint32_t gso_types; 1552 1553 /* Configuration of logical cores. */ 1554 fwd_lcores = rte_zmalloc("testpmd: fwd_lcores", 1555 sizeof(struct fwd_lcore *) * nb_lcores, 1556 RTE_CACHE_LINE_SIZE); 1557 if (fwd_lcores == NULL) { 1558 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) " 1559 "failed\n", nb_lcores); 1560 } 1561 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1562 fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore", 1563 sizeof(struct fwd_lcore), 1564 RTE_CACHE_LINE_SIZE); 1565 if (fwd_lcores[lc_id] == NULL) { 1566 rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) " 1567 "failed\n"); 1568 } 1569 fwd_lcores[lc_id]->cpuid_idx = lc_id; 1570 } 1571 1572 RTE_ETH_FOREACH_DEV(pid) { 1573 uint32_t socket_id; 1574 1575 if (numa_support) { 1576 socket_id = port_numa[pid]; 1577 if (port_numa[pid] == NUMA_NO_CONFIG) { 1578 socket_id = rte_eth_dev_socket_id(pid); 1579 1580 /* 1581 * if socket_id is invalid, 1582 * set to the first available socket. 1583 */ 1584 if (check_socket_id(socket_id) < 0) 1585 socket_id = socket_ids[0]; 1586 } 1587 } else { 1588 socket_id = (socket_num == UMA_NO_CONFIG) ? 1589 0 : socket_num; 1590 } 1591 /* Apply default TxRx configuration for all ports */ 1592 init_config_port_offloads(pid, socket_id); 1593 } 1594 /* 1595 * Create pools of mbuf. 1596 * If NUMA support is disabled, create a single pool of mbuf in 1597 * socket 0 memory by default. 1598 * Otherwise, create a pool of mbuf in the memory of sockets 0 and 1. 1599 * 1600 * Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and 1601 * nb_txd can be configured at run time. 1602 */ 1603 if (param_total_num_mbufs) 1604 nb_mbuf_per_pool = param_total_num_mbufs; 1605 else { 1606 nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX + 1607 (nb_lcores * mb_mempool_cache) + 1608 RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST; 1609 nb_mbuf_per_pool *= RTE_MAX_ETHPORTS; 1610 } 1611 1612 if (numa_support) { 1613 uint8_t i, j; 1614 1615 for (i = 0; i < num_sockets; i++) 1616 for (j = 0; j < mbuf_data_size_n; j++) 1617 mempools[i * MAX_SEGS_BUFFER_SPLIT + j] = 1618 mbuf_pool_create(mbuf_data_size[j], 1619 nb_mbuf_per_pool, 1620 socket_ids[i], j); 1621 } else { 1622 uint8_t i; 1623 1624 for (i = 0; i < mbuf_data_size_n; i++) 1625 mempools[i] = mbuf_pool_create 1626 (mbuf_data_size[i], 1627 nb_mbuf_per_pool, 1628 socket_num == UMA_NO_CONFIG ? 1629 0 : socket_num, i); 1630 } 1631 1632 init_port_config(); 1633 1634 gso_types = DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | 1635 DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_UDP_TSO; 1636 /* 1637 * Records which Mbuf pool to use by each logical core, if needed. 1638 */ 1639 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1640 mbp = mbuf_pool_find( 1641 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 0); 1642 1643 if (mbp == NULL) 1644 mbp = mbuf_pool_find(0, 0); 1645 fwd_lcores[lc_id]->mbp = mbp; 1646 /* initialize GSO context */ 1647 fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp; 1648 fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp; 1649 fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types; 1650 fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN - 1651 RTE_ETHER_CRC_LEN; 1652 fwd_lcores[lc_id]->gso_ctx.flag = 0; 1653 } 1654 1655 fwd_config_setup(); 1656 1657 /* create a gro context for each lcore */ 1658 gro_param.gro_types = RTE_GRO_TCP_IPV4; 1659 gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES; 1660 gro_param.max_item_per_flow = MAX_PKT_BURST; 1661 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1662 gro_param.socket_id = rte_lcore_to_socket_id( 1663 fwd_lcores_cpuids[lc_id]); 1664 fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param); 1665 if (fwd_lcores[lc_id]->gro_ctx == NULL) { 1666 rte_exit(EXIT_FAILURE, 1667 "rte_gro_ctx_create() failed\n"); 1668 } 1669 } 1670 } 1671 1672 1673 void 1674 reconfig(portid_t new_port_id, unsigned socket_id) 1675 { 1676 /* Reconfiguration of Ethernet ports. */ 1677 init_config_port_offloads(new_port_id, socket_id); 1678 init_port_config(); 1679 } 1680 1681 1682 int 1683 init_fwd_streams(void) 1684 { 1685 portid_t pid; 1686 struct rte_port *port; 1687 streamid_t sm_id, nb_fwd_streams_new; 1688 queueid_t q; 1689 1690 /* set socket id according to numa or not */ 1691 RTE_ETH_FOREACH_DEV(pid) { 1692 port = &ports[pid]; 1693 if (nb_rxq > port->dev_info.max_rx_queues) { 1694 fprintf(stderr, 1695 "Fail: nb_rxq(%d) is greater than max_rx_queues(%d)\n", 1696 nb_rxq, port->dev_info.max_rx_queues); 1697 return -1; 1698 } 1699 if (nb_txq > port->dev_info.max_tx_queues) { 1700 fprintf(stderr, 1701 "Fail: nb_txq(%d) is greater than max_tx_queues(%d)\n", 1702 nb_txq, port->dev_info.max_tx_queues); 1703 return -1; 1704 } 1705 if (numa_support) { 1706 if (port_numa[pid] != NUMA_NO_CONFIG) 1707 port->socket_id = port_numa[pid]; 1708 else { 1709 port->socket_id = rte_eth_dev_socket_id(pid); 1710 1711 /* 1712 * if socket_id is invalid, 1713 * set to the first available socket. 1714 */ 1715 if (check_socket_id(port->socket_id) < 0) 1716 port->socket_id = socket_ids[0]; 1717 } 1718 } 1719 else { 1720 if (socket_num == UMA_NO_CONFIG) 1721 port->socket_id = 0; 1722 else 1723 port->socket_id = socket_num; 1724 } 1725 } 1726 1727 q = RTE_MAX(nb_rxq, nb_txq); 1728 if (q == 0) { 1729 fprintf(stderr, 1730 "Fail: Cannot allocate fwd streams as number of queues is 0\n"); 1731 return -1; 1732 } 1733 nb_fwd_streams_new = (streamid_t)(nb_ports * q); 1734 if (nb_fwd_streams_new == nb_fwd_streams) 1735 return 0; 1736 /* clear the old */ 1737 if (fwd_streams != NULL) { 1738 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1739 if (fwd_streams[sm_id] == NULL) 1740 continue; 1741 rte_free(fwd_streams[sm_id]); 1742 fwd_streams[sm_id] = NULL; 1743 } 1744 rte_free(fwd_streams); 1745 fwd_streams = NULL; 1746 } 1747 1748 /* init new */ 1749 nb_fwd_streams = nb_fwd_streams_new; 1750 if (nb_fwd_streams) { 1751 fwd_streams = rte_zmalloc("testpmd: fwd_streams", 1752 sizeof(struct fwd_stream *) * nb_fwd_streams, 1753 RTE_CACHE_LINE_SIZE); 1754 if (fwd_streams == NULL) 1755 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d" 1756 " (struct fwd_stream *)) failed\n", 1757 nb_fwd_streams); 1758 1759 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1760 fwd_streams[sm_id] = rte_zmalloc("testpmd:" 1761 " struct fwd_stream", sizeof(struct fwd_stream), 1762 RTE_CACHE_LINE_SIZE); 1763 if (fwd_streams[sm_id] == NULL) 1764 rte_exit(EXIT_FAILURE, "rte_zmalloc" 1765 "(struct fwd_stream) failed\n"); 1766 } 1767 } 1768 1769 return 0; 1770 } 1771 1772 static void 1773 pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs) 1774 { 1775 uint64_t total_burst, sburst; 1776 uint64_t nb_burst; 1777 uint64_t burst_stats[4]; 1778 uint16_t pktnb_stats[4]; 1779 uint16_t nb_pkt; 1780 int burst_percent[4], sburstp; 1781 int i; 1782 1783 /* 1784 * First compute the total number of packet bursts and the 1785 * two highest numbers of bursts of the same number of packets. 1786 */ 1787 memset(&burst_stats, 0x0, sizeof(burst_stats)); 1788 memset(&pktnb_stats, 0x0, sizeof(pktnb_stats)); 1789 1790 /* Show stats for 0 burst size always */ 1791 total_burst = pbs->pkt_burst_spread[0]; 1792 burst_stats[0] = pbs->pkt_burst_spread[0]; 1793 pktnb_stats[0] = 0; 1794 1795 /* Find the next 2 burst sizes with highest occurrences. */ 1796 for (nb_pkt = 1; nb_pkt < MAX_PKT_BURST; nb_pkt++) { 1797 nb_burst = pbs->pkt_burst_spread[nb_pkt]; 1798 1799 if (nb_burst == 0) 1800 continue; 1801 1802 total_burst += nb_burst; 1803 1804 if (nb_burst > burst_stats[1]) { 1805 burst_stats[2] = burst_stats[1]; 1806 pktnb_stats[2] = pktnb_stats[1]; 1807 burst_stats[1] = nb_burst; 1808 pktnb_stats[1] = nb_pkt; 1809 } else if (nb_burst > burst_stats[2]) { 1810 burst_stats[2] = nb_burst; 1811 pktnb_stats[2] = nb_pkt; 1812 } 1813 } 1814 if (total_burst == 0) 1815 return; 1816 1817 printf(" %s-bursts : %"PRIu64" [", rx_tx, total_burst); 1818 for (i = 0, sburst = 0, sburstp = 0; i < 4; i++) { 1819 if (i == 3) { 1820 printf("%d%% of other]\n", 100 - sburstp); 1821 return; 1822 } 1823 1824 sburst += burst_stats[i]; 1825 if (sburst == total_burst) { 1826 printf("%d%% of %d pkts]\n", 1827 100 - sburstp, (int) pktnb_stats[i]); 1828 return; 1829 } 1830 1831 burst_percent[i] = 1832 (double)burst_stats[i] / total_burst * 100; 1833 printf("%d%% of %d pkts + ", 1834 burst_percent[i], (int) pktnb_stats[i]); 1835 sburstp += burst_percent[i]; 1836 } 1837 } 1838 1839 static void 1840 fwd_stream_stats_display(streamid_t stream_id) 1841 { 1842 struct fwd_stream *fs; 1843 static const char *fwd_top_stats_border = "-------"; 1844 1845 fs = fwd_streams[stream_id]; 1846 if ((fs->rx_packets == 0) && (fs->tx_packets == 0) && 1847 (fs->fwd_dropped == 0)) 1848 return; 1849 printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> " 1850 "TX Port=%2d/Queue=%2d %s\n", 1851 fwd_top_stats_border, fs->rx_port, fs->rx_queue, 1852 fs->tx_port, fs->tx_queue, fwd_top_stats_border); 1853 printf(" RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64 1854 " TX-dropped: %-14"PRIu64, 1855 fs->rx_packets, fs->tx_packets, fs->fwd_dropped); 1856 1857 /* if checksum mode */ 1858 if (cur_fwd_eng == &csum_fwd_engine) { 1859 printf(" RX- bad IP checksum: %-14"PRIu64 1860 " Rx- bad L4 checksum: %-14"PRIu64 1861 " Rx- bad outer L4 checksum: %-14"PRIu64"\n", 1862 fs->rx_bad_ip_csum, fs->rx_bad_l4_csum, 1863 fs->rx_bad_outer_l4_csum); 1864 printf(" RX- bad outer IP checksum: %-14"PRIu64"\n", 1865 fs->rx_bad_outer_ip_csum); 1866 } else { 1867 printf("\n"); 1868 } 1869 1870 if (record_burst_stats) { 1871 pkt_burst_stats_display("RX", &fs->rx_burst_stats); 1872 pkt_burst_stats_display("TX", &fs->tx_burst_stats); 1873 } 1874 } 1875 1876 void 1877 fwd_stats_display(void) 1878 { 1879 static const char *fwd_stats_border = "----------------------"; 1880 static const char *acc_stats_border = "+++++++++++++++"; 1881 struct { 1882 struct fwd_stream *rx_stream; 1883 struct fwd_stream *tx_stream; 1884 uint64_t tx_dropped; 1885 uint64_t rx_bad_ip_csum; 1886 uint64_t rx_bad_l4_csum; 1887 uint64_t rx_bad_outer_l4_csum; 1888 uint64_t rx_bad_outer_ip_csum; 1889 } ports_stats[RTE_MAX_ETHPORTS]; 1890 uint64_t total_rx_dropped = 0; 1891 uint64_t total_tx_dropped = 0; 1892 uint64_t total_rx_nombuf = 0; 1893 struct rte_eth_stats stats; 1894 uint64_t fwd_cycles = 0; 1895 uint64_t total_recv = 0; 1896 uint64_t total_xmit = 0; 1897 struct rte_port *port; 1898 streamid_t sm_id; 1899 portid_t pt_id; 1900 int i; 1901 1902 memset(ports_stats, 0, sizeof(ports_stats)); 1903 1904 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1905 struct fwd_stream *fs = fwd_streams[sm_id]; 1906 1907 if (cur_fwd_config.nb_fwd_streams > 1908 cur_fwd_config.nb_fwd_ports) { 1909 fwd_stream_stats_display(sm_id); 1910 } else { 1911 ports_stats[fs->tx_port].tx_stream = fs; 1912 ports_stats[fs->rx_port].rx_stream = fs; 1913 } 1914 1915 ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped; 1916 1917 ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum; 1918 ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum; 1919 ports_stats[fs->rx_port].rx_bad_outer_l4_csum += 1920 fs->rx_bad_outer_l4_csum; 1921 ports_stats[fs->rx_port].rx_bad_outer_ip_csum += 1922 fs->rx_bad_outer_ip_csum; 1923 1924 if (record_core_cycles) 1925 fwd_cycles += fs->core_cycles; 1926 } 1927 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 1928 pt_id = fwd_ports_ids[i]; 1929 port = &ports[pt_id]; 1930 1931 rte_eth_stats_get(pt_id, &stats); 1932 stats.ipackets -= port->stats.ipackets; 1933 stats.opackets -= port->stats.opackets; 1934 stats.ibytes -= port->stats.ibytes; 1935 stats.obytes -= port->stats.obytes; 1936 stats.imissed -= port->stats.imissed; 1937 stats.oerrors -= port->stats.oerrors; 1938 stats.rx_nombuf -= port->stats.rx_nombuf; 1939 1940 total_recv += stats.ipackets; 1941 total_xmit += stats.opackets; 1942 total_rx_dropped += stats.imissed; 1943 total_tx_dropped += ports_stats[pt_id].tx_dropped; 1944 total_tx_dropped += stats.oerrors; 1945 total_rx_nombuf += stats.rx_nombuf; 1946 1947 printf("\n %s Forward statistics for port %-2d %s\n", 1948 fwd_stats_border, pt_id, fwd_stats_border); 1949 1950 printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64 1951 "RX-total: %-"PRIu64"\n", stats.ipackets, stats.imissed, 1952 stats.ipackets + stats.imissed); 1953 1954 if (cur_fwd_eng == &csum_fwd_engine) { 1955 printf(" Bad-ipcsum: %-14"PRIu64 1956 " Bad-l4csum: %-14"PRIu64 1957 "Bad-outer-l4csum: %-14"PRIu64"\n", 1958 ports_stats[pt_id].rx_bad_ip_csum, 1959 ports_stats[pt_id].rx_bad_l4_csum, 1960 ports_stats[pt_id].rx_bad_outer_l4_csum); 1961 printf(" Bad-outer-ipcsum: %-14"PRIu64"\n", 1962 ports_stats[pt_id].rx_bad_outer_ip_csum); 1963 } 1964 if (stats.ierrors + stats.rx_nombuf > 0) { 1965 printf(" RX-error: %-"PRIu64"\n", stats.ierrors); 1966 printf(" RX-nombufs: %-14"PRIu64"\n", stats.rx_nombuf); 1967 } 1968 1969 printf(" TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64 1970 "TX-total: %-"PRIu64"\n", 1971 stats.opackets, ports_stats[pt_id].tx_dropped, 1972 stats.opackets + ports_stats[pt_id].tx_dropped); 1973 1974 if (record_burst_stats) { 1975 if (ports_stats[pt_id].rx_stream) 1976 pkt_burst_stats_display("RX", 1977 &ports_stats[pt_id].rx_stream->rx_burst_stats); 1978 if (ports_stats[pt_id].tx_stream) 1979 pkt_burst_stats_display("TX", 1980 &ports_stats[pt_id].tx_stream->tx_burst_stats); 1981 } 1982 1983 printf(" %s--------------------------------%s\n", 1984 fwd_stats_border, fwd_stats_border); 1985 } 1986 1987 printf("\n %s Accumulated forward statistics for all ports" 1988 "%s\n", 1989 acc_stats_border, acc_stats_border); 1990 printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: " 1991 "%-"PRIu64"\n" 1992 " TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: " 1993 "%-"PRIu64"\n", 1994 total_recv, total_rx_dropped, total_recv + total_rx_dropped, 1995 total_xmit, total_tx_dropped, total_xmit + total_tx_dropped); 1996 if (total_rx_nombuf > 0) 1997 printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf); 1998 printf(" %s++++++++++++++++++++++++++++++++++++++++++++++" 1999 "%s\n", 2000 acc_stats_border, acc_stats_border); 2001 if (record_core_cycles) { 2002 #define CYC_PER_MHZ 1E6 2003 if (total_recv > 0 || total_xmit > 0) { 2004 uint64_t total_pkts = 0; 2005 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 || 2006 strcmp(cur_fwd_eng->fwd_mode_name, "flowgen") == 0) 2007 total_pkts = total_xmit; 2008 else 2009 total_pkts = total_recv; 2010 2011 printf("\n CPU cycles/packet=%.2F (total cycles=" 2012 "%"PRIu64" / total %s packets=%"PRIu64") at %"PRIu64 2013 " MHz Clock\n", 2014 (double) fwd_cycles / total_pkts, 2015 fwd_cycles, cur_fwd_eng->fwd_mode_name, total_pkts, 2016 (uint64_t)(rte_get_tsc_hz() / CYC_PER_MHZ)); 2017 } 2018 } 2019 } 2020 2021 void 2022 fwd_stats_reset(void) 2023 { 2024 streamid_t sm_id; 2025 portid_t pt_id; 2026 int i; 2027 2028 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2029 pt_id = fwd_ports_ids[i]; 2030 rte_eth_stats_get(pt_id, &ports[pt_id].stats); 2031 } 2032 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 2033 struct fwd_stream *fs = fwd_streams[sm_id]; 2034 2035 fs->rx_packets = 0; 2036 fs->tx_packets = 0; 2037 fs->fwd_dropped = 0; 2038 fs->rx_bad_ip_csum = 0; 2039 fs->rx_bad_l4_csum = 0; 2040 fs->rx_bad_outer_l4_csum = 0; 2041 fs->rx_bad_outer_ip_csum = 0; 2042 2043 memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats)); 2044 memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats)); 2045 fs->core_cycles = 0; 2046 } 2047 } 2048 2049 static void 2050 flush_fwd_rx_queues(void) 2051 { 2052 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2053 portid_t rxp; 2054 portid_t port_id; 2055 queueid_t rxq; 2056 uint16_t nb_rx; 2057 uint16_t i; 2058 uint8_t j; 2059 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 2060 uint64_t timer_period; 2061 2062 if (num_procs > 1) { 2063 printf("multi-process not support for flushing fwd Rx queues, skip the below lines and return.\n"); 2064 return; 2065 } 2066 2067 /* convert to number of cycles */ 2068 timer_period = rte_get_timer_hz(); /* 1 second timeout */ 2069 2070 for (j = 0; j < 2; j++) { 2071 for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) { 2072 for (rxq = 0; rxq < nb_rxq; rxq++) { 2073 port_id = fwd_ports_ids[rxp]; 2074 /** 2075 * testpmd can stuck in the below do while loop 2076 * if rte_eth_rx_burst() always returns nonzero 2077 * packets. So timer is added to exit this loop 2078 * after 1sec timer expiry. 2079 */ 2080 prev_tsc = rte_rdtsc(); 2081 do { 2082 nb_rx = rte_eth_rx_burst(port_id, rxq, 2083 pkts_burst, MAX_PKT_BURST); 2084 for (i = 0; i < nb_rx; i++) 2085 rte_pktmbuf_free(pkts_burst[i]); 2086 2087 cur_tsc = rte_rdtsc(); 2088 diff_tsc = cur_tsc - prev_tsc; 2089 timer_tsc += diff_tsc; 2090 } while ((nb_rx > 0) && 2091 (timer_tsc < timer_period)); 2092 timer_tsc = 0; 2093 } 2094 } 2095 rte_delay_ms(10); /* wait 10 milli-seconds before retrying */ 2096 } 2097 } 2098 2099 static void 2100 run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd) 2101 { 2102 struct fwd_stream **fsm; 2103 streamid_t nb_fs; 2104 streamid_t sm_id; 2105 #ifdef RTE_LIB_BITRATESTATS 2106 uint64_t tics_per_1sec; 2107 uint64_t tics_datum; 2108 uint64_t tics_current; 2109 uint16_t i, cnt_ports; 2110 2111 cnt_ports = nb_ports; 2112 tics_datum = rte_rdtsc(); 2113 tics_per_1sec = rte_get_timer_hz(); 2114 #endif 2115 fsm = &fwd_streams[fc->stream_idx]; 2116 nb_fs = fc->stream_nb; 2117 do { 2118 for (sm_id = 0; sm_id < nb_fs; sm_id++) 2119 (*pkt_fwd)(fsm[sm_id]); 2120 #ifdef RTE_LIB_BITRATESTATS 2121 if (bitrate_enabled != 0 && 2122 bitrate_lcore_id == rte_lcore_id()) { 2123 tics_current = rte_rdtsc(); 2124 if (tics_current - tics_datum >= tics_per_1sec) { 2125 /* Periodic bitrate calculation */ 2126 for (i = 0; i < cnt_ports; i++) 2127 rte_stats_bitrate_calc(bitrate_data, 2128 ports_ids[i]); 2129 tics_datum = tics_current; 2130 } 2131 } 2132 #endif 2133 #ifdef RTE_LIB_LATENCYSTATS 2134 if (latencystats_enabled != 0 && 2135 latencystats_lcore_id == rte_lcore_id()) 2136 rte_latencystats_update(); 2137 #endif 2138 2139 } while (! fc->stopped); 2140 } 2141 2142 static int 2143 start_pkt_forward_on_core(void *fwd_arg) 2144 { 2145 run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg, 2146 cur_fwd_config.fwd_eng->packet_fwd); 2147 return 0; 2148 } 2149 2150 /* 2151 * Run the TXONLY packet forwarding engine to send a single burst of packets. 2152 * Used to start communication flows in network loopback test configurations. 2153 */ 2154 static int 2155 run_one_txonly_burst_on_core(void *fwd_arg) 2156 { 2157 struct fwd_lcore *fwd_lc; 2158 struct fwd_lcore tmp_lcore; 2159 2160 fwd_lc = (struct fwd_lcore *) fwd_arg; 2161 tmp_lcore = *fwd_lc; 2162 tmp_lcore.stopped = 1; 2163 run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd); 2164 return 0; 2165 } 2166 2167 /* 2168 * Launch packet forwarding: 2169 * - Setup per-port forwarding context. 2170 * - launch logical cores with their forwarding configuration. 2171 */ 2172 static void 2173 launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore) 2174 { 2175 port_fwd_begin_t port_fwd_begin; 2176 unsigned int i; 2177 unsigned int lc_id; 2178 int diag; 2179 2180 port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin; 2181 if (port_fwd_begin != NULL) { 2182 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2183 (*port_fwd_begin)(fwd_ports_ids[i]); 2184 } 2185 for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) { 2186 lc_id = fwd_lcores_cpuids[i]; 2187 if ((interactive == 0) || (lc_id != rte_lcore_id())) { 2188 fwd_lcores[i]->stopped = 0; 2189 diag = rte_eal_remote_launch(pkt_fwd_on_lcore, 2190 fwd_lcores[i], lc_id); 2191 if (diag != 0) 2192 fprintf(stderr, 2193 "launch lcore %u failed - diag=%d\n", 2194 lc_id, diag); 2195 } 2196 } 2197 } 2198 2199 /* 2200 * Launch packet forwarding configuration. 2201 */ 2202 void 2203 start_packet_forwarding(int with_tx_first) 2204 { 2205 port_fwd_begin_t port_fwd_begin; 2206 port_fwd_end_t port_fwd_end; 2207 unsigned int i; 2208 2209 if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq) 2210 rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n"); 2211 2212 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq) 2213 rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n"); 2214 2215 if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 && 2216 strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) && 2217 (!nb_rxq || !nb_txq)) 2218 rte_exit(EXIT_FAILURE, 2219 "Either rxq or txq are 0, cannot use %s fwd mode\n", 2220 cur_fwd_eng->fwd_mode_name); 2221 2222 if (all_ports_started() == 0) { 2223 fprintf(stderr, "Not all ports were started\n"); 2224 return; 2225 } 2226 if (test_done == 0) { 2227 fprintf(stderr, "Packet forwarding already started\n"); 2228 return; 2229 } 2230 test_done = 0; 2231 2232 fwd_config_setup(); 2233 2234 if(!no_flush_rx) 2235 flush_fwd_rx_queues(); 2236 2237 pkt_fwd_config_display(&cur_fwd_config); 2238 rxtx_config_display(); 2239 2240 fwd_stats_reset(); 2241 if (with_tx_first) { 2242 port_fwd_begin = tx_only_engine.port_fwd_begin; 2243 if (port_fwd_begin != NULL) { 2244 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2245 (*port_fwd_begin)(fwd_ports_ids[i]); 2246 } 2247 while (with_tx_first--) { 2248 launch_packet_forwarding( 2249 run_one_txonly_burst_on_core); 2250 rte_eal_mp_wait_lcore(); 2251 } 2252 port_fwd_end = tx_only_engine.port_fwd_end; 2253 if (port_fwd_end != NULL) { 2254 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2255 (*port_fwd_end)(fwd_ports_ids[i]); 2256 } 2257 } 2258 launch_packet_forwarding(start_pkt_forward_on_core); 2259 } 2260 2261 void 2262 stop_packet_forwarding(void) 2263 { 2264 port_fwd_end_t port_fwd_end; 2265 lcoreid_t lc_id; 2266 portid_t pt_id; 2267 int i; 2268 2269 if (test_done) { 2270 fprintf(stderr, "Packet forwarding not started\n"); 2271 return; 2272 } 2273 printf("Telling cores to stop..."); 2274 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) 2275 fwd_lcores[lc_id]->stopped = 1; 2276 printf("\nWaiting for lcores to finish...\n"); 2277 rte_eal_mp_wait_lcore(); 2278 port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end; 2279 if (port_fwd_end != NULL) { 2280 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2281 pt_id = fwd_ports_ids[i]; 2282 (*port_fwd_end)(pt_id); 2283 } 2284 } 2285 2286 fwd_stats_display(); 2287 2288 printf("\nDone.\n"); 2289 test_done = 1; 2290 } 2291 2292 void 2293 dev_set_link_up(portid_t pid) 2294 { 2295 if (rte_eth_dev_set_link_up(pid) < 0) 2296 fprintf(stderr, "\nSet link up fail.\n"); 2297 } 2298 2299 void 2300 dev_set_link_down(portid_t pid) 2301 { 2302 if (rte_eth_dev_set_link_down(pid) < 0) 2303 fprintf(stderr, "\nSet link down fail.\n"); 2304 } 2305 2306 static int 2307 all_ports_started(void) 2308 { 2309 portid_t pi; 2310 struct rte_port *port; 2311 2312 RTE_ETH_FOREACH_DEV(pi) { 2313 port = &ports[pi]; 2314 /* Check if there is a port which is not started */ 2315 if ((port->port_status != RTE_PORT_STARTED) && 2316 (port->slave_flag == 0)) 2317 return 0; 2318 } 2319 2320 /* No port is not started */ 2321 return 1; 2322 } 2323 2324 int 2325 port_is_stopped(portid_t port_id) 2326 { 2327 struct rte_port *port = &ports[port_id]; 2328 2329 if ((port->port_status != RTE_PORT_STOPPED) && 2330 (port->slave_flag == 0)) 2331 return 0; 2332 return 1; 2333 } 2334 2335 int 2336 all_ports_stopped(void) 2337 { 2338 portid_t pi; 2339 2340 RTE_ETH_FOREACH_DEV(pi) { 2341 if (!port_is_stopped(pi)) 2342 return 0; 2343 } 2344 2345 return 1; 2346 } 2347 2348 int 2349 port_is_started(portid_t port_id) 2350 { 2351 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2352 return 0; 2353 2354 if (ports[port_id].port_status != RTE_PORT_STARTED) 2355 return 0; 2356 2357 return 1; 2358 } 2359 2360 /* Configure the Rx and Tx hairpin queues for the selected port. */ 2361 static int 2362 setup_hairpin_queues(portid_t pi, portid_t p_pi, uint16_t cnt_pi) 2363 { 2364 queueid_t qi; 2365 struct rte_eth_hairpin_conf hairpin_conf = { 2366 .peer_count = 1, 2367 }; 2368 int i; 2369 int diag; 2370 struct rte_port *port = &ports[pi]; 2371 uint16_t peer_rx_port = pi; 2372 uint16_t peer_tx_port = pi; 2373 uint32_t manual = 1; 2374 uint32_t tx_exp = hairpin_mode & 0x10; 2375 2376 if (!(hairpin_mode & 0xf)) { 2377 peer_rx_port = pi; 2378 peer_tx_port = pi; 2379 manual = 0; 2380 } else if (hairpin_mode & 0x1) { 2381 peer_tx_port = rte_eth_find_next_owned_by(pi + 1, 2382 RTE_ETH_DEV_NO_OWNER); 2383 if (peer_tx_port >= RTE_MAX_ETHPORTS) 2384 peer_tx_port = rte_eth_find_next_owned_by(0, 2385 RTE_ETH_DEV_NO_OWNER); 2386 if (p_pi != RTE_MAX_ETHPORTS) { 2387 peer_rx_port = p_pi; 2388 } else { 2389 uint16_t next_pi; 2390 2391 /* Last port will be the peer RX port of the first. */ 2392 RTE_ETH_FOREACH_DEV(next_pi) 2393 peer_rx_port = next_pi; 2394 } 2395 manual = 1; 2396 } else if (hairpin_mode & 0x2) { 2397 if (cnt_pi & 0x1) { 2398 peer_rx_port = p_pi; 2399 } else { 2400 peer_rx_port = rte_eth_find_next_owned_by(pi + 1, 2401 RTE_ETH_DEV_NO_OWNER); 2402 if (peer_rx_port >= RTE_MAX_ETHPORTS) 2403 peer_rx_port = pi; 2404 } 2405 peer_tx_port = peer_rx_port; 2406 manual = 1; 2407 } 2408 2409 for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) { 2410 hairpin_conf.peers[0].port = peer_rx_port; 2411 hairpin_conf.peers[0].queue = i + nb_rxq; 2412 hairpin_conf.manual_bind = !!manual; 2413 hairpin_conf.tx_explicit = !!tx_exp; 2414 diag = rte_eth_tx_hairpin_queue_setup 2415 (pi, qi, nb_txd, &hairpin_conf); 2416 i++; 2417 if (diag == 0) 2418 continue; 2419 2420 /* Fail to setup rx queue, return */ 2421 if (rte_atomic16_cmpset(&(port->port_status), 2422 RTE_PORT_HANDLING, 2423 RTE_PORT_STOPPED) == 0) 2424 fprintf(stderr, 2425 "Port %d can not be set back to stopped\n", pi); 2426 fprintf(stderr, "Fail to configure port %d hairpin queues\n", 2427 pi); 2428 /* try to reconfigure queues next time */ 2429 port->need_reconfig_queues = 1; 2430 return -1; 2431 } 2432 for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) { 2433 hairpin_conf.peers[0].port = peer_tx_port; 2434 hairpin_conf.peers[0].queue = i + nb_txq; 2435 hairpin_conf.manual_bind = !!manual; 2436 hairpin_conf.tx_explicit = !!tx_exp; 2437 diag = rte_eth_rx_hairpin_queue_setup 2438 (pi, qi, nb_rxd, &hairpin_conf); 2439 i++; 2440 if (diag == 0) 2441 continue; 2442 2443 /* Fail to setup rx queue, return */ 2444 if (rte_atomic16_cmpset(&(port->port_status), 2445 RTE_PORT_HANDLING, 2446 RTE_PORT_STOPPED) == 0) 2447 fprintf(stderr, 2448 "Port %d can not be set back to stopped\n", pi); 2449 fprintf(stderr, "Fail to configure port %d hairpin queues\n", 2450 pi); 2451 /* try to reconfigure queues next time */ 2452 port->need_reconfig_queues = 1; 2453 return -1; 2454 } 2455 return 0; 2456 } 2457 2458 /* Configure the Rx with optional split. */ 2459 int 2460 rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, 2461 uint16_t nb_rx_desc, unsigned int socket_id, 2462 struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) 2463 { 2464 union rte_eth_rxseg rx_useg[MAX_SEGS_BUFFER_SPLIT] = {}; 2465 unsigned int i, mp_n; 2466 int ret; 2467 2468 if (rx_pkt_nb_segs <= 1 || 2469 (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) == 0) { 2470 rx_conf->rx_seg = NULL; 2471 rx_conf->rx_nseg = 0; 2472 ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, 2473 nb_rx_desc, socket_id, 2474 rx_conf, mp); 2475 return ret; 2476 } 2477 for (i = 0; i < rx_pkt_nb_segs; i++) { 2478 struct rte_eth_rxseg_split *rx_seg = &rx_useg[i].split; 2479 struct rte_mempool *mpx; 2480 /* 2481 * Use last valid pool for the segments with number 2482 * exceeding the pool index. 2483 */ 2484 mp_n = (i > mbuf_data_size_n) ? mbuf_data_size_n - 1 : i; 2485 mpx = mbuf_pool_find(socket_id, mp_n); 2486 /* Handle zero as mbuf data buffer size. */ 2487 rx_seg->length = rx_pkt_seg_lengths[i] ? 2488 rx_pkt_seg_lengths[i] : 2489 mbuf_data_size[mp_n]; 2490 rx_seg->offset = i < rx_pkt_nb_offs ? 2491 rx_pkt_seg_offsets[i] : 0; 2492 rx_seg->mp = mpx ? mpx : mp; 2493 } 2494 rx_conf->rx_nseg = rx_pkt_nb_segs; 2495 rx_conf->rx_seg = rx_useg; 2496 ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, nb_rx_desc, 2497 socket_id, rx_conf, NULL); 2498 rx_conf->rx_seg = NULL; 2499 rx_conf->rx_nseg = 0; 2500 return ret; 2501 } 2502 2503 int 2504 start_port(portid_t pid) 2505 { 2506 int diag, need_check_link_status = -1; 2507 portid_t pi; 2508 portid_t p_pi = RTE_MAX_ETHPORTS; 2509 portid_t pl[RTE_MAX_ETHPORTS]; 2510 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2511 uint16_t cnt_pi = 0; 2512 uint16_t cfg_pi = 0; 2513 int peer_pi; 2514 queueid_t qi; 2515 struct rte_port *port; 2516 struct rte_eth_hairpin_cap cap; 2517 2518 if (port_id_is_invalid(pid, ENABLED_WARN)) 2519 return 0; 2520 2521 RTE_ETH_FOREACH_DEV(pi) { 2522 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2523 continue; 2524 2525 need_check_link_status = 0; 2526 port = &ports[pi]; 2527 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED, 2528 RTE_PORT_HANDLING) == 0) { 2529 fprintf(stderr, "Port %d is now not stopped\n", pi); 2530 continue; 2531 } 2532 2533 if (port->need_reconfig > 0) { 2534 port->need_reconfig = 0; 2535 2536 if (flow_isolate_all) { 2537 int ret = port_flow_isolate(pi, 1); 2538 if (ret) { 2539 fprintf(stderr, 2540 "Failed to apply isolated mode on port %d\n", 2541 pi); 2542 return -1; 2543 } 2544 } 2545 configure_rxtx_dump_callbacks(0); 2546 printf("Configuring Port %d (socket %u)\n", pi, 2547 port->socket_id); 2548 if (nb_hairpinq > 0 && 2549 rte_eth_dev_hairpin_capability_get(pi, &cap)) { 2550 fprintf(stderr, 2551 "Port %d doesn't support hairpin queues\n", 2552 pi); 2553 return -1; 2554 } 2555 /* configure port */ 2556 diag = eth_dev_configure_mp(pi, nb_rxq + nb_hairpinq, 2557 nb_txq + nb_hairpinq, 2558 &(port->dev_conf)); 2559 if (diag != 0) { 2560 if (rte_atomic16_cmpset(&(port->port_status), 2561 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2562 fprintf(stderr, 2563 "Port %d can not be set back to stopped\n", 2564 pi); 2565 fprintf(stderr, "Fail to configure port %d\n", 2566 pi); 2567 /* try to reconfigure port next time */ 2568 port->need_reconfig = 1; 2569 return -1; 2570 } 2571 } 2572 if (port->need_reconfig_queues > 0 && is_proc_primary()) { 2573 port->need_reconfig_queues = 0; 2574 /* setup tx queues */ 2575 for (qi = 0; qi < nb_txq; qi++) { 2576 if ((numa_support) && 2577 (txring_numa[pi] != NUMA_NO_CONFIG)) 2578 diag = rte_eth_tx_queue_setup(pi, qi, 2579 port->nb_tx_desc[qi], 2580 txring_numa[pi], 2581 &(port->tx_conf[qi])); 2582 else 2583 diag = rte_eth_tx_queue_setup(pi, qi, 2584 port->nb_tx_desc[qi], 2585 port->socket_id, 2586 &(port->tx_conf[qi])); 2587 2588 if (diag == 0) 2589 continue; 2590 2591 /* Fail to setup tx queue, return */ 2592 if (rte_atomic16_cmpset(&(port->port_status), 2593 RTE_PORT_HANDLING, 2594 RTE_PORT_STOPPED) == 0) 2595 fprintf(stderr, 2596 "Port %d can not be set back to stopped\n", 2597 pi); 2598 fprintf(stderr, 2599 "Fail to configure port %d tx queues\n", 2600 pi); 2601 /* try to reconfigure queues next time */ 2602 port->need_reconfig_queues = 1; 2603 return -1; 2604 } 2605 for (qi = 0; qi < nb_rxq; qi++) { 2606 /* setup rx queues */ 2607 if ((numa_support) && 2608 (rxring_numa[pi] != NUMA_NO_CONFIG)) { 2609 struct rte_mempool * mp = 2610 mbuf_pool_find 2611 (rxring_numa[pi], 0); 2612 if (mp == NULL) { 2613 fprintf(stderr, 2614 "Failed to setup RX queue: No mempool allocation on the socket %d\n", 2615 rxring_numa[pi]); 2616 return -1; 2617 } 2618 2619 diag = rx_queue_setup(pi, qi, 2620 port->nb_rx_desc[qi], 2621 rxring_numa[pi], 2622 &(port->rx_conf[qi]), 2623 mp); 2624 } else { 2625 struct rte_mempool *mp = 2626 mbuf_pool_find 2627 (port->socket_id, 0); 2628 if (mp == NULL) { 2629 fprintf(stderr, 2630 "Failed to setup RX queue: No mempool allocation on the socket %d\n", 2631 port->socket_id); 2632 return -1; 2633 } 2634 diag = rx_queue_setup(pi, qi, 2635 port->nb_rx_desc[qi], 2636 port->socket_id, 2637 &(port->rx_conf[qi]), 2638 mp); 2639 } 2640 if (diag == 0) 2641 continue; 2642 2643 /* Fail to setup rx queue, return */ 2644 if (rte_atomic16_cmpset(&(port->port_status), 2645 RTE_PORT_HANDLING, 2646 RTE_PORT_STOPPED) == 0) 2647 fprintf(stderr, 2648 "Port %d can not be set back to stopped\n", 2649 pi); 2650 fprintf(stderr, 2651 "Fail to configure port %d rx queues\n", 2652 pi); 2653 /* try to reconfigure queues next time */ 2654 port->need_reconfig_queues = 1; 2655 return -1; 2656 } 2657 /* setup hairpin queues */ 2658 if (setup_hairpin_queues(pi, p_pi, cnt_pi) != 0) 2659 return -1; 2660 } 2661 configure_rxtx_dump_callbacks(verbose_level); 2662 if (clear_ptypes) { 2663 diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN, 2664 NULL, 0); 2665 if (diag < 0) 2666 fprintf(stderr, 2667 "Port %d: Failed to disable Ptype parsing\n", 2668 pi); 2669 } 2670 2671 p_pi = pi; 2672 cnt_pi++; 2673 2674 /* start port */ 2675 diag = eth_dev_start_mp(pi); 2676 if (diag < 0) { 2677 fprintf(stderr, "Fail to start port %d: %s\n", 2678 pi, rte_strerror(-diag)); 2679 2680 /* Fail to setup rx queue, return */ 2681 if (rte_atomic16_cmpset(&(port->port_status), 2682 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2683 fprintf(stderr, 2684 "Port %d can not be set back to stopped\n", 2685 pi); 2686 continue; 2687 } 2688 2689 if (rte_atomic16_cmpset(&(port->port_status), 2690 RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0) 2691 fprintf(stderr, "Port %d can not be set into started\n", 2692 pi); 2693 2694 if (eth_macaddr_get_print_err(pi, &port->eth_addr) == 0) 2695 printf("Port %d: %02X:%02X:%02X:%02X:%02X:%02X\n", pi, 2696 port->eth_addr.addr_bytes[0], 2697 port->eth_addr.addr_bytes[1], 2698 port->eth_addr.addr_bytes[2], 2699 port->eth_addr.addr_bytes[3], 2700 port->eth_addr.addr_bytes[4], 2701 port->eth_addr.addr_bytes[5]); 2702 2703 /* at least one port started, need checking link status */ 2704 need_check_link_status = 1; 2705 2706 pl[cfg_pi++] = pi; 2707 } 2708 2709 if (need_check_link_status == 1 && !no_link_check) 2710 check_all_ports_link_status(RTE_PORT_ALL); 2711 else if (need_check_link_status == 0) 2712 fprintf(stderr, "Please stop the ports first\n"); 2713 2714 if (hairpin_mode & 0xf) { 2715 uint16_t i; 2716 int j; 2717 2718 /* bind all started hairpin ports */ 2719 for (i = 0; i < cfg_pi; i++) { 2720 pi = pl[i]; 2721 /* bind current Tx to all peer Rx */ 2722 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2723 RTE_MAX_ETHPORTS, 1); 2724 if (peer_pi < 0) 2725 return peer_pi; 2726 for (j = 0; j < peer_pi; j++) { 2727 if (!port_is_started(peer_pl[j])) 2728 continue; 2729 diag = rte_eth_hairpin_bind(pi, peer_pl[j]); 2730 if (diag < 0) { 2731 fprintf(stderr, 2732 "Error during binding hairpin Tx port %u to %u: %s\n", 2733 pi, peer_pl[j], 2734 rte_strerror(-diag)); 2735 return -1; 2736 } 2737 } 2738 /* bind all peer Tx to current Rx */ 2739 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2740 RTE_MAX_ETHPORTS, 0); 2741 if (peer_pi < 0) 2742 return peer_pi; 2743 for (j = 0; j < peer_pi; j++) { 2744 if (!port_is_started(peer_pl[j])) 2745 continue; 2746 diag = rte_eth_hairpin_bind(peer_pl[j], pi); 2747 if (diag < 0) { 2748 fprintf(stderr, 2749 "Error during binding hairpin Tx port %u to %u: %s\n", 2750 peer_pl[j], pi, 2751 rte_strerror(-diag)); 2752 return -1; 2753 } 2754 } 2755 } 2756 } 2757 2758 printf("Done\n"); 2759 return 0; 2760 } 2761 2762 void 2763 stop_port(portid_t pid) 2764 { 2765 portid_t pi; 2766 struct rte_port *port; 2767 int need_check_link_status = 0; 2768 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2769 int peer_pi; 2770 2771 if (port_id_is_invalid(pid, ENABLED_WARN)) 2772 return; 2773 2774 printf("Stopping ports...\n"); 2775 2776 RTE_ETH_FOREACH_DEV(pi) { 2777 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2778 continue; 2779 2780 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2781 fprintf(stderr, 2782 "Please remove port %d from forwarding configuration.\n", 2783 pi); 2784 continue; 2785 } 2786 2787 if (port_is_bonding_slave(pi)) { 2788 fprintf(stderr, 2789 "Please remove port %d from bonded device.\n", 2790 pi); 2791 continue; 2792 } 2793 2794 port = &ports[pi]; 2795 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED, 2796 RTE_PORT_HANDLING) == 0) 2797 continue; 2798 2799 if (hairpin_mode & 0xf) { 2800 int j; 2801 2802 rte_eth_hairpin_unbind(pi, RTE_MAX_ETHPORTS); 2803 /* unbind all peer Tx from current Rx */ 2804 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2805 RTE_MAX_ETHPORTS, 0); 2806 if (peer_pi < 0) 2807 continue; 2808 for (j = 0; j < peer_pi; j++) { 2809 if (!port_is_started(peer_pl[j])) 2810 continue; 2811 rte_eth_hairpin_unbind(peer_pl[j], pi); 2812 } 2813 } 2814 2815 if (port->flow_list) 2816 port_flow_flush(pi); 2817 2818 if (eth_dev_stop_mp(pi) != 0) 2819 RTE_LOG(ERR, EAL, "rte_eth_dev_stop failed for port %u\n", 2820 pi); 2821 2822 if (rte_atomic16_cmpset(&(port->port_status), 2823 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2824 fprintf(stderr, "Port %d can not be set into stopped\n", 2825 pi); 2826 need_check_link_status = 1; 2827 } 2828 if (need_check_link_status && !no_link_check) 2829 check_all_ports_link_status(RTE_PORT_ALL); 2830 2831 printf("Done\n"); 2832 } 2833 2834 static void 2835 remove_invalid_ports_in(portid_t *array, portid_t *total) 2836 { 2837 portid_t i; 2838 portid_t new_total = 0; 2839 2840 for (i = 0; i < *total; i++) 2841 if (!port_id_is_invalid(array[i], DISABLED_WARN)) { 2842 array[new_total] = array[i]; 2843 new_total++; 2844 } 2845 *total = new_total; 2846 } 2847 2848 static void 2849 remove_invalid_ports(void) 2850 { 2851 remove_invalid_ports_in(ports_ids, &nb_ports); 2852 remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports); 2853 nb_cfg_ports = nb_fwd_ports; 2854 } 2855 2856 void 2857 close_port(portid_t pid) 2858 { 2859 portid_t pi; 2860 struct rte_port *port; 2861 2862 if (port_id_is_invalid(pid, ENABLED_WARN)) 2863 return; 2864 2865 printf("Closing ports...\n"); 2866 2867 RTE_ETH_FOREACH_DEV(pi) { 2868 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2869 continue; 2870 2871 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2872 fprintf(stderr, 2873 "Please remove port %d from forwarding configuration.\n", 2874 pi); 2875 continue; 2876 } 2877 2878 if (port_is_bonding_slave(pi)) { 2879 fprintf(stderr, 2880 "Please remove port %d from bonded device.\n", 2881 pi); 2882 continue; 2883 } 2884 2885 port = &ports[pi]; 2886 if (rte_atomic16_cmpset(&(port->port_status), 2887 RTE_PORT_CLOSED, RTE_PORT_CLOSED) == 1) { 2888 fprintf(stderr, "Port %d is already closed\n", pi); 2889 continue; 2890 } 2891 2892 if (is_proc_primary()) { 2893 port_flow_flush(pi); 2894 rte_eth_dev_close(pi); 2895 } 2896 } 2897 2898 remove_invalid_ports(); 2899 printf("Done\n"); 2900 } 2901 2902 void 2903 reset_port(portid_t pid) 2904 { 2905 int diag; 2906 portid_t pi; 2907 struct rte_port *port; 2908 2909 if (port_id_is_invalid(pid, ENABLED_WARN)) 2910 return; 2911 2912 if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) || 2913 (pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) { 2914 fprintf(stderr, 2915 "Can not reset port(s), please stop port(s) first.\n"); 2916 return; 2917 } 2918 2919 printf("Resetting ports...\n"); 2920 2921 RTE_ETH_FOREACH_DEV(pi) { 2922 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2923 continue; 2924 2925 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2926 fprintf(stderr, 2927 "Please remove port %d from forwarding configuration.\n", 2928 pi); 2929 continue; 2930 } 2931 2932 if (port_is_bonding_slave(pi)) { 2933 fprintf(stderr, 2934 "Please remove port %d from bonded device.\n", 2935 pi); 2936 continue; 2937 } 2938 2939 diag = rte_eth_dev_reset(pi); 2940 if (diag == 0) { 2941 port = &ports[pi]; 2942 port->need_reconfig = 1; 2943 port->need_reconfig_queues = 1; 2944 } else { 2945 fprintf(stderr, "Failed to reset port %d. diag=%d\n", 2946 pi, diag); 2947 } 2948 } 2949 2950 printf("Done\n"); 2951 } 2952 2953 void 2954 attach_port(char *identifier) 2955 { 2956 portid_t pi; 2957 struct rte_dev_iterator iterator; 2958 2959 printf("Attaching a new port...\n"); 2960 2961 if (identifier == NULL) { 2962 fprintf(stderr, "Invalid parameters are specified\n"); 2963 return; 2964 } 2965 2966 if (rte_dev_probe(identifier) < 0) { 2967 TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier); 2968 return; 2969 } 2970 2971 /* first attach mode: event */ 2972 if (setup_on_probe_event) { 2973 /* new ports are detected on RTE_ETH_EVENT_NEW event */ 2974 for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++) 2975 if (ports[pi].port_status == RTE_PORT_HANDLING && 2976 ports[pi].need_setup != 0) 2977 setup_attached_port(pi); 2978 return; 2979 } 2980 2981 /* second attach mode: iterator */ 2982 RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) { 2983 /* setup ports matching the devargs used for probing */ 2984 if (port_is_forwarding(pi)) 2985 continue; /* port was already attached before */ 2986 setup_attached_port(pi); 2987 } 2988 } 2989 2990 static void 2991 setup_attached_port(portid_t pi) 2992 { 2993 unsigned int socket_id; 2994 int ret; 2995 2996 socket_id = (unsigned)rte_eth_dev_socket_id(pi); 2997 /* if socket_id is invalid, set to the first available socket. */ 2998 if (check_socket_id(socket_id) < 0) 2999 socket_id = socket_ids[0]; 3000 reconfig(pi, socket_id); 3001 ret = rte_eth_promiscuous_enable(pi); 3002 if (ret != 0) 3003 fprintf(stderr, 3004 "Error during enabling promiscuous mode for port %u: %s - ignore\n", 3005 pi, rte_strerror(-ret)); 3006 3007 ports_ids[nb_ports++] = pi; 3008 fwd_ports_ids[nb_fwd_ports++] = pi; 3009 nb_cfg_ports = nb_fwd_ports; 3010 ports[pi].need_setup = 0; 3011 ports[pi].port_status = RTE_PORT_STOPPED; 3012 3013 printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports); 3014 printf("Done\n"); 3015 } 3016 3017 static void 3018 detach_device(struct rte_device *dev) 3019 { 3020 portid_t sibling; 3021 3022 if (dev == NULL) { 3023 fprintf(stderr, "Device already removed\n"); 3024 return; 3025 } 3026 3027 printf("Removing a device...\n"); 3028 3029 RTE_ETH_FOREACH_DEV_OF(sibling, dev) { 3030 if (ports[sibling].port_status != RTE_PORT_CLOSED) { 3031 if (ports[sibling].port_status != RTE_PORT_STOPPED) { 3032 fprintf(stderr, "Port %u not stopped\n", 3033 sibling); 3034 return; 3035 } 3036 port_flow_flush(sibling); 3037 } 3038 } 3039 3040 if (rte_dev_remove(dev) < 0) { 3041 TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name); 3042 return; 3043 } 3044 remove_invalid_ports(); 3045 3046 printf("Device is detached\n"); 3047 printf("Now total ports is %d\n", nb_ports); 3048 printf("Done\n"); 3049 return; 3050 } 3051 3052 void 3053 detach_port_device(portid_t port_id) 3054 { 3055 int ret; 3056 struct rte_eth_dev_info dev_info; 3057 3058 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3059 return; 3060 3061 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3062 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3063 fprintf(stderr, "Port not stopped\n"); 3064 return; 3065 } 3066 fprintf(stderr, "Port was not closed\n"); 3067 } 3068 3069 ret = eth_dev_info_get_print_err(port_id, &dev_info); 3070 if (ret != 0) { 3071 TESTPMD_LOG(ERR, 3072 "Failed to get device info for port %d, not detaching\n", 3073 port_id); 3074 return; 3075 } 3076 detach_device(dev_info.device); 3077 } 3078 3079 void 3080 detach_devargs(char *identifier) 3081 { 3082 struct rte_dev_iterator iterator; 3083 struct rte_devargs da; 3084 portid_t port_id; 3085 3086 printf("Removing a device...\n"); 3087 3088 memset(&da, 0, sizeof(da)); 3089 if (rte_devargs_parsef(&da, "%s", identifier)) { 3090 fprintf(stderr, "cannot parse identifier\n"); 3091 return; 3092 } 3093 3094 RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) { 3095 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3096 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3097 fprintf(stderr, "Port %u not stopped\n", 3098 port_id); 3099 rte_eth_iterator_cleanup(&iterator); 3100 rte_devargs_reset(&da); 3101 return; 3102 } 3103 port_flow_flush(port_id); 3104 } 3105 } 3106 3107 if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) { 3108 TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n", 3109 da.name, da.bus->name); 3110 rte_devargs_reset(&da); 3111 return; 3112 } 3113 3114 remove_invalid_ports(); 3115 3116 printf("Device %s is detached\n", identifier); 3117 printf("Now total ports is %d\n", nb_ports); 3118 printf("Done\n"); 3119 rte_devargs_reset(&da); 3120 } 3121 3122 void 3123 pmd_test_exit(void) 3124 { 3125 portid_t pt_id; 3126 unsigned int i; 3127 int ret; 3128 3129 if (test_done == 0) 3130 stop_packet_forwarding(); 3131 3132 #ifndef RTE_EXEC_ENV_WINDOWS 3133 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3134 if (mempools[i]) { 3135 if (mp_alloc_type == MP_ALLOC_ANON) 3136 rte_mempool_mem_iter(mempools[i], dma_unmap_cb, 3137 NULL); 3138 } 3139 } 3140 #endif 3141 if (ports != NULL) { 3142 no_link_check = 1; 3143 RTE_ETH_FOREACH_DEV(pt_id) { 3144 printf("\nStopping port %d...\n", pt_id); 3145 fflush(stdout); 3146 stop_port(pt_id); 3147 } 3148 RTE_ETH_FOREACH_DEV(pt_id) { 3149 printf("\nShutting down port %d...\n", pt_id); 3150 fflush(stdout); 3151 close_port(pt_id); 3152 } 3153 } 3154 3155 if (hot_plug) { 3156 ret = rte_dev_event_monitor_stop(); 3157 if (ret) { 3158 RTE_LOG(ERR, EAL, 3159 "fail to stop device event monitor."); 3160 return; 3161 } 3162 3163 ret = rte_dev_event_callback_unregister(NULL, 3164 dev_event_callback, NULL); 3165 if (ret < 0) { 3166 RTE_LOG(ERR, EAL, 3167 "fail to unregister device event callback.\n"); 3168 return; 3169 } 3170 3171 ret = rte_dev_hotplug_handle_disable(); 3172 if (ret) { 3173 RTE_LOG(ERR, EAL, 3174 "fail to disable hotplug handling.\n"); 3175 return; 3176 } 3177 } 3178 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3179 if (mempools[i]) 3180 mempool_free_mp(mempools[i]); 3181 } 3182 3183 printf("\nBye...\n"); 3184 } 3185 3186 typedef void (*cmd_func_t)(void); 3187 struct pmd_test_command { 3188 const char *cmd_name; 3189 cmd_func_t cmd_func; 3190 }; 3191 3192 /* Check the link status of all ports in up to 9s, and print them finally */ 3193 static void 3194 check_all_ports_link_status(uint32_t port_mask) 3195 { 3196 #define CHECK_INTERVAL 100 /* 100ms */ 3197 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 3198 portid_t portid; 3199 uint8_t count, all_ports_up, print_flag = 0; 3200 struct rte_eth_link link; 3201 int ret; 3202 char link_status[RTE_ETH_LINK_MAX_STR_LEN]; 3203 3204 printf("Checking link statuses...\n"); 3205 fflush(stdout); 3206 for (count = 0; count <= MAX_CHECK_TIME; count++) { 3207 all_ports_up = 1; 3208 RTE_ETH_FOREACH_DEV(portid) { 3209 if ((port_mask & (1 << portid)) == 0) 3210 continue; 3211 memset(&link, 0, sizeof(link)); 3212 ret = rte_eth_link_get_nowait(portid, &link); 3213 if (ret < 0) { 3214 all_ports_up = 0; 3215 if (print_flag == 1) 3216 fprintf(stderr, 3217 "Port %u link get failed: %s\n", 3218 portid, rte_strerror(-ret)); 3219 continue; 3220 } 3221 /* print link status if flag set */ 3222 if (print_flag == 1) { 3223 rte_eth_link_to_str(link_status, 3224 sizeof(link_status), &link); 3225 printf("Port %d %s\n", portid, link_status); 3226 continue; 3227 } 3228 /* clear all_ports_up flag if any link down */ 3229 if (link.link_status == ETH_LINK_DOWN) { 3230 all_ports_up = 0; 3231 break; 3232 } 3233 } 3234 /* after finally printing all link status, get out */ 3235 if (print_flag == 1) 3236 break; 3237 3238 if (all_ports_up == 0) { 3239 fflush(stdout); 3240 rte_delay_ms(CHECK_INTERVAL); 3241 } 3242 3243 /* set the print_flag if all ports up or timeout */ 3244 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 3245 print_flag = 1; 3246 } 3247 3248 if (lsc_interrupt) 3249 break; 3250 } 3251 } 3252 3253 static void 3254 rmv_port_callback(void *arg) 3255 { 3256 int need_to_start = 0; 3257 int org_no_link_check = no_link_check; 3258 portid_t port_id = (intptr_t)arg; 3259 struct rte_eth_dev_info dev_info; 3260 int ret; 3261 3262 RTE_ETH_VALID_PORTID_OR_RET(port_id); 3263 3264 if (!test_done && port_is_forwarding(port_id)) { 3265 need_to_start = 1; 3266 stop_packet_forwarding(); 3267 } 3268 no_link_check = 1; 3269 stop_port(port_id); 3270 no_link_check = org_no_link_check; 3271 3272 ret = eth_dev_info_get_print_err(port_id, &dev_info); 3273 if (ret != 0) 3274 TESTPMD_LOG(ERR, 3275 "Failed to get device info for port %d, not detaching\n", 3276 port_id); 3277 else { 3278 struct rte_device *device = dev_info.device; 3279 close_port(port_id); 3280 detach_device(device); /* might be already removed or have more ports */ 3281 } 3282 if (need_to_start) 3283 start_packet_forwarding(0); 3284 } 3285 3286 /* This function is used by the interrupt thread */ 3287 static int 3288 eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param, 3289 void *ret_param) 3290 { 3291 RTE_SET_USED(param); 3292 RTE_SET_USED(ret_param); 3293 3294 if (type >= RTE_ETH_EVENT_MAX) { 3295 fprintf(stderr, 3296 "\nPort %" PRIu16 ": %s called upon invalid event %d\n", 3297 port_id, __func__, type); 3298 fflush(stderr); 3299 } else if (event_print_mask & (UINT32_C(1) << type)) { 3300 printf("\nPort %" PRIu16 ": %s event\n", port_id, 3301 eth_event_desc[type]); 3302 fflush(stdout); 3303 } 3304 3305 switch (type) { 3306 case RTE_ETH_EVENT_NEW: 3307 ports[port_id].need_setup = 1; 3308 ports[port_id].port_status = RTE_PORT_HANDLING; 3309 break; 3310 case RTE_ETH_EVENT_INTR_RMV: 3311 if (port_id_is_invalid(port_id, DISABLED_WARN)) 3312 break; 3313 if (rte_eal_alarm_set(100000, 3314 rmv_port_callback, (void *)(intptr_t)port_id)) 3315 fprintf(stderr, 3316 "Could not set up deferred device removal\n"); 3317 break; 3318 case RTE_ETH_EVENT_DESTROY: 3319 ports[port_id].port_status = RTE_PORT_CLOSED; 3320 printf("Port %u is closed\n", port_id); 3321 break; 3322 default: 3323 break; 3324 } 3325 return 0; 3326 } 3327 3328 static int 3329 register_eth_event_callback(void) 3330 { 3331 int ret; 3332 enum rte_eth_event_type event; 3333 3334 for (event = RTE_ETH_EVENT_UNKNOWN; 3335 event < RTE_ETH_EVENT_MAX; event++) { 3336 ret = rte_eth_dev_callback_register(RTE_ETH_ALL, 3337 event, 3338 eth_event_callback, 3339 NULL); 3340 if (ret != 0) { 3341 TESTPMD_LOG(ERR, "Failed to register callback for " 3342 "%s event\n", eth_event_desc[event]); 3343 return -1; 3344 } 3345 } 3346 3347 return 0; 3348 } 3349 3350 /* This function is used by the interrupt thread */ 3351 static void 3352 dev_event_callback(const char *device_name, enum rte_dev_event_type type, 3353 __rte_unused void *arg) 3354 { 3355 uint16_t port_id; 3356 int ret; 3357 3358 if (type >= RTE_DEV_EVENT_MAX) { 3359 fprintf(stderr, "%s called upon invalid event %d\n", 3360 __func__, type); 3361 fflush(stderr); 3362 } 3363 3364 switch (type) { 3365 case RTE_DEV_EVENT_REMOVE: 3366 RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n", 3367 device_name); 3368 ret = rte_eth_dev_get_port_by_name(device_name, &port_id); 3369 if (ret) { 3370 RTE_LOG(ERR, EAL, "can not get port by device %s!\n", 3371 device_name); 3372 return; 3373 } 3374 /* 3375 * Because the user's callback is invoked in eal interrupt 3376 * callback, the interrupt callback need to be finished before 3377 * it can be unregistered when detaching device. So finish 3378 * callback soon and use a deferred removal to detach device 3379 * is need. It is a workaround, once the device detaching be 3380 * moved into the eal in the future, the deferred removal could 3381 * be deleted. 3382 */ 3383 if (rte_eal_alarm_set(100000, 3384 rmv_port_callback, (void *)(intptr_t)port_id)) 3385 RTE_LOG(ERR, EAL, 3386 "Could not set up deferred device removal\n"); 3387 break; 3388 case RTE_DEV_EVENT_ADD: 3389 RTE_LOG(ERR, EAL, "The device: %s has been added!\n", 3390 device_name); 3391 /* TODO: After finish kernel driver binding, 3392 * begin to attach port. 3393 */ 3394 break; 3395 default: 3396 break; 3397 } 3398 } 3399 3400 static void 3401 rxtx_port_config(struct rte_port *port) 3402 { 3403 uint16_t qid; 3404 uint64_t offloads; 3405 3406 for (qid = 0; qid < nb_rxq; qid++) { 3407 offloads = port->rx_conf[qid].offloads; 3408 port->rx_conf[qid] = port->dev_info.default_rxconf; 3409 if (offloads != 0) 3410 port->rx_conf[qid].offloads = offloads; 3411 3412 /* Check if any Rx parameters have been passed */ 3413 if (rx_pthresh != RTE_PMD_PARAM_UNSET) 3414 port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh; 3415 3416 if (rx_hthresh != RTE_PMD_PARAM_UNSET) 3417 port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh; 3418 3419 if (rx_wthresh != RTE_PMD_PARAM_UNSET) 3420 port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh; 3421 3422 if (rx_free_thresh != RTE_PMD_PARAM_UNSET) 3423 port->rx_conf[qid].rx_free_thresh = rx_free_thresh; 3424 3425 if (rx_drop_en != RTE_PMD_PARAM_UNSET) 3426 port->rx_conf[qid].rx_drop_en = rx_drop_en; 3427 3428 port->nb_rx_desc[qid] = nb_rxd; 3429 } 3430 3431 for (qid = 0; qid < nb_txq; qid++) { 3432 offloads = port->tx_conf[qid].offloads; 3433 port->tx_conf[qid] = port->dev_info.default_txconf; 3434 if (offloads != 0) 3435 port->tx_conf[qid].offloads = offloads; 3436 3437 /* Check if any Tx parameters have been passed */ 3438 if (tx_pthresh != RTE_PMD_PARAM_UNSET) 3439 port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh; 3440 3441 if (tx_hthresh != RTE_PMD_PARAM_UNSET) 3442 port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh; 3443 3444 if (tx_wthresh != RTE_PMD_PARAM_UNSET) 3445 port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh; 3446 3447 if (tx_rs_thresh != RTE_PMD_PARAM_UNSET) 3448 port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh; 3449 3450 if (tx_free_thresh != RTE_PMD_PARAM_UNSET) 3451 port->tx_conf[qid].tx_free_thresh = tx_free_thresh; 3452 3453 port->nb_tx_desc[qid] = nb_txd; 3454 } 3455 } 3456 3457 /* 3458 * Helper function to arrange max_rx_pktlen value and JUMBO_FRAME offload, 3459 * MTU is also aligned if JUMBO_FRAME offload is not set. 3460 * 3461 * port->dev_info should be set before calling this function. 3462 * 3463 * return 0 on success, negative on error 3464 */ 3465 int 3466 update_jumbo_frame_offload(portid_t portid) 3467 { 3468 struct rte_port *port = &ports[portid]; 3469 uint32_t eth_overhead; 3470 uint64_t rx_offloads; 3471 int ret; 3472 bool on; 3473 3474 /* Update the max_rx_pkt_len to have MTU as RTE_ETHER_MTU */ 3475 if (port->dev_info.max_mtu != UINT16_MAX && 3476 port->dev_info.max_rx_pktlen > port->dev_info.max_mtu) 3477 eth_overhead = port->dev_info.max_rx_pktlen - 3478 port->dev_info.max_mtu; 3479 else 3480 eth_overhead = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN; 3481 3482 rx_offloads = port->dev_conf.rxmode.offloads; 3483 3484 /* Default config value is 0 to use PMD specific overhead */ 3485 if (port->dev_conf.rxmode.max_rx_pkt_len == 0) 3486 port->dev_conf.rxmode.max_rx_pkt_len = RTE_ETHER_MTU + eth_overhead; 3487 3488 if (port->dev_conf.rxmode.max_rx_pkt_len <= RTE_ETHER_MTU + eth_overhead) { 3489 rx_offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; 3490 on = false; 3491 } else { 3492 if ((port->dev_info.rx_offload_capa & DEV_RX_OFFLOAD_JUMBO_FRAME) == 0) { 3493 fprintf(stderr, 3494 "Frame size (%u) is not supported by port %u\n", 3495 port->dev_conf.rxmode.max_rx_pkt_len, 3496 portid); 3497 return -1; 3498 } 3499 rx_offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 3500 on = true; 3501 } 3502 3503 if (rx_offloads != port->dev_conf.rxmode.offloads) { 3504 uint16_t qid; 3505 3506 port->dev_conf.rxmode.offloads = rx_offloads; 3507 3508 /* Apply JUMBO_FRAME offload configuration to Rx queue(s) */ 3509 for (qid = 0; qid < port->dev_info.nb_rx_queues; qid++) { 3510 if (on) 3511 port->rx_conf[qid].offloads |= DEV_RX_OFFLOAD_JUMBO_FRAME; 3512 else 3513 port->rx_conf[qid].offloads &= ~DEV_RX_OFFLOAD_JUMBO_FRAME; 3514 } 3515 } 3516 3517 /* If JUMBO_FRAME is set MTU conversion done by ethdev layer, 3518 * if unset do it here 3519 */ 3520 if ((rx_offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) == 0) { 3521 ret = eth_dev_set_mtu_mp(portid, 3522 port->dev_conf.rxmode.max_rx_pkt_len - eth_overhead); 3523 if (ret) 3524 fprintf(stderr, 3525 "Failed to set MTU to %u for port %u\n", 3526 port->dev_conf.rxmode.max_rx_pkt_len - eth_overhead, 3527 portid); 3528 } 3529 3530 return 0; 3531 } 3532 3533 void 3534 init_port_config(void) 3535 { 3536 portid_t pid; 3537 struct rte_port *port; 3538 int ret; 3539 3540 RTE_ETH_FOREACH_DEV(pid) { 3541 port = &ports[pid]; 3542 port->dev_conf.fdir_conf = fdir_conf; 3543 3544 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 3545 if (ret != 0) 3546 return; 3547 3548 if (nb_rxq > 1) { 3549 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3550 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 3551 rss_hf & port->dev_info.flow_type_rss_offloads; 3552 } else { 3553 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3554 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0; 3555 } 3556 3557 if (port->dcb_flag == 0) { 3558 if( port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) 3559 port->dev_conf.rxmode.mq_mode = 3560 (enum rte_eth_rx_mq_mode) 3561 (rx_mq_mode & ETH_MQ_RX_RSS); 3562 else 3563 port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE; 3564 } 3565 3566 rxtx_port_config(port); 3567 3568 ret = eth_macaddr_get_print_err(pid, &port->eth_addr); 3569 if (ret != 0) 3570 return; 3571 3572 #if defined RTE_NET_IXGBE && defined RTE_LIBRTE_IXGBE_BYPASS 3573 rte_pmd_ixgbe_bypass_init(pid); 3574 #endif 3575 3576 if (lsc_interrupt && (*port->dev_info.dev_flags & RTE_ETH_DEV_INTR_LSC)) 3577 port->dev_conf.intr_conf.lsc = 1; 3578 if (rmv_interrupt && (*port->dev_info.dev_flags & RTE_ETH_DEV_INTR_RMV)) 3579 port->dev_conf.intr_conf.rmv = 1; 3580 } 3581 } 3582 3583 void set_port_slave_flag(portid_t slave_pid) 3584 { 3585 struct rte_port *port; 3586 3587 port = &ports[slave_pid]; 3588 port->slave_flag = 1; 3589 } 3590 3591 void clear_port_slave_flag(portid_t slave_pid) 3592 { 3593 struct rte_port *port; 3594 3595 port = &ports[slave_pid]; 3596 port->slave_flag = 0; 3597 } 3598 3599 uint8_t port_is_bonding_slave(portid_t slave_pid) 3600 { 3601 struct rte_port *port; 3602 struct rte_eth_dev_info dev_info; 3603 int ret; 3604 3605 port = &ports[slave_pid]; 3606 ret = eth_dev_info_get_print_err(slave_pid, &dev_info); 3607 if (ret != 0) { 3608 TESTPMD_LOG(ERR, 3609 "Failed to get device info for port id %d," 3610 "cannot determine if the port is a bonded slave", 3611 slave_pid); 3612 return 0; 3613 } 3614 if ((*dev_info.dev_flags & RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1)) 3615 return 1; 3616 return 0; 3617 } 3618 3619 const uint16_t vlan_tags[] = { 3620 0, 1, 2, 3, 4, 5, 6, 7, 3621 8, 9, 10, 11, 12, 13, 14, 15, 3622 16, 17, 18, 19, 20, 21, 22, 23, 3623 24, 25, 26, 27, 28, 29, 30, 31 3624 }; 3625 3626 static int 3627 get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf, 3628 enum dcb_mode_enable dcb_mode, 3629 enum rte_eth_nb_tcs num_tcs, 3630 uint8_t pfc_en) 3631 { 3632 uint8_t i; 3633 int32_t rc; 3634 struct rte_eth_rss_conf rss_conf; 3635 3636 /* 3637 * Builds up the correct configuration for dcb+vt based on the vlan tags array 3638 * given above, and the number of traffic classes available for use. 3639 */ 3640 if (dcb_mode == DCB_VT_ENABLED) { 3641 struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf = 3642 ð_conf->rx_adv_conf.vmdq_dcb_conf; 3643 struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf = 3644 ð_conf->tx_adv_conf.vmdq_dcb_tx_conf; 3645 3646 /* VMDQ+DCB RX and TX configurations */ 3647 vmdq_rx_conf->enable_default_pool = 0; 3648 vmdq_rx_conf->default_pool = 0; 3649 vmdq_rx_conf->nb_queue_pools = 3650 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3651 vmdq_tx_conf->nb_queue_pools = 3652 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3653 3654 vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools; 3655 for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) { 3656 vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i]; 3657 vmdq_rx_conf->pool_map[i].pools = 3658 1 << (i % vmdq_rx_conf->nb_queue_pools); 3659 } 3660 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3661 vmdq_rx_conf->dcb_tc[i] = i % num_tcs; 3662 vmdq_tx_conf->dcb_tc[i] = i % num_tcs; 3663 } 3664 3665 /* set DCB mode of RX and TX of multiple queues */ 3666 eth_conf->rxmode.mq_mode = 3667 (enum rte_eth_rx_mq_mode) 3668 (rx_mq_mode & ETH_MQ_RX_VMDQ_DCB); 3669 eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB; 3670 } else { 3671 struct rte_eth_dcb_rx_conf *rx_conf = 3672 ð_conf->rx_adv_conf.dcb_rx_conf; 3673 struct rte_eth_dcb_tx_conf *tx_conf = 3674 ð_conf->tx_adv_conf.dcb_tx_conf; 3675 3676 memset(&rss_conf, 0, sizeof(struct rte_eth_rss_conf)); 3677 3678 rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf); 3679 if (rc != 0) 3680 return rc; 3681 3682 rx_conf->nb_tcs = num_tcs; 3683 tx_conf->nb_tcs = num_tcs; 3684 3685 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3686 rx_conf->dcb_tc[i] = i % num_tcs; 3687 tx_conf->dcb_tc[i] = i % num_tcs; 3688 } 3689 3690 eth_conf->rxmode.mq_mode = 3691 (enum rte_eth_rx_mq_mode) 3692 (rx_mq_mode & ETH_MQ_RX_DCB_RSS); 3693 eth_conf->rx_adv_conf.rss_conf = rss_conf; 3694 eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB; 3695 } 3696 3697 if (pfc_en) 3698 eth_conf->dcb_capability_en = 3699 ETH_DCB_PG_SUPPORT | ETH_DCB_PFC_SUPPORT; 3700 else 3701 eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT; 3702 3703 return 0; 3704 } 3705 3706 int 3707 init_port_dcb_config(portid_t pid, 3708 enum dcb_mode_enable dcb_mode, 3709 enum rte_eth_nb_tcs num_tcs, 3710 uint8_t pfc_en) 3711 { 3712 struct rte_eth_conf port_conf; 3713 struct rte_port *rte_port; 3714 int retval; 3715 uint16_t i; 3716 3717 if (num_procs > 1) { 3718 printf("The multi-process feature doesn't support dcb.\n"); 3719 return -ENOTSUP; 3720 } 3721 rte_port = &ports[pid]; 3722 3723 memset(&port_conf, 0, sizeof(struct rte_eth_conf)); 3724 3725 port_conf.rxmode = rte_port->dev_conf.rxmode; 3726 port_conf.txmode = rte_port->dev_conf.txmode; 3727 3728 /*set configuration of DCB in vt mode and DCB in non-vt mode*/ 3729 retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en); 3730 if (retval < 0) 3731 return retval; 3732 port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3733 3734 /* re-configure the device . */ 3735 retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf); 3736 if (retval < 0) 3737 return retval; 3738 3739 retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info); 3740 if (retval != 0) 3741 return retval; 3742 3743 /* If dev_info.vmdq_pool_base is greater than 0, 3744 * the queue id of vmdq pools is started after pf queues. 3745 */ 3746 if (dcb_mode == DCB_VT_ENABLED && 3747 rte_port->dev_info.vmdq_pool_base > 0) { 3748 fprintf(stderr, 3749 "VMDQ_DCB multi-queue mode is nonsensical for port %d.\n", 3750 pid); 3751 return -1; 3752 } 3753 3754 /* Assume the ports in testpmd have the same dcb capability 3755 * and has the same number of rxq and txq in dcb mode 3756 */ 3757 if (dcb_mode == DCB_VT_ENABLED) { 3758 if (rte_port->dev_info.max_vfs > 0) { 3759 nb_rxq = rte_port->dev_info.nb_rx_queues; 3760 nb_txq = rte_port->dev_info.nb_tx_queues; 3761 } else { 3762 nb_rxq = rte_port->dev_info.max_rx_queues; 3763 nb_txq = rte_port->dev_info.max_tx_queues; 3764 } 3765 } else { 3766 /*if vt is disabled, use all pf queues */ 3767 if (rte_port->dev_info.vmdq_pool_base == 0) { 3768 nb_rxq = rte_port->dev_info.max_rx_queues; 3769 nb_txq = rte_port->dev_info.max_tx_queues; 3770 } else { 3771 nb_rxq = (queueid_t)num_tcs; 3772 nb_txq = (queueid_t)num_tcs; 3773 3774 } 3775 } 3776 rx_free_thresh = 64; 3777 3778 memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf)); 3779 3780 rxtx_port_config(rte_port); 3781 /* VLAN filter */ 3782 rte_port->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3783 for (i = 0; i < RTE_DIM(vlan_tags); i++) 3784 rx_vft_set(pid, vlan_tags[i], 1); 3785 3786 retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr); 3787 if (retval != 0) 3788 return retval; 3789 3790 rte_port->dcb_flag = 1; 3791 3792 /* Enter DCB configuration status */ 3793 dcb_config = 1; 3794 3795 return 0; 3796 } 3797 3798 static void 3799 init_port(void) 3800 { 3801 int i; 3802 3803 /* Configuration of Ethernet ports. */ 3804 ports = rte_zmalloc("testpmd: ports", 3805 sizeof(struct rte_port) * RTE_MAX_ETHPORTS, 3806 RTE_CACHE_LINE_SIZE); 3807 if (ports == NULL) { 3808 rte_exit(EXIT_FAILURE, 3809 "rte_zmalloc(%d struct rte_port) failed\n", 3810 RTE_MAX_ETHPORTS); 3811 } 3812 for (i = 0; i < RTE_MAX_ETHPORTS; i++) 3813 LIST_INIT(&ports[i].flow_tunnel_list); 3814 /* Initialize ports NUMA structures */ 3815 memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3816 memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3817 memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3818 } 3819 3820 static void 3821 force_quit(void) 3822 { 3823 pmd_test_exit(); 3824 prompt_exit(); 3825 } 3826 3827 static void 3828 print_stats(void) 3829 { 3830 uint8_t i; 3831 const char clr[] = { 27, '[', '2', 'J', '\0' }; 3832 const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 3833 3834 /* Clear screen and move to top left */ 3835 printf("%s%s", clr, top_left); 3836 3837 printf("\nPort statistics ===================================="); 3838 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 3839 nic_stats_display(fwd_ports_ids[i]); 3840 3841 fflush(stdout); 3842 } 3843 3844 static void 3845 signal_handler(int signum) 3846 { 3847 if (signum == SIGINT || signum == SIGTERM) { 3848 fprintf(stderr, "\nSignal %d received, preparing to exit...\n", 3849 signum); 3850 #ifdef RTE_LIB_PDUMP 3851 /* uninitialize packet capture framework */ 3852 rte_pdump_uninit(); 3853 #endif 3854 #ifdef RTE_LIB_LATENCYSTATS 3855 if (latencystats_enabled != 0) 3856 rte_latencystats_uninit(); 3857 #endif 3858 force_quit(); 3859 /* Set flag to indicate the force termination. */ 3860 f_quit = 1; 3861 /* exit with the expected status */ 3862 #ifndef RTE_EXEC_ENV_WINDOWS 3863 signal(signum, SIG_DFL); 3864 kill(getpid(), signum); 3865 #endif 3866 } 3867 } 3868 3869 int 3870 main(int argc, char** argv) 3871 { 3872 int diag; 3873 portid_t port_id; 3874 uint16_t count; 3875 int ret; 3876 3877 signal(SIGINT, signal_handler); 3878 signal(SIGTERM, signal_handler); 3879 3880 testpmd_logtype = rte_log_register("testpmd"); 3881 if (testpmd_logtype < 0) 3882 rte_exit(EXIT_FAILURE, "Cannot register log type"); 3883 rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG); 3884 3885 diag = rte_eal_init(argc, argv); 3886 if (diag < 0) 3887 rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n", 3888 rte_strerror(rte_errno)); 3889 3890 ret = register_eth_event_callback(); 3891 if (ret != 0) 3892 rte_exit(EXIT_FAILURE, "Cannot register for ethdev events"); 3893 3894 #ifdef RTE_LIB_PDUMP 3895 /* initialize packet capture framework */ 3896 rte_pdump_init(); 3897 #endif 3898 3899 count = 0; 3900 RTE_ETH_FOREACH_DEV(port_id) { 3901 ports_ids[count] = port_id; 3902 count++; 3903 } 3904 nb_ports = (portid_t) count; 3905 if (nb_ports == 0) 3906 TESTPMD_LOG(WARNING, "No probed ethernet devices\n"); 3907 3908 /* allocate port structures, and init them */ 3909 init_port(); 3910 3911 set_def_fwd_config(); 3912 if (nb_lcores == 0) 3913 rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n" 3914 "Check the core mask argument\n"); 3915 3916 /* Bitrate/latency stats disabled by default */ 3917 #ifdef RTE_LIB_BITRATESTATS 3918 bitrate_enabled = 0; 3919 #endif 3920 #ifdef RTE_LIB_LATENCYSTATS 3921 latencystats_enabled = 0; 3922 #endif 3923 3924 /* on FreeBSD, mlockall() is disabled by default */ 3925 #ifdef RTE_EXEC_ENV_FREEBSD 3926 do_mlockall = 0; 3927 #else 3928 do_mlockall = 1; 3929 #endif 3930 3931 argc -= diag; 3932 argv += diag; 3933 if (argc > 1) 3934 launch_args_parse(argc, argv); 3935 3936 #ifndef RTE_EXEC_ENV_WINDOWS 3937 if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) { 3938 TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n", 3939 strerror(errno)); 3940 } 3941 #endif 3942 3943 if (tx_first && interactive) 3944 rte_exit(EXIT_FAILURE, "--tx-first cannot be used on " 3945 "interactive mode.\n"); 3946 3947 if (tx_first && lsc_interrupt) { 3948 fprintf(stderr, 3949 "Warning: lsc_interrupt needs to be off when using tx_first. Disabling.\n"); 3950 lsc_interrupt = 0; 3951 } 3952 3953 if (!nb_rxq && !nb_txq) 3954 fprintf(stderr, 3955 "Warning: Either rx or tx queues should be non-zero\n"); 3956 3957 if (nb_rxq > 1 && nb_rxq > nb_txq) 3958 fprintf(stderr, 3959 "Warning: nb_rxq=%d enables RSS configuration, but nb_txq=%d will prevent to fully test it.\n", 3960 nb_rxq, nb_txq); 3961 3962 init_config(); 3963 3964 if (hot_plug) { 3965 ret = rte_dev_hotplug_handle_enable(); 3966 if (ret) { 3967 RTE_LOG(ERR, EAL, 3968 "fail to enable hotplug handling."); 3969 return -1; 3970 } 3971 3972 ret = rte_dev_event_monitor_start(); 3973 if (ret) { 3974 RTE_LOG(ERR, EAL, 3975 "fail to start device event monitoring."); 3976 return -1; 3977 } 3978 3979 ret = rte_dev_event_callback_register(NULL, 3980 dev_event_callback, NULL); 3981 if (ret) { 3982 RTE_LOG(ERR, EAL, 3983 "fail to register device event callback\n"); 3984 return -1; 3985 } 3986 } 3987 3988 if (!no_device_start && start_port(RTE_PORT_ALL) != 0) 3989 rte_exit(EXIT_FAILURE, "Start ports failed\n"); 3990 3991 /* set all ports to promiscuous mode by default */ 3992 RTE_ETH_FOREACH_DEV(port_id) { 3993 ret = rte_eth_promiscuous_enable(port_id); 3994 if (ret != 0) 3995 fprintf(stderr, 3996 "Error during enabling promiscuous mode for port %u: %s - ignore\n", 3997 port_id, rte_strerror(-ret)); 3998 } 3999 4000 /* Init metrics library */ 4001 rte_metrics_init(rte_socket_id()); 4002 4003 #ifdef RTE_LIB_LATENCYSTATS 4004 if (latencystats_enabled != 0) { 4005 int ret = rte_latencystats_init(1, NULL); 4006 if (ret) 4007 fprintf(stderr, 4008 "Warning: latencystats init() returned error %d\n", 4009 ret); 4010 fprintf(stderr, "Latencystats running on lcore %d\n", 4011 latencystats_lcore_id); 4012 } 4013 #endif 4014 4015 /* Setup bitrate stats */ 4016 #ifdef RTE_LIB_BITRATESTATS 4017 if (bitrate_enabled != 0) { 4018 bitrate_data = rte_stats_bitrate_create(); 4019 if (bitrate_data == NULL) 4020 rte_exit(EXIT_FAILURE, 4021 "Could not allocate bitrate data.\n"); 4022 rte_stats_bitrate_reg(bitrate_data); 4023 } 4024 #endif 4025 4026 #ifdef RTE_LIB_CMDLINE 4027 if (strlen(cmdline_filename) != 0) 4028 cmdline_read_from_file(cmdline_filename); 4029 4030 if (interactive == 1) { 4031 if (auto_start) { 4032 printf("Start automatic packet forwarding\n"); 4033 start_packet_forwarding(0); 4034 } 4035 prompt(); 4036 pmd_test_exit(); 4037 } else 4038 #endif 4039 { 4040 char c; 4041 int rc; 4042 4043 f_quit = 0; 4044 4045 printf("No commandline core given, start packet forwarding\n"); 4046 start_packet_forwarding(tx_first); 4047 if (stats_period != 0) { 4048 uint64_t prev_time = 0, cur_time, diff_time = 0; 4049 uint64_t timer_period; 4050 4051 /* Convert to number of cycles */ 4052 timer_period = stats_period * rte_get_timer_hz(); 4053 4054 while (f_quit == 0) { 4055 cur_time = rte_get_timer_cycles(); 4056 diff_time += cur_time - prev_time; 4057 4058 if (diff_time >= timer_period) { 4059 print_stats(); 4060 /* Reset the timer */ 4061 diff_time = 0; 4062 } 4063 /* Sleep to avoid unnecessary checks */ 4064 prev_time = cur_time; 4065 rte_delay_us_sleep(US_PER_S); 4066 } 4067 } 4068 4069 printf("Press enter to exit\n"); 4070 rc = read(0, &c, 1); 4071 pmd_test_exit(); 4072 if (rc < 0) 4073 return 1; 4074 } 4075 4076 ret = rte_eal_cleanup(); 4077 if (ret != 0) 4078 rte_exit(EXIT_FAILURE, 4079 "EAL cleanup failed: %s\n", strerror(-ret)); 4080 4081 return EXIT_SUCCESS; 4082 } 4083