1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2017 Intel Corporation 3 */ 4 5 #include <stdarg.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <signal.h> 9 #include <string.h> 10 #include <time.h> 11 #include <fcntl.h> 12 #include <sys/mman.h> 13 #include <sys/types.h> 14 #include <errno.h> 15 #include <stdbool.h> 16 17 #include <sys/queue.h> 18 #include <sys/stat.h> 19 20 #include <stdint.h> 21 #include <unistd.h> 22 #include <inttypes.h> 23 24 #include <rte_common.h> 25 #include <rte_errno.h> 26 #include <rte_byteorder.h> 27 #include <rte_log.h> 28 #include <rte_debug.h> 29 #include <rte_cycles.h> 30 #include <rte_memory.h> 31 #include <rte_memcpy.h> 32 #include <rte_launch.h> 33 #include <rte_eal.h> 34 #include <rte_alarm.h> 35 #include <rte_per_lcore.h> 36 #include <rte_lcore.h> 37 #include <rte_atomic.h> 38 #include <rte_branch_prediction.h> 39 #include <rte_mempool.h> 40 #include <rte_malloc.h> 41 #include <rte_mbuf.h> 42 #include <rte_mbuf_pool_ops.h> 43 #include <rte_interrupts.h> 44 #include <rte_pci.h> 45 #include <rte_ether.h> 46 #include <rte_ethdev.h> 47 #include <rte_dev.h> 48 #include <rte_string_fns.h> 49 #ifdef RTE_LIBRTE_IXGBE_PMD 50 #include <rte_pmd_ixgbe.h> 51 #endif 52 #ifdef RTE_LIBRTE_PDUMP 53 #include <rte_pdump.h> 54 #endif 55 #include <rte_flow.h> 56 #include <rte_metrics.h> 57 #ifdef RTE_LIBRTE_BITRATESTATS 58 #include <rte_bitrate.h> 59 #endif 60 #ifdef RTE_LIBRTE_LATENCY_STATS 61 #include <rte_latencystats.h> 62 #endif 63 64 #include "testpmd.h" 65 66 #ifndef MAP_HUGETLB 67 /* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */ 68 #define HUGE_FLAG (0x40000) 69 #else 70 #define HUGE_FLAG MAP_HUGETLB 71 #endif 72 73 #ifndef MAP_HUGE_SHIFT 74 /* older kernels (or FreeBSD) will not have this define */ 75 #define HUGE_SHIFT (26) 76 #else 77 #define HUGE_SHIFT MAP_HUGE_SHIFT 78 #endif 79 80 #define EXTMEM_HEAP_NAME "extmem" 81 #define EXTBUF_ZONE_SIZE RTE_PGSIZE_2M 82 83 uint16_t verbose_level = 0; /**< Silent by default. */ 84 int testpmd_logtype; /**< Log type for testpmd logs */ 85 86 /* use master core for command line ? */ 87 uint8_t interactive = 0; 88 uint8_t auto_start = 0; 89 uint8_t tx_first; 90 char cmdline_filename[PATH_MAX] = {0}; 91 92 /* 93 * NUMA support configuration. 94 * When set, the NUMA support attempts to dispatch the allocation of the 95 * RX and TX memory rings, and of the DMA memory buffers (mbufs) for the 96 * probed ports among the CPU sockets 0 and 1. 97 * Otherwise, all memory is allocated from CPU socket 0. 98 */ 99 uint8_t numa_support = 1; /**< numa enabled by default */ 100 101 /* 102 * In UMA mode,all memory is allocated from socket 0 if --socket-num is 103 * not configured. 104 */ 105 uint8_t socket_num = UMA_NO_CONFIG; 106 107 /* 108 * Select mempool allocation type: 109 * - native: use regular DPDK memory 110 * - anon: use regular DPDK memory to create mempool, but populate using 111 * anonymous memory (may not be IOVA-contiguous) 112 * - xmem: use externally allocated hugepage memory 113 */ 114 uint8_t mp_alloc_type = MP_ALLOC_NATIVE; 115 116 /* 117 * Store specified sockets on which memory pool to be used by ports 118 * is allocated. 119 */ 120 uint8_t port_numa[RTE_MAX_ETHPORTS]; 121 122 /* 123 * Store specified sockets on which RX ring to be used by ports 124 * is allocated. 125 */ 126 uint8_t rxring_numa[RTE_MAX_ETHPORTS]; 127 128 /* 129 * Store specified sockets on which TX ring to be used by ports 130 * is allocated. 131 */ 132 uint8_t txring_numa[RTE_MAX_ETHPORTS]; 133 134 /* 135 * Record the Ethernet address of peer target ports to which packets are 136 * forwarded. 137 * Must be instantiated with the ethernet addresses of peer traffic generator 138 * ports. 139 */ 140 struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS]; 141 portid_t nb_peer_eth_addrs = 0; 142 143 /* 144 * Probed Target Environment. 145 */ 146 struct rte_port *ports; /**< For all probed ethernet ports. */ 147 portid_t nb_ports; /**< Number of probed ethernet ports. */ 148 struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */ 149 lcoreid_t nb_lcores; /**< Number of probed logical cores. */ 150 151 portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */ 152 153 /* 154 * Test Forwarding Configuration. 155 * nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores 156 * nb_fwd_ports <= nb_cfg_ports <= nb_ports 157 */ 158 lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */ 159 lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */ 160 portid_t nb_cfg_ports; /**< Number of configured ports. */ 161 portid_t nb_fwd_ports; /**< Number of forwarding ports. */ 162 163 unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */ 164 portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */ 165 166 struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */ 167 streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */ 168 169 /* 170 * Forwarding engines. 171 */ 172 struct fwd_engine * fwd_engines[] = { 173 &io_fwd_engine, 174 &mac_fwd_engine, 175 &mac_swap_engine, 176 &flow_gen_engine, 177 &rx_only_engine, 178 &tx_only_engine, 179 &csum_fwd_engine, 180 &icmp_echo_engine, 181 &noisy_vnf_engine, 182 &five_tuple_swap_fwd_engine, 183 #ifdef RTE_LIBRTE_IEEE1588 184 &ieee1588_fwd_engine, 185 #endif 186 NULL, 187 }; 188 189 struct rte_mempool *mempools[RTE_MAX_NUMA_NODES * MAX_SEGS_BUFFER_SPLIT]; 190 uint16_t mempool_flags; 191 192 struct fwd_config cur_fwd_config; 193 struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */ 194 uint32_t retry_enabled; 195 uint32_t burst_tx_delay_time = BURST_TX_WAIT_US; 196 uint32_t burst_tx_retry_num = BURST_TX_RETRIES; 197 198 uint32_t mbuf_data_size_n = 1; /* Number of specified mbuf sizes. */ 199 uint16_t mbuf_data_size[MAX_SEGS_BUFFER_SPLIT] = { 200 DEFAULT_MBUF_DATA_SIZE 201 }; /**< Mbuf data space size. */ 202 uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if 203 * specified on command-line. */ 204 uint16_t stats_period; /**< Period to show statistics (disabled by default) */ 205 206 /* 207 * In container, it cannot terminate the process which running with 'stats-period' 208 * option. Set flag to exit stats period loop after received SIGINT/SIGTERM. 209 */ 210 uint8_t f_quit; 211 212 /* 213 * Configuration of packet segments used to scatter received packets 214 * if some of split features is configured. 215 */ 216 uint16_t rx_pkt_seg_lengths[MAX_SEGS_BUFFER_SPLIT]; 217 uint8_t rx_pkt_nb_segs; /**< Number of segments to split */ 218 uint16_t rx_pkt_seg_offsets[MAX_SEGS_BUFFER_SPLIT]; 219 uint8_t rx_pkt_nb_offs; /**< Number of specified offsets */ 220 221 /* 222 * Configuration of packet segments used by the "txonly" processing engine. 223 */ 224 uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */ 225 uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = { 226 TXONLY_DEF_PACKET_LEN, 227 }; 228 uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */ 229 230 enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF; 231 /**< Split policy for packets to TX. */ 232 233 uint8_t txonly_multi_flow; 234 /**< Whether multiple flows are generated in TXONLY mode. */ 235 236 uint32_t tx_pkt_times_inter; 237 /**< Timings for send scheduling in TXONLY mode, time between bursts. */ 238 239 uint32_t tx_pkt_times_intra; 240 /**< Timings for send scheduling in TXONLY mode, time between packets. */ 241 242 uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */ 243 uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */ 244 245 /* current configuration is in DCB or not,0 means it is not in DCB mode */ 246 uint8_t dcb_config = 0; 247 248 /* Whether the dcb is in testing status */ 249 uint8_t dcb_test = 0; 250 251 /* 252 * Configurable number of RX/TX queues. 253 */ 254 queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */ 255 queueid_t nb_rxq = 1; /**< Number of RX queues per port. */ 256 queueid_t nb_txq = 1; /**< Number of TX queues per port. */ 257 258 /* 259 * Configurable number of RX/TX ring descriptors. 260 * Defaults are supplied by drivers via ethdev. 261 */ 262 #define RTE_TEST_RX_DESC_DEFAULT 0 263 #define RTE_TEST_TX_DESC_DEFAULT 0 264 uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */ 265 uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */ 266 267 #define RTE_PMD_PARAM_UNSET -1 268 /* 269 * Configurable values of RX and TX ring threshold registers. 270 */ 271 272 int8_t rx_pthresh = RTE_PMD_PARAM_UNSET; 273 int8_t rx_hthresh = RTE_PMD_PARAM_UNSET; 274 int8_t rx_wthresh = RTE_PMD_PARAM_UNSET; 275 276 int8_t tx_pthresh = RTE_PMD_PARAM_UNSET; 277 int8_t tx_hthresh = RTE_PMD_PARAM_UNSET; 278 int8_t tx_wthresh = RTE_PMD_PARAM_UNSET; 279 280 /* 281 * Configurable value of RX free threshold. 282 */ 283 int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET; 284 285 /* 286 * Configurable value of RX drop enable. 287 */ 288 int8_t rx_drop_en = RTE_PMD_PARAM_UNSET; 289 290 /* 291 * Configurable value of TX free threshold. 292 */ 293 int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET; 294 295 /* 296 * Configurable value of TX RS bit threshold. 297 */ 298 int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET; 299 300 /* 301 * Configurable value of buffered packets before sending. 302 */ 303 uint16_t noisy_tx_sw_bufsz; 304 305 /* 306 * Configurable value of packet buffer timeout. 307 */ 308 uint16_t noisy_tx_sw_buf_flush_time; 309 310 /* 311 * Configurable value for size of VNF internal memory area 312 * used for simulating noisy neighbour behaviour 313 */ 314 uint64_t noisy_lkup_mem_sz; 315 316 /* 317 * Configurable value of number of random writes done in 318 * VNF simulation memory area. 319 */ 320 uint64_t noisy_lkup_num_writes; 321 322 /* 323 * Configurable value of number of random reads done in 324 * VNF simulation memory area. 325 */ 326 uint64_t noisy_lkup_num_reads; 327 328 /* 329 * Configurable value of number of random reads/writes done in 330 * VNF simulation memory area. 331 */ 332 uint64_t noisy_lkup_num_reads_writes; 333 334 /* 335 * Receive Side Scaling (RSS) configuration. 336 */ 337 uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */ 338 339 /* 340 * Port topology configuration 341 */ 342 uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */ 343 344 /* 345 * Avoids to flush all the RX streams before starts forwarding. 346 */ 347 uint8_t no_flush_rx = 0; /* flush by default */ 348 349 /* 350 * Flow API isolated mode. 351 */ 352 uint8_t flow_isolate_all; 353 354 /* 355 * Avoids to check link status when starting/stopping a port. 356 */ 357 uint8_t no_link_check = 0; /* check by default */ 358 359 /* 360 * Don't automatically start all ports in interactive mode. 361 */ 362 uint8_t no_device_start = 0; 363 364 /* 365 * Enable link status change notification 366 */ 367 uint8_t lsc_interrupt = 1; /* enabled by default */ 368 369 /* 370 * Enable device removal notification. 371 */ 372 uint8_t rmv_interrupt = 1; /* enabled by default */ 373 374 uint8_t hot_plug = 0; /**< hotplug disabled by default. */ 375 376 /* After attach, port setup is called on event or by iterator */ 377 bool setup_on_probe_event = true; 378 379 /* Clear ptypes on port initialization. */ 380 uint8_t clear_ptypes = true; 381 382 /* Hairpin ports configuration mode. */ 383 uint16_t hairpin_mode; 384 385 /* Pretty printing of ethdev events */ 386 static const char * const eth_event_desc[] = { 387 [RTE_ETH_EVENT_UNKNOWN] = "unknown", 388 [RTE_ETH_EVENT_INTR_LSC] = "link state change", 389 [RTE_ETH_EVENT_QUEUE_STATE] = "queue state", 390 [RTE_ETH_EVENT_INTR_RESET] = "reset", 391 [RTE_ETH_EVENT_VF_MBOX] = "VF mbox", 392 [RTE_ETH_EVENT_IPSEC] = "IPsec", 393 [RTE_ETH_EVENT_MACSEC] = "MACsec", 394 [RTE_ETH_EVENT_INTR_RMV] = "device removal", 395 [RTE_ETH_EVENT_NEW] = "device probed", 396 [RTE_ETH_EVENT_DESTROY] = "device released", 397 [RTE_ETH_EVENT_FLOW_AGED] = "flow aged", 398 [RTE_ETH_EVENT_MAX] = NULL, 399 }; 400 401 /* 402 * Display or mask ether events 403 * Default to all events except VF_MBOX 404 */ 405 uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) | 406 (UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) | 407 (UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) | 408 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) | 409 (UINT32_C(1) << RTE_ETH_EVENT_IPSEC) | 410 (UINT32_C(1) << RTE_ETH_EVENT_MACSEC) | 411 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV) | 412 (UINT32_C(1) << RTE_ETH_EVENT_FLOW_AGED); 413 /* 414 * Decide if all memory are locked for performance. 415 */ 416 int do_mlockall = 0; 417 418 /* 419 * NIC bypass mode configuration options. 420 */ 421 422 #if defined RTE_LIBRTE_IXGBE_PMD && defined RTE_LIBRTE_IXGBE_BYPASS 423 /* The NIC bypass watchdog timeout. */ 424 uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF; 425 #endif 426 427 428 #ifdef RTE_LIBRTE_LATENCY_STATS 429 430 /* 431 * Set when latency stats is enabled in the commandline 432 */ 433 uint8_t latencystats_enabled; 434 435 /* 436 * Lcore ID to serive latency statistics. 437 */ 438 lcoreid_t latencystats_lcore_id = -1; 439 440 #endif 441 442 /* 443 * Ethernet device configuration. 444 */ 445 struct rte_eth_rxmode rx_mode = { 446 .max_rx_pkt_len = RTE_ETHER_MAX_LEN, 447 /**< Default maximum frame length. */ 448 }; 449 450 struct rte_eth_txmode tx_mode = { 451 .offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE, 452 }; 453 454 struct rte_fdir_conf fdir_conf = { 455 .mode = RTE_FDIR_MODE_NONE, 456 .pballoc = RTE_FDIR_PBALLOC_64K, 457 .status = RTE_FDIR_REPORT_STATUS, 458 .mask = { 459 .vlan_tci_mask = 0xFFEF, 460 .ipv4_mask = { 461 .src_ip = 0xFFFFFFFF, 462 .dst_ip = 0xFFFFFFFF, 463 }, 464 .ipv6_mask = { 465 .src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 466 .dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 467 }, 468 .src_port_mask = 0xFFFF, 469 .dst_port_mask = 0xFFFF, 470 .mac_addr_byte_mask = 0xFF, 471 .tunnel_type_mask = 1, 472 .tunnel_id_mask = 0xFFFFFFFF, 473 }, 474 .drop_queue = 127, 475 }; 476 477 volatile int test_done = 1; /* stop packet forwarding when set to 1. */ 478 479 struct queue_stats_mappings tx_queue_stats_mappings_array[MAX_TX_QUEUE_STATS_MAPPINGS]; 480 struct queue_stats_mappings rx_queue_stats_mappings_array[MAX_RX_QUEUE_STATS_MAPPINGS]; 481 482 struct queue_stats_mappings *tx_queue_stats_mappings = tx_queue_stats_mappings_array; 483 struct queue_stats_mappings *rx_queue_stats_mappings = rx_queue_stats_mappings_array; 484 485 uint16_t nb_tx_queue_stats_mappings = 0; 486 uint16_t nb_rx_queue_stats_mappings = 0; 487 488 /* 489 * Display zero values by default for xstats 490 */ 491 uint8_t xstats_hide_zero; 492 493 /* 494 * Measure of CPU cycles disabled by default 495 */ 496 uint8_t record_core_cycles; 497 498 /* 499 * Display of RX and TX bursts disabled by default 500 */ 501 uint8_t record_burst_stats; 502 503 unsigned int num_sockets = 0; 504 unsigned int socket_ids[RTE_MAX_NUMA_NODES]; 505 506 #ifdef RTE_LIBRTE_BITRATESTATS 507 /* Bitrate statistics */ 508 struct rte_stats_bitrates *bitrate_data; 509 lcoreid_t bitrate_lcore_id; 510 uint8_t bitrate_enabled; 511 #endif 512 513 struct gro_status gro_ports[RTE_MAX_ETHPORTS]; 514 uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES; 515 516 /* 517 * hexadecimal bitmask of RX mq mode can be enabled. 518 */ 519 enum rte_eth_rx_mq_mode rx_mq_mode = ETH_MQ_RX_VMDQ_DCB_RSS; 520 521 /* Forward function declarations */ 522 static void setup_attached_port(portid_t pi); 523 static void map_port_queue_stats_mapping_registers(portid_t pi, 524 struct rte_port *port); 525 static void check_all_ports_link_status(uint32_t port_mask); 526 static int eth_event_callback(portid_t port_id, 527 enum rte_eth_event_type type, 528 void *param, void *ret_param); 529 static void dev_event_callback(const char *device_name, 530 enum rte_dev_event_type type, 531 void *param); 532 533 /* 534 * Check if all the ports are started. 535 * If yes, return positive value. If not, return zero. 536 */ 537 static int all_ports_started(void); 538 539 struct gso_status gso_ports[RTE_MAX_ETHPORTS]; 540 uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN; 541 542 /* Holds the registered mbuf dynamic flags names. */ 543 char dynf_names[64][RTE_MBUF_DYN_NAMESIZE]; 544 545 /* 546 * Helper function to check if socket is already discovered. 547 * If yes, return positive value. If not, return zero. 548 */ 549 int 550 new_socket_id(unsigned int socket_id) 551 { 552 unsigned int i; 553 554 for (i = 0; i < num_sockets; i++) { 555 if (socket_ids[i] == socket_id) 556 return 0; 557 } 558 return 1; 559 } 560 561 /* 562 * Setup default configuration. 563 */ 564 static void 565 set_default_fwd_lcores_config(void) 566 { 567 unsigned int i; 568 unsigned int nb_lc; 569 unsigned int sock_num; 570 571 nb_lc = 0; 572 for (i = 0; i < RTE_MAX_LCORE; i++) { 573 if (!rte_lcore_is_enabled(i)) 574 continue; 575 sock_num = rte_lcore_to_socket_id(i); 576 if (new_socket_id(sock_num)) { 577 if (num_sockets >= RTE_MAX_NUMA_NODES) { 578 rte_exit(EXIT_FAILURE, 579 "Total sockets greater than %u\n", 580 RTE_MAX_NUMA_NODES); 581 } 582 socket_ids[num_sockets++] = sock_num; 583 } 584 if (i == rte_get_master_lcore()) 585 continue; 586 fwd_lcores_cpuids[nb_lc++] = i; 587 } 588 nb_lcores = (lcoreid_t) nb_lc; 589 nb_cfg_lcores = nb_lcores; 590 nb_fwd_lcores = 1; 591 } 592 593 static void 594 set_def_peer_eth_addrs(void) 595 { 596 portid_t i; 597 598 for (i = 0; i < RTE_MAX_ETHPORTS; i++) { 599 peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR; 600 peer_eth_addrs[i].addr_bytes[5] = i; 601 } 602 } 603 604 static void 605 set_default_fwd_ports_config(void) 606 { 607 portid_t pt_id; 608 int i = 0; 609 610 RTE_ETH_FOREACH_DEV(pt_id) { 611 fwd_ports_ids[i++] = pt_id; 612 613 /* Update sockets info according to the attached device */ 614 int socket_id = rte_eth_dev_socket_id(pt_id); 615 if (socket_id >= 0 && new_socket_id(socket_id)) { 616 if (num_sockets >= RTE_MAX_NUMA_NODES) { 617 rte_exit(EXIT_FAILURE, 618 "Total sockets greater than %u\n", 619 RTE_MAX_NUMA_NODES); 620 } 621 socket_ids[num_sockets++] = socket_id; 622 } 623 } 624 625 nb_cfg_ports = nb_ports; 626 nb_fwd_ports = nb_ports; 627 } 628 629 void 630 set_def_fwd_config(void) 631 { 632 set_default_fwd_lcores_config(); 633 set_def_peer_eth_addrs(); 634 set_default_fwd_ports_config(); 635 } 636 637 /* extremely pessimistic estimation of memory required to create a mempool */ 638 static int 639 calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out) 640 { 641 unsigned int n_pages, mbuf_per_pg, leftover; 642 uint64_t total_mem, mbuf_mem, obj_sz; 643 644 /* there is no good way to predict how much space the mempool will 645 * occupy because it will allocate chunks on the fly, and some of those 646 * will come from default DPDK memory while some will come from our 647 * external memory, so just assume 128MB will be enough for everyone. 648 */ 649 uint64_t hdr_mem = 128 << 20; 650 651 /* account for possible non-contiguousness */ 652 obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL); 653 if (obj_sz > pgsz) { 654 TESTPMD_LOG(ERR, "Object size is bigger than page size\n"); 655 return -1; 656 } 657 658 mbuf_per_pg = pgsz / obj_sz; 659 leftover = (nb_mbufs % mbuf_per_pg) > 0; 660 n_pages = (nb_mbufs / mbuf_per_pg) + leftover; 661 662 mbuf_mem = n_pages * pgsz; 663 664 total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz); 665 666 if (total_mem > SIZE_MAX) { 667 TESTPMD_LOG(ERR, "Memory size too big\n"); 668 return -1; 669 } 670 *out = (size_t)total_mem; 671 672 return 0; 673 } 674 675 static int 676 pagesz_flags(uint64_t page_sz) 677 { 678 /* as per mmap() manpage, all page sizes are log2 of page size 679 * shifted by MAP_HUGE_SHIFT 680 */ 681 int log2 = rte_log2_u64(page_sz); 682 683 return (log2 << HUGE_SHIFT); 684 } 685 686 static void * 687 alloc_mem(size_t memsz, size_t pgsz, bool huge) 688 { 689 void *addr; 690 int flags; 691 692 /* allocate anonymous hugepages */ 693 flags = MAP_ANONYMOUS | MAP_PRIVATE; 694 if (huge) 695 flags |= HUGE_FLAG | pagesz_flags(pgsz); 696 697 addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0); 698 if (addr == MAP_FAILED) 699 return NULL; 700 701 return addr; 702 } 703 704 struct extmem_param { 705 void *addr; 706 size_t len; 707 size_t pgsz; 708 rte_iova_t *iova_table; 709 unsigned int iova_table_len; 710 }; 711 712 static int 713 create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param, 714 bool huge) 715 { 716 uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */ 717 RTE_PGSIZE_16M, RTE_PGSIZE_16G}; /* POWER */ 718 unsigned int cur_page, n_pages, pgsz_idx; 719 size_t mem_sz, cur_pgsz; 720 rte_iova_t *iovas = NULL; 721 void *addr; 722 int ret; 723 724 for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) { 725 /* skip anything that is too big */ 726 if (pgsizes[pgsz_idx] > SIZE_MAX) 727 continue; 728 729 cur_pgsz = pgsizes[pgsz_idx]; 730 731 /* if we were told not to allocate hugepages, override */ 732 if (!huge) 733 cur_pgsz = sysconf(_SC_PAGESIZE); 734 735 ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz); 736 if (ret < 0) { 737 TESTPMD_LOG(ERR, "Cannot calculate memory size\n"); 738 return -1; 739 } 740 741 /* allocate our memory */ 742 addr = alloc_mem(mem_sz, cur_pgsz, huge); 743 744 /* if we couldn't allocate memory with a specified page size, 745 * that doesn't mean we can't do it with other page sizes, so 746 * try another one. 747 */ 748 if (addr == NULL) 749 continue; 750 751 /* store IOVA addresses for every page in this memory area */ 752 n_pages = mem_sz / cur_pgsz; 753 754 iovas = malloc(sizeof(*iovas) * n_pages); 755 756 if (iovas == NULL) { 757 TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n"); 758 goto fail; 759 } 760 /* lock memory if it's not huge pages */ 761 if (!huge) 762 mlock(addr, mem_sz); 763 764 /* populate IOVA addresses */ 765 for (cur_page = 0; cur_page < n_pages; cur_page++) { 766 rte_iova_t iova; 767 size_t offset; 768 void *cur; 769 770 offset = cur_pgsz * cur_page; 771 cur = RTE_PTR_ADD(addr, offset); 772 773 /* touch the page before getting its IOVA */ 774 *(volatile char *)cur = 0; 775 776 iova = rte_mem_virt2iova(cur); 777 778 iovas[cur_page] = iova; 779 } 780 781 break; 782 } 783 /* if we couldn't allocate anything */ 784 if (iovas == NULL) 785 return -1; 786 787 param->addr = addr; 788 param->len = mem_sz; 789 param->pgsz = cur_pgsz; 790 param->iova_table = iovas; 791 param->iova_table_len = n_pages; 792 793 return 0; 794 fail: 795 if (iovas) 796 free(iovas); 797 if (addr) 798 munmap(addr, mem_sz); 799 800 return -1; 801 } 802 803 static int 804 setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge) 805 { 806 struct extmem_param param; 807 int socket_id, ret; 808 809 memset(¶m, 0, sizeof(param)); 810 811 /* check if our heap exists */ 812 socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 813 if (socket_id < 0) { 814 /* create our heap */ 815 ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME); 816 if (ret < 0) { 817 TESTPMD_LOG(ERR, "Cannot create heap\n"); 818 return -1; 819 } 820 } 821 822 ret = create_extmem(nb_mbufs, mbuf_sz, ¶m, huge); 823 if (ret < 0) { 824 TESTPMD_LOG(ERR, "Cannot create memory area\n"); 825 return -1; 826 } 827 828 /* we now have a valid memory area, so add it to heap */ 829 ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME, 830 param.addr, param.len, param.iova_table, 831 param.iova_table_len, param.pgsz); 832 833 /* when using VFIO, memory is automatically mapped for DMA by EAL */ 834 835 /* not needed any more */ 836 free(param.iova_table); 837 838 if (ret < 0) { 839 TESTPMD_LOG(ERR, "Cannot add memory to heap\n"); 840 munmap(param.addr, param.len); 841 return -1; 842 } 843 844 /* success */ 845 846 TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n", 847 param.len >> 20); 848 849 return 0; 850 } 851 static void 852 dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 853 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 854 { 855 uint16_t pid = 0; 856 int ret; 857 858 RTE_ETH_FOREACH_DEV(pid) { 859 struct rte_eth_dev *dev = 860 &rte_eth_devices[pid]; 861 862 ret = rte_dev_dma_unmap(dev->device, memhdr->addr, 0, 863 memhdr->len); 864 if (ret) { 865 TESTPMD_LOG(DEBUG, 866 "unable to DMA unmap addr 0x%p " 867 "for device %s\n", 868 memhdr->addr, dev->data->name); 869 } 870 } 871 ret = rte_extmem_unregister(memhdr->addr, memhdr->len); 872 if (ret) { 873 TESTPMD_LOG(DEBUG, 874 "unable to un-register addr 0x%p\n", memhdr->addr); 875 } 876 } 877 878 static void 879 dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 880 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 881 { 882 uint16_t pid = 0; 883 size_t page_size = sysconf(_SC_PAGESIZE); 884 int ret; 885 886 ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0, 887 page_size); 888 if (ret) { 889 TESTPMD_LOG(DEBUG, 890 "unable to register addr 0x%p\n", memhdr->addr); 891 return; 892 } 893 RTE_ETH_FOREACH_DEV(pid) { 894 struct rte_eth_dev *dev = 895 &rte_eth_devices[pid]; 896 897 ret = rte_dev_dma_map(dev->device, memhdr->addr, 0, 898 memhdr->len); 899 if (ret) { 900 TESTPMD_LOG(DEBUG, 901 "unable to DMA map addr 0x%p " 902 "for device %s\n", 903 memhdr->addr, dev->data->name); 904 } 905 } 906 } 907 908 static unsigned int 909 setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id, 910 char *pool_name, struct rte_pktmbuf_extmem **ext_mem) 911 { 912 struct rte_pktmbuf_extmem *xmem; 913 unsigned int ext_num, zone_num, elt_num; 914 uint16_t elt_size; 915 916 elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE); 917 elt_num = EXTBUF_ZONE_SIZE / elt_size; 918 zone_num = (nb_mbufs + elt_num - 1) / elt_num; 919 920 xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num); 921 if (xmem == NULL) { 922 TESTPMD_LOG(ERR, "Cannot allocate memory for " 923 "external buffer descriptors\n"); 924 *ext_mem = NULL; 925 return 0; 926 } 927 for (ext_num = 0; ext_num < zone_num; ext_num++) { 928 struct rte_pktmbuf_extmem *xseg = xmem + ext_num; 929 const struct rte_memzone *mz; 930 char mz_name[RTE_MEMZONE_NAMESIZE]; 931 int ret; 932 933 ret = snprintf(mz_name, sizeof(mz_name), 934 RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num); 935 if (ret < 0 || ret >= (int)sizeof(mz_name)) { 936 errno = ENAMETOOLONG; 937 ext_num = 0; 938 break; 939 } 940 mz = rte_memzone_reserve_aligned(mz_name, EXTBUF_ZONE_SIZE, 941 socket_id, 942 RTE_MEMZONE_IOVA_CONTIG | 943 RTE_MEMZONE_1GB | 944 RTE_MEMZONE_SIZE_HINT_ONLY, 945 EXTBUF_ZONE_SIZE); 946 if (mz == NULL) { 947 /* 948 * The caller exits on external buffer creation 949 * error, so there is no need to free memzones. 950 */ 951 errno = ENOMEM; 952 ext_num = 0; 953 break; 954 } 955 xseg->buf_ptr = mz->addr; 956 xseg->buf_iova = mz->iova; 957 xseg->buf_len = EXTBUF_ZONE_SIZE; 958 xseg->elt_size = elt_size; 959 } 960 if (ext_num == 0 && xmem != NULL) { 961 free(xmem); 962 xmem = NULL; 963 } 964 *ext_mem = xmem; 965 return ext_num; 966 } 967 968 /* 969 * Configuration initialisation done once at init time. 970 */ 971 static struct rte_mempool * 972 mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf, 973 unsigned int socket_id, uint16_t size_idx) 974 { 975 char pool_name[RTE_MEMPOOL_NAMESIZE]; 976 struct rte_mempool *rte_mp = NULL; 977 uint32_t mb_size; 978 979 mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size; 980 mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name), size_idx); 981 982 TESTPMD_LOG(INFO, 983 "create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n", 984 pool_name, nb_mbuf, mbuf_seg_size, socket_id); 985 986 switch (mp_alloc_type) { 987 case MP_ALLOC_NATIVE: 988 { 989 /* wrapper to rte_mempool_create() */ 990 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 991 rte_mbuf_best_mempool_ops()); 992 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 993 mb_mempool_cache, 0, mbuf_seg_size, socket_id); 994 break; 995 } 996 case MP_ALLOC_ANON: 997 { 998 rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf, 999 mb_size, (unsigned int) mb_mempool_cache, 1000 sizeof(struct rte_pktmbuf_pool_private), 1001 socket_id, mempool_flags); 1002 if (rte_mp == NULL) 1003 goto err; 1004 1005 if (rte_mempool_populate_anon(rte_mp) == 0) { 1006 rte_mempool_free(rte_mp); 1007 rte_mp = NULL; 1008 goto err; 1009 } 1010 rte_pktmbuf_pool_init(rte_mp, NULL); 1011 rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL); 1012 rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL); 1013 break; 1014 } 1015 case MP_ALLOC_XMEM: 1016 case MP_ALLOC_XMEM_HUGE: 1017 { 1018 int heap_socket; 1019 bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE; 1020 1021 if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0) 1022 rte_exit(EXIT_FAILURE, "Could not create external memory\n"); 1023 1024 heap_socket = 1025 rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 1026 if (heap_socket < 0) 1027 rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n"); 1028 1029 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1030 rte_mbuf_best_mempool_ops()); 1031 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 1032 mb_mempool_cache, 0, mbuf_seg_size, 1033 heap_socket); 1034 break; 1035 } 1036 case MP_ALLOC_XBUF: 1037 { 1038 struct rte_pktmbuf_extmem *ext_mem; 1039 unsigned int ext_num; 1040 1041 ext_num = setup_extbuf(nb_mbuf, mbuf_seg_size, 1042 socket_id, pool_name, &ext_mem); 1043 if (ext_num == 0) 1044 rte_exit(EXIT_FAILURE, 1045 "Can't create pinned data buffers\n"); 1046 1047 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1048 rte_mbuf_best_mempool_ops()); 1049 rte_mp = rte_pktmbuf_pool_create_extbuf 1050 (pool_name, nb_mbuf, mb_mempool_cache, 1051 0, mbuf_seg_size, socket_id, 1052 ext_mem, ext_num); 1053 free(ext_mem); 1054 break; 1055 } 1056 default: 1057 { 1058 rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n"); 1059 } 1060 } 1061 1062 err: 1063 if (rte_mp == NULL) { 1064 rte_exit(EXIT_FAILURE, 1065 "Creation of mbuf pool for socket %u failed: %s\n", 1066 socket_id, rte_strerror(rte_errno)); 1067 } else if (verbose_level > 0) { 1068 rte_mempool_dump(stdout, rte_mp); 1069 } 1070 return rte_mp; 1071 } 1072 1073 /* 1074 * Check given socket id is valid or not with NUMA mode, 1075 * if valid, return 0, else return -1 1076 */ 1077 static int 1078 check_socket_id(const unsigned int socket_id) 1079 { 1080 static int warning_once = 0; 1081 1082 if (new_socket_id(socket_id)) { 1083 if (!warning_once && numa_support) 1084 printf("Warning: NUMA should be configured manually by" 1085 " using --port-numa-config and" 1086 " --ring-numa-config parameters along with" 1087 " --numa.\n"); 1088 warning_once = 1; 1089 return -1; 1090 } 1091 return 0; 1092 } 1093 1094 /* 1095 * Get the allowed maximum number of RX queues. 1096 * *pid return the port id which has minimal value of 1097 * max_rx_queues in all ports. 1098 */ 1099 queueid_t 1100 get_allowed_max_nb_rxq(portid_t *pid) 1101 { 1102 queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT; 1103 bool max_rxq_valid = false; 1104 portid_t pi; 1105 struct rte_eth_dev_info dev_info; 1106 1107 RTE_ETH_FOREACH_DEV(pi) { 1108 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1109 continue; 1110 1111 max_rxq_valid = true; 1112 if (dev_info.max_rx_queues < allowed_max_rxq) { 1113 allowed_max_rxq = dev_info.max_rx_queues; 1114 *pid = pi; 1115 } 1116 } 1117 return max_rxq_valid ? allowed_max_rxq : 0; 1118 } 1119 1120 /* 1121 * Check input rxq is valid or not. 1122 * If input rxq is not greater than any of maximum number 1123 * of RX queues of all ports, it is valid. 1124 * if valid, return 0, else return -1 1125 */ 1126 int 1127 check_nb_rxq(queueid_t rxq) 1128 { 1129 queueid_t allowed_max_rxq; 1130 portid_t pid = 0; 1131 1132 allowed_max_rxq = get_allowed_max_nb_rxq(&pid); 1133 if (rxq > allowed_max_rxq) { 1134 printf("Fail: input rxq (%u) can't be greater " 1135 "than max_rx_queues (%u) of port %u\n", 1136 rxq, 1137 allowed_max_rxq, 1138 pid); 1139 return -1; 1140 } 1141 return 0; 1142 } 1143 1144 /* 1145 * Get the allowed maximum number of TX queues. 1146 * *pid return the port id which has minimal value of 1147 * max_tx_queues in all ports. 1148 */ 1149 queueid_t 1150 get_allowed_max_nb_txq(portid_t *pid) 1151 { 1152 queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT; 1153 bool max_txq_valid = false; 1154 portid_t pi; 1155 struct rte_eth_dev_info dev_info; 1156 1157 RTE_ETH_FOREACH_DEV(pi) { 1158 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1159 continue; 1160 1161 max_txq_valid = true; 1162 if (dev_info.max_tx_queues < allowed_max_txq) { 1163 allowed_max_txq = dev_info.max_tx_queues; 1164 *pid = pi; 1165 } 1166 } 1167 return max_txq_valid ? allowed_max_txq : 0; 1168 } 1169 1170 /* 1171 * Check input txq is valid or not. 1172 * If input txq is not greater than any of maximum number 1173 * of TX queues of all ports, it is valid. 1174 * if valid, return 0, else return -1 1175 */ 1176 int 1177 check_nb_txq(queueid_t txq) 1178 { 1179 queueid_t allowed_max_txq; 1180 portid_t pid = 0; 1181 1182 allowed_max_txq = get_allowed_max_nb_txq(&pid); 1183 if (txq > allowed_max_txq) { 1184 printf("Fail: input txq (%u) can't be greater " 1185 "than max_tx_queues (%u) of port %u\n", 1186 txq, 1187 allowed_max_txq, 1188 pid); 1189 return -1; 1190 } 1191 return 0; 1192 } 1193 1194 /* 1195 * Get the allowed maximum number of RXDs of every rx queue. 1196 * *pid return the port id which has minimal value of 1197 * max_rxd in all queues of all ports. 1198 */ 1199 static uint16_t 1200 get_allowed_max_nb_rxd(portid_t *pid) 1201 { 1202 uint16_t allowed_max_rxd = UINT16_MAX; 1203 portid_t pi; 1204 struct rte_eth_dev_info dev_info; 1205 1206 RTE_ETH_FOREACH_DEV(pi) { 1207 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1208 continue; 1209 1210 if (dev_info.rx_desc_lim.nb_max < allowed_max_rxd) { 1211 allowed_max_rxd = dev_info.rx_desc_lim.nb_max; 1212 *pid = pi; 1213 } 1214 } 1215 return allowed_max_rxd; 1216 } 1217 1218 /* 1219 * Get the allowed minimal number of RXDs of every rx queue. 1220 * *pid return the port id which has minimal value of 1221 * min_rxd in all queues of all ports. 1222 */ 1223 static uint16_t 1224 get_allowed_min_nb_rxd(portid_t *pid) 1225 { 1226 uint16_t allowed_min_rxd = 0; 1227 portid_t pi; 1228 struct rte_eth_dev_info dev_info; 1229 1230 RTE_ETH_FOREACH_DEV(pi) { 1231 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1232 continue; 1233 1234 if (dev_info.rx_desc_lim.nb_min > allowed_min_rxd) { 1235 allowed_min_rxd = dev_info.rx_desc_lim.nb_min; 1236 *pid = pi; 1237 } 1238 } 1239 1240 return allowed_min_rxd; 1241 } 1242 1243 /* 1244 * Check input rxd is valid or not. 1245 * If input rxd is not greater than any of maximum number 1246 * of RXDs of every Rx queues and is not less than any of 1247 * minimal number of RXDs of every Rx queues, it is valid. 1248 * if valid, return 0, else return -1 1249 */ 1250 int 1251 check_nb_rxd(queueid_t rxd) 1252 { 1253 uint16_t allowed_max_rxd; 1254 uint16_t allowed_min_rxd; 1255 portid_t pid = 0; 1256 1257 allowed_max_rxd = get_allowed_max_nb_rxd(&pid); 1258 if (rxd > allowed_max_rxd) { 1259 printf("Fail: input rxd (%u) can't be greater " 1260 "than max_rxds (%u) of port %u\n", 1261 rxd, 1262 allowed_max_rxd, 1263 pid); 1264 return -1; 1265 } 1266 1267 allowed_min_rxd = get_allowed_min_nb_rxd(&pid); 1268 if (rxd < allowed_min_rxd) { 1269 printf("Fail: input rxd (%u) can't be less " 1270 "than min_rxds (%u) of port %u\n", 1271 rxd, 1272 allowed_min_rxd, 1273 pid); 1274 return -1; 1275 } 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * Get the allowed maximum number of TXDs of every rx queues. 1282 * *pid return the port id which has minimal value of 1283 * max_txd in every tx queue. 1284 */ 1285 static uint16_t 1286 get_allowed_max_nb_txd(portid_t *pid) 1287 { 1288 uint16_t allowed_max_txd = UINT16_MAX; 1289 portid_t pi; 1290 struct rte_eth_dev_info dev_info; 1291 1292 RTE_ETH_FOREACH_DEV(pi) { 1293 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1294 continue; 1295 1296 if (dev_info.tx_desc_lim.nb_max < allowed_max_txd) { 1297 allowed_max_txd = dev_info.tx_desc_lim.nb_max; 1298 *pid = pi; 1299 } 1300 } 1301 return allowed_max_txd; 1302 } 1303 1304 /* 1305 * Get the allowed maximum number of TXDs of every tx queues. 1306 * *pid return the port id which has minimal value of 1307 * min_txd in every tx queue. 1308 */ 1309 static uint16_t 1310 get_allowed_min_nb_txd(portid_t *pid) 1311 { 1312 uint16_t allowed_min_txd = 0; 1313 portid_t pi; 1314 struct rte_eth_dev_info dev_info; 1315 1316 RTE_ETH_FOREACH_DEV(pi) { 1317 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1318 continue; 1319 1320 if (dev_info.tx_desc_lim.nb_min > allowed_min_txd) { 1321 allowed_min_txd = dev_info.tx_desc_lim.nb_min; 1322 *pid = pi; 1323 } 1324 } 1325 1326 return allowed_min_txd; 1327 } 1328 1329 /* 1330 * Check input txd is valid or not. 1331 * If input txd is not greater than any of maximum number 1332 * of TXDs of every Rx queues, it is valid. 1333 * if valid, return 0, else return -1 1334 */ 1335 int 1336 check_nb_txd(queueid_t txd) 1337 { 1338 uint16_t allowed_max_txd; 1339 uint16_t allowed_min_txd; 1340 portid_t pid = 0; 1341 1342 allowed_max_txd = get_allowed_max_nb_txd(&pid); 1343 if (txd > allowed_max_txd) { 1344 printf("Fail: input txd (%u) can't be greater " 1345 "than max_txds (%u) of port %u\n", 1346 txd, 1347 allowed_max_txd, 1348 pid); 1349 return -1; 1350 } 1351 1352 allowed_min_txd = get_allowed_min_nb_txd(&pid); 1353 if (txd < allowed_min_txd) { 1354 printf("Fail: input txd (%u) can't be less " 1355 "than min_txds (%u) of port %u\n", 1356 txd, 1357 allowed_min_txd, 1358 pid); 1359 return -1; 1360 } 1361 return 0; 1362 } 1363 1364 1365 /* 1366 * Get the allowed maximum number of hairpin queues. 1367 * *pid return the port id which has minimal value of 1368 * max_hairpin_queues in all ports. 1369 */ 1370 queueid_t 1371 get_allowed_max_nb_hairpinq(portid_t *pid) 1372 { 1373 queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT; 1374 portid_t pi; 1375 struct rte_eth_hairpin_cap cap; 1376 1377 RTE_ETH_FOREACH_DEV(pi) { 1378 if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) { 1379 *pid = pi; 1380 return 0; 1381 } 1382 if (cap.max_nb_queues < allowed_max_hairpinq) { 1383 allowed_max_hairpinq = cap.max_nb_queues; 1384 *pid = pi; 1385 } 1386 } 1387 return allowed_max_hairpinq; 1388 } 1389 1390 /* 1391 * Check input hairpin is valid or not. 1392 * If input hairpin is not greater than any of maximum number 1393 * of hairpin queues of all ports, it is valid. 1394 * if valid, return 0, else return -1 1395 */ 1396 int 1397 check_nb_hairpinq(queueid_t hairpinq) 1398 { 1399 queueid_t allowed_max_hairpinq; 1400 portid_t pid = 0; 1401 1402 allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid); 1403 if (hairpinq > allowed_max_hairpinq) { 1404 printf("Fail: input hairpin (%u) can't be greater " 1405 "than max_hairpin_queues (%u) of port %u\n", 1406 hairpinq, allowed_max_hairpinq, pid); 1407 return -1; 1408 } 1409 return 0; 1410 } 1411 1412 static void 1413 init_config(void) 1414 { 1415 portid_t pid; 1416 struct rte_port *port; 1417 struct rte_mempool *mbp; 1418 unsigned int nb_mbuf_per_pool; 1419 lcoreid_t lc_id; 1420 uint8_t port_per_socket[RTE_MAX_NUMA_NODES]; 1421 struct rte_gro_param gro_param; 1422 uint32_t gso_types; 1423 uint16_t data_size; 1424 bool warning = 0; 1425 int k; 1426 int ret; 1427 1428 memset(port_per_socket,0,RTE_MAX_NUMA_NODES); 1429 1430 /* Configuration of logical cores. */ 1431 fwd_lcores = rte_zmalloc("testpmd: fwd_lcores", 1432 sizeof(struct fwd_lcore *) * nb_lcores, 1433 RTE_CACHE_LINE_SIZE); 1434 if (fwd_lcores == NULL) { 1435 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) " 1436 "failed\n", nb_lcores); 1437 } 1438 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1439 fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore", 1440 sizeof(struct fwd_lcore), 1441 RTE_CACHE_LINE_SIZE); 1442 if (fwd_lcores[lc_id] == NULL) { 1443 rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) " 1444 "failed\n"); 1445 } 1446 fwd_lcores[lc_id]->cpuid_idx = lc_id; 1447 } 1448 1449 RTE_ETH_FOREACH_DEV(pid) { 1450 port = &ports[pid]; 1451 /* Apply default TxRx configuration for all ports */ 1452 port->dev_conf.txmode = tx_mode; 1453 port->dev_conf.rxmode = rx_mode; 1454 1455 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 1456 if (ret != 0) 1457 rte_exit(EXIT_FAILURE, 1458 "rte_eth_dev_info_get() failed\n"); 1459 1460 if (!(port->dev_info.tx_offload_capa & 1461 DEV_TX_OFFLOAD_MBUF_FAST_FREE)) 1462 port->dev_conf.txmode.offloads &= 1463 ~DEV_TX_OFFLOAD_MBUF_FAST_FREE; 1464 if (numa_support) { 1465 if (port_numa[pid] != NUMA_NO_CONFIG) 1466 port_per_socket[port_numa[pid]]++; 1467 else { 1468 uint32_t socket_id = rte_eth_dev_socket_id(pid); 1469 1470 /* 1471 * if socket_id is invalid, 1472 * set to the first available socket. 1473 */ 1474 if (check_socket_id(socket_id) < 0) 1475 socket_id = socket_ids[0]; 1476 port_per_socket[socket_id]++; 1477 } 1478 } 1479 1480 /* Apply Rx offloads configuration */ 1481 for (k = 0; k < port->dev_info.max_rx_queues; k++) 1482 port->rx_conf[k].offloads = 1483 port->dev_conf.rxmode.offloads; 1484 /* Apply Tx offloads configuration */ 1485 for (k = 0; k < port->dev_info.max_tx_queues; k++) 1486 port->tx_conf[k].offloads = 1487 port->dev_conf.txmode.offloads; 1488 1489 /* set flag to initialize port/queue */ 1490 port->need_reconfig = 1; 1491 port->need_reconfig_queues = 1; 1492 port->tx_metadata = 0; 1493 1494 /* Check for maximum number of segments per MTU. Accordingly 1495 * update the mbuf data size. 1496 */ 1497 if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX && 1498 port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) { 1499 data_size = rx_mode.max_rx_pkt_len / 1500 port->dev_info.rx_desc_lim.nb_mtu_seg_max; 1501 1502 if ((data_size + RTE_PKTMBUF_HEADROOM) > 1503 mbuf_data_size[0]) { 1504 mbuf_data_size[0] = data_size + 1505 RTE_PKTMBUF_HEADROOM; 1506 warning = 1; 1507 } 1508 } 1509 } 1510 1511 if (warning) 1512 TESTPMD_LOG(WARNING, 1513 "Configured mbuf size of the first segment %hu\n", 1514 mbuf_data_size[0]); 1515 /* 1516 * Create pools of mbuf. 1517 * If NUMA support is disabled, create a single pool of mbuf in 1518 * socket 0 memory by default. 1519 * Otherwise, create a pool of mbuf in the memory of sockets 0 and 1. 1520 * 1521 * Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and 1522 * nb_txd can be configured at run time. 1523 */ 1524 if (param_total_num_mbufs) 1525 nb_mbuf_per_pool = param_total_num_mbufs; 1526 else { 1527 nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX + 1528 (nb_lcores * mb_mempool_cache) + 1529 RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST; 1530 nb_mbuf_per_pool *= RTE_MAX_ETHPORTS; 1531 } 1532 1533 if (numa_support) { 1534 uint8_t i, j; 1535 1536 for (i = 0; i < num_sockets; i++) 1537 for (j = 0; j < mbuf_data_size_n; j++) 1538 mempools[i * MAX_SEGS_BUFFER_SPLIT + j] = 1539 mbuf_pool_create(mbuf_data_size[j], 1540 nb_mbuf_per_pool, 1541 socket_ids[i], j); 1542 } else { 1543 uint8_t i; 1544 1545 for (i = 0; i < mbuf_data_size_n; i++) 1546 mempools[i] = mbuf_pool_create 1547 (mbuf_data_size[i], 1548 nb_mbuf_per_pool, 1549 socket_num == UMA_NO_CONFIG ? 1550 0 : socket_num, i); 1551 } 1552 1553 init_port_config(); 1554 1555 gso_types = DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | 1556 DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_UDP_TSO; 1557 /* 1558 * Records which Mbuf pool to use by each logical core, if needed. 1559 */ 1560 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1561 mbp = mbuf_pool_find( 1562 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 0); 1563 1564 if (mbp == NULL) 1565 mbp = mbuf_pool_find(0, 0); 1566 fwd_lcores[lc_id]->mbp = mbp; 1567 /* initialize GSO context */ 1568 fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp; 1569 fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp; 1570 fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types; 1571 fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN - 1572 RTE_ETHER_CRC_LEN; 1573 fwd_lcores[lc_id]->gso_ctx.flag = 0; 1574 } 1575 1576 /* Configuration of packet forwarding streams. */ 1577 if (init_fwd_streams() < 0) 1578 rte_exit(EXIT_FAILURE, "FAIL from init_fwd_streams()\n"); 1579 1580 fwd_config_setup(); 1581 1582 /* create a gro context for each lcore */ 1583 gro_param.gro_types = RTE_GRO_TCP_IPV4; 1584 gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES; 1585 gro_param.max_item_per_flow = MAX_PKT_BURST; 1586 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1587 gro_param.socket_id = rte_lcore_to_socket_id( 1588 fwd_lcores_cpuids[lc_id]); 1589 fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param); 1590 if (fwd_lcores[lc_id]->gro_ctx == NULL) { 1591 rte_exit(EXIT_FAILURE, 1592 "rte_gro_ctx_create() failed\n"); 1593 } 1594 } 1595 } 1596 1597 1598 void 1599 reconfig(portid_t new_port_id, unsigned socket_id) 1600 { 1601 struct rte_port *port; 1602 int ret; 1603 1604 /* Reconfiguration of Ethernet ports. */ 1605 port = &ports[new_port_id]; 1606 1607 ret = eth_dev_info_get_print_err(new_port_id, &port->dev_info); 1608 if (ret != 0) 1609 return; 1610 1611 /* set flag to initialize port/queue */ 1612 port->need_reconfig = 1; 1613 port->need_reconfig_queues = 1; 1614 port->socket_id = socket_id; 1615 1616 init_port_config(); 1617 } 1618 1619 1620 int 1621 init_fwd_streams(void) 1622 { 1623 portid_t pid; 1624 struct rte_port *port; 1625 streamid_t sm_id, nb_fwd_streams_new; 1626 queueid_t q; 1627 1628 /* set socket id according to numa or not */ 1629 RTE_ETH_FOREACH_DEV(pid) { 1630 port = &ports[pid]; 1631 if (nb_rxq > port->dev_info.max_rx_queues) { 1632 printf("Fail: nb_rxq(%d) is greater than " 1633 "max_rx_queues(%d)\n", nb_rxq, 1634 port->dev_info.max_rx_queues); 1635 return -1; 1636 } 1637 if (nb_txq > port->dev_info.max_tx_queues) { 1638 printf("Fail: nb_txq(%d) is greater than " 1639 "max_tx_queues(%d)\n", nb_txq, 1640 port->dev_info.max_tx_queues); 1641 return -1; 1642 } 1643 if (numa_support) { 1644 if (port_numa[pid] != NUMA_NO_CONFIG) 1645 port->socket_id = port_numa[pid]; 1646 else { 1647 port->socket_id = rte_eth_dev_socket_id(pid); 1648 1649 /* 1650 * if socket_id is invalid, 1651 * set to the first available socket. 1652 */ 1653 if (check_socket_id(port->socket_id) < 0) 1654 port->socket_id = socket_ids[0]; 1655 } 1656 } 1657 else { 1658 if (socket_num == UMA_NO_CONFIG) 1659 port->socket_id = 0; 1660 else 1661 port->socket_id = socket_num; 1662 } 1663 } 1664 1665 q = RTE_MAX(nb_rxq, nb_txq); 1666 if (q == 0) { 1667 printf("Fail: Cannot allocate fwd streams as number of queues is 0\n"); 1668 return -1; 1669 } 1670 nb_fwd_streams_new = (streamid_t)(nb_ports * q); 1671 if (nb_fwd_streams_new == nb_fwd_streams) 1672 return 0; 1673 /* clear the old */ 1674 if (fwd_streams != NULL) { 1675 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1676 if (fwd_streams[sm_id] == NULL) 1677 continue; 1678 rte_free(fwd_streams[sm_id]); 1679 fwd_streams[sm_id] = NULL; 1680 } 1681 rte_free(fwd_streams); 1682 fwd_streams = NULL; 1683 } 1684 1685 /* init new */ 1686 nb_fwd_streams = nb_fwd_streams_new; 1687 if (nb_fwd_streams) { 1688 fwd_streams = rte_zmalloc("testpmd: fwd_streams", 1689 sizeof(struct fwd_stream *) * nb_fwd_streams, 1690 RTE_CACHE_LINE_SIZE); 1691 if (fwd_streams == NULL) 1692 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d" 1693 " (struct fwd_stream *)) failed\n", 1694 nb_fwd_streams); 1695 1696 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1697 fwd_streams[sm_id] = rte_zmalloc("testpmd:" 1698 " struct fwd_stream", sizeof(struct fwd_stream), 1699 RTE_CACHE_LINE_SIZE); 1700 if (fwd_streams[sm_id] == NULL) 1701 rte_exit(EXIT_FAILURE, "rte_zmalloc" 1702 "(struct fwd_stream) failed\n"); 1703 } 1704 } 1705 1706 return 0; 1707 } 1708 1709 static void 1710 pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs) 1711 { 1712 uint64_t total_burst, sburst; 1713 uint64_t nb_burst; 1714 uint64_t burst_stats[4]; 1715 uint16_t pktnb_stats[4]; 1716 uint16_t nb_pkt; 1717 int burst_percent[4], sburstp; 1718 int i; 1719 1720 /* 1721 * First compute the total number of packet bursts and the 1722 * two highest numbers of bursts of the same number of packets. 1723 */ 1724 memset(&burst_stats, 0x0, sizeof(burst_stats)); 1725 memset(&pktnb_stats, 0x0, sizeof(pktnb_stats)); 1726 1727 /* Show stats for 0 burst size always */ 1728 total_burst = pbs->pkt_burst_spread[0]; 1729 burst_stats[0] = pbs->pkt_burst_spread[0]; 1730 pktnb_stats[0] = 0; 1731 1732 /* Find the next 2 burst sizes with highest occurrences. */ 1733 for (nb_pkt = 1; nb_pkt < MAX_PKT_BURST; nb_pkt++) { 1734 nb_burst = pbs->pkt_burst_spread[nb_pkt]; 1735 1736 if (nb_burst == 0) 1737 continue; 1738 1739 total_burst += nb_burst; 1740 1741 if (nb_burst > burst_stats[1]) { 1742 burst_stats[2] = burst_stats[1]; 1743 pktnb_stats[2] = pktnb_stats[1]; 1744 burst_stats[1] = nb_burst; 1745 pktnb_stats[1] = nb_pkt; 1746 } else if (nb_burst > burst_stats[2]) { 1747 burst_stats[2] = nb_burst; 1748 pktnb_stats[2] = nb_pkt; 1749 } 1750 } 1751 if (total_burst == 0) 1752 return; 1753 1754 printf(" %s-bursts : %"PRIu64" [", rx_tx, total_burst); 1755 for (i = 0, sburst = 0, sburstp = 0; i < 4; i++) { 1756 if (i == 3) { 1757 printf("%d%% of other]\n", 100 - sburstp); 1758 return; 1759 } 1760 1761 sburst += burst_stats[i]; 1762 if (sburst == total_burst) { 1763 printf("%d%% of %d pkts]\n", 1764 100 - sburstp, (int) pktnb_stats[i]); 1765 return; 1766 } 1767 1768 burst_percent[i] = 1769 (double)burst_stats[i] / total_burst * 100; 1770 printf("%d%% of %d pkts + ", 1771 burst_percent[i], (int) pktnb_stats[i]); 1772 sburstp += burst_percent[i]; 1773 } 1774 } 1775 1776 static void 1777 fwd_stream_stats_display(streamid_t stream_id) 1778 { 1779 struct fwd_stream *fs; 1780 static const char *fwd_top_stats_border = "-------"; 1781 1782 fs = fwd_streams[stream_id]; 1783 if ((fs->rx_packets == 0) && (fs->tx_packets == 0) && 1784 (fs->fwd_dropped == 0)) 1785 return; 1786 printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> " 1787 "TX Port=%2d/Queue=%2d %s\n", 1788 fwd_top_stats_border, fs->rx_port, fs->rx_queue, 1789 fs->tx_port, fs->tx_queue, fwd_top_stats_border); 1790 printf(" RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64 1791 " TX-dropped: %-14"PRIu64, 1792 fs->rx_packets, fs->tx_packets, fs->fwd_dropped); 1793 1794 /* if checksum mode */ 1795 if (cur_fwd_eng == &csum_fwd_engine) { 1796 printf(" RX- bad IP checksum: %-14"PRIu64 1797 " Rx- bad L4 checksum: %-14"PRIu64 1798 " Rx- bad outer L4 checksum: %-14"PRIu64"\n", 1799 fs->rx_bad_ip_csum, fs->rx_bad_l4_csum, 1800 fs->rx_bad_outer_l4_csum); 1801 } else { 1802 printf("\n"); 1803 } 1804 1805 if (record_burst_stats) { 1806 pkt_burst_stats_display("RX", &fs->rx_burst_stats); 1807 pkt_burst_stats_display("TX", &fs->tx_burst_stats); 1808 } 1809 } 1810 1811 void 1812 fwd_stats_display(void) 1813 { 1814 static const char *fwd_stats_border = "----------------------"; 1815 static const char *acc_stats_border = "+++++++++++++++"; 1816 struct { 1817 struct fwd_stream *rx_stream; 1818 struct fwd_stream *tx_stream; 1819 uint64_t tx_dropped; 1820 uint64_t rx_bad_ip_csum; 1821 uint64_t rx_bad_l4_csum; 1822 uint64_t rx_bad_outer_l4_csum; 1823 } ports_stats[RTE_MAX_ETHPORTS]; 1824 uint64_t total_rx_dropped = 0; 1825 uint64_t total_tx_dropped = 0; 1826 uint64_t total_rx_nombuf = 0; 1827 struct rte_eth_stats stats; 1828 uint64_t fwd_cycles = 0; 1829 uint64_t total_recv = 0; 1830 uint64_t total_xmit = 0; 1831 struct rte_port *port; 1832 streamid_t sm_id; 1833 portid_t pt_id; 1834 int i; 1835 1836 memset(ports_stats, 0, sizeof(ports_stats)); 1837 1838 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1839 struct fwd_stream *fs = fwd_streams[sm_id]; 1840 1841 if (cur_fwd_config.nb_fwd_streams > 1842 cur_fwd_config.nb_fwd_ports) { 1843 fwd_stream_stats_display(sm_id); 1844 } else { 1845 ports_stats[fs->tx_port].tx_stream = fs; 1846 ports_stats[fs->rx_port].rx_stream = fs; 1847 } 1848 1849 ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped; 1850 1851 ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum; 1852 ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum; 1853 ports_stats[fs->rx_port].rx_bad_outer_l4_csum += 1854 fs->rx_bad_outer_l4_csum; 1855 1856 if (record_core_cycles) 1857 fwd_cycles += fs->core_cycles; 1858 } 1859 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 1860 uint8_t j; 1861 1862 pt_id = fwd_ports_ids[i]; 1863 port = &ports[pt_id]; 1864 1865 rte_eth_stats_get(pt_id, &stats); 1866 stats.ipackets -= port->stats.ipackets; 1867 stats.opackets -= port->stats.opackets; 1868 stats.ibytes -= port->stats.ibytes; 1869 stats.obytes -= port->stats.obytes; 1870 stats.imissed -= port->stats.imissed; 1871 stats.oerrors -= port->stats.oerrors; 1872 stats.rx_nombuf -= port->stats.rx_nombuf; 1873 1874 total_recv += stats.ipackets; 1875 total_xmit += stats.opackets; 1876 total_rx_dropped += stats.imissed; 1877 total_tx_dropped += ports_stats[pt_id].tx_dropped; 1878 total_tx_dropped += stats.oerrors; 1879 total_rx_nombuf += stats.rx_nombuf; 1880 1881 printf("\n %s Forward statistics for port %-2d %s\n", 1882 fwd_stats_border, pt_id, fwd_stats_border); 1883 1884 if (!port->rx_queue_stats_mapping_enabled && 1885 !port->tx_queue_stats_mapping_enabled) { 1886 printf(" RX-packets: %-14"PRIu64 1887 " RX-dropped: %-14"PRIu64 1888 "RX-total: %-"PRIu64"\n", 1889 stats.ipackets, stats.imissed, 1890 stats.ipackets + stats.imissed); 1891 1892 if (cur_fwd_eng == &csum_fwd_engine) 1893 printf(" Bad-ipcsum: %-14"PRIu64 1894 " Bad-l4csum: %-14"PRIu64 1895 "Bad-outer-l4csum: %-14"PRIu64"\n", 1896 ports_stats[pt_id].rx_bad_ip_csum, 1897 ports_stats[pt_id].rx_bad_l4_csum, 1898 ports_stats[pt_id].rx_bad_outer_l4_csum); 1899 if (stats.ierrors + stats.rx_nombuf > 0) { 1900 printf(" RX-error: %-"PRIu64"\n", 1901 stats.ierrors); 1902 printf(" RX-nombufs: %-14"PRIu64"\n", 1903 stats.rx_nombuf); 1904 } 1905 1906 printf(" TX-packets: %-14"PRIu64 1907 " TX-dropped: %-14"PRIu64 1908 "TX-total: %-"PRIu64"\n", 1909 stats.opackets, ports_stats[pt_id].tx_dropped, 1910 stats.opackets + ports_stats[pt_id].tx_dropped); 1911 } else { 1912 printf(" RX-packets: %14"PRIu64 1913 " RX-dropped:%14"PRIu64 1914 " RX-total:%14"PRIu64"\n", 1915 stats.ipackets, stats.imissed, 1916 stats.ipackets + stats.imissed); 1917 1918 if (cur_fwd_eng == &csum_fwd_engine) 1919 printf(" Bad-ipcsum:%14"PRIu64 1920 " Bad-l4csum:%14"PRIu64 1921 " Bad-outer-l4csum: %-14"PRIu64"\n", 1922 ports_stats[pt_id].rx_bad_ip_csum, 1923 ports_stats[pt_id].rx_bad_l4_csum, 1924 ports_stats[pt_id].rx_bad_outer_l4_csum); 1925 if ((stats.ierrors + stats.rx_nombuf) > 0) { 1926 printf(" RX-error:%"PRIu64"\n", stats.ierrors); 1927 printf(" RX-nombufs: %14"PRIu64"\n", 1928 stats.rx_nombuf); 1929 } 1930 1931 printf(" TX-packets: %14"PRIu64 1932 " TX-dropped:%14"PRIu64 1933 " TX-total:%14"PRIu64"\n", 1934 stats.opackets, ports_stats[pt_id].tx_dropped, 1935 stats.opackets + ports_stats[pt_id].tx_dropped); 1936 } 1937 1938 if (record_burst_stats) { 1939 if (ports_stats[pt_id].rx_stream) 1940 pkt_burst_stats_display("RX", 1941 &ports_stats[pt_id].rx_stream->rx_burst_stats); 1942 if (ports_stats[pt_id].tx_stream) 1943 pkt_burst_stats_display("TX", 1944 &ports_stats[pt_id].tx_stream->tx_burst_stats); 1945 } 1946 1947 if (port->rx_queue_stats_mapping_enabled) { 1948 printf("\n"); 1949 for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) { 1950 printf(" Stats reg %2d RX-packets:%14"PRIu64 1951 " RX-errors:%14"PRIu64 1952 " RX-bytes:%14"PRIu64"\n", 1953 j, stats.q_ipackets[j], 1954 stats.q_errors[j], stats.q_ibytes[j]); 1955 } 1956 printf("\n"); 1957 } 1958 if (port->tx_queue_stats_mapping_enabled) { 1959 for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) { 1960 printf(" Stats reg %2d TX-packets:%14"PRIu64 1961 " TX-bytes:%14" 1962 PRIu64"\n", 1963 j, stats.q_opackets[j], 1964 stats.q_obytes[j]); 1965 } 1966 } 1967 1968 printf(" %s--------------------------------%s\n", 1969 fwd_stats_border, fwd_stats_border); 1970 } 1971 1972 printf("\n %s Accumulated forward statistics for all ports" 1973 "%s\n", 1974 acc_stats_border, acc_stats_border); 1975 printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: " 1976 "%-"PRIu64"\n" 1977 " TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: " 1978 "%-"PRIu64"\n", 1979 total_recv, total_rx_dropped, total_recv + total_rx_dropped, 1980 total_xmit, total_tx_dropped, total_xmit + total_tx_dropped); 1981 if (total_rx_nombuf > 0) 1982 printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf); 1983 printf(" %s++++++++++++++++++++++++++++++++++++++++++++++" 1984 "%s\n", 1985 acc_stats_border, acc_stats_border); 1986 if (record_core_cycles) { 1987 #define CYC_PER_MHZ 1E6 1988 if (total_recv > 0 || total_xmit > 0) { 1989 uint64_t total_pkts = 0; 1990 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 || 1991 strcmp(cur_fwd_eng->fwd_mode_name, "flowgen") == 0) 1992 total_pkts = total_xmit; 1993 else 1994 total_pkts = total_recv; 1995 1996 printf("\n CPU cycles/packet=%.2F (total cycles=" 1997 "%"PRIu64" / total %s packets=%"PRIu64") at %"PRIu64 1998 " MHz Clock\n", 1999 (double) fwd_cycles / total_pkts, 2000 fwd_cycles, cur_fwd_eng->fwd_mode_name, total_pkts, 2001 (uint64_t)(rte_get_tsc_hz() / CYC_PER_MHZ)); 2002 } 2003 } 2004 } 2005 2006 void 2007 fwd_stats_reset(void) 2008 { 2009 streamid_t sm_id; 2010 portid_t pt_id; 2011 int i; 2012 2013 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2014 pt_id = fwd_ports_ids[i]; 2015 rte_eth_stats_get(pt_id, &ports[pt_id].stats); 2016 } 2017 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 2018 struct fwd_stream *fs = fwd_streams[sm_id]; 2019 2020 fs->rx_packets = 0; 2021 fs->tx_packets = 0; 2022 fs->fwd_dropped = 0; 2023 fs->rx_bad_ip_csum = 0; 2024 fs->rx_bad_l4_csum = 0; 2025 fs->rx_bad_outer_l4_csum = 0; 2026 2027 memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats)); 2028 memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats)); 2029 fs->core_cycles = 0; 2030 } 2031 } 2032 2033 static void 2034 flush_fwd_rx_queues(void) 2035 { 2036 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2037 portid_t rxp; 2038 portid_t port_id; 2039 queueid_t rxq; 2040 uint16_t nb_rx; 2041 uint16_t i; 2042 uint8_t j; 2043 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 2044 uint64_t timer_period; 2045 2046 /* convert to number of cycles */ 2047 timer_period = rte_get_timer_hz(); /* 1 second timeout */ 2048 2049 for (j = 0; j < 2; j++) { 2050 for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) { 2051 for (rxq = 0; rxq < nb_rxq; rxq++) { 2052 port_id = fwd_ports_ids[rxp]; 2053 /** 2054 * testpmd can stuck in the below do while loop 2055 * if rte_eth_rx_burst() always returns nonzero 2056 * packets. So timer is added to exit this loop 2057 * after 1sec timer expiry. 2058 */ 2059 prev_tsc = rte_rdtsc(); 2060 do { 2061 nb_rx = rte_eth_rx_burst(port_id, rxq, 2062 pkts_burst, MAX_PKT_BURST); 2063 for (i = 0; i < nb_rx; i++) 2064 rte_pktmbuf_free(pkts_burst[i]); 2065 2066 cur_tsc = rte_rdtsc(); 2067 diff_tsc = cur_tsc - prev_tsc; 2068 timer_tsc += diff_tsc; 2069 } while ((nb_rx > 0) && 2070 (timer_tsc < timer_period)); 2071 timer_tsc = 0; 2072 } 2073 } 2074 rte_delay_ms(10); /* wait 10 milli-seconds before retrying */ 2075 } 2076 } 2077 2078 static void 2079 run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd) 2080 { 2081 struct fwd_stream **fsm; 2082 streamid_t nb_fs; 2083 streamid_t sm_id; 2084 #ifdef RTE_LIBRTE_BITRATESTATS 2085 uint64_t tics_per_1sec; 2086 uint64_t tics_datum; 2087 uint64_t tics_current; 2088 uint16_t i, cnt_ports; 2089 2090 cnt_ports = nb_ports; 2091 tics_datum = rte_rdtsc(); 2092 tics_per_1sec = rte_get_timer_hz(); 2093 #endif 2094 fsm = &fwd_streams[fc->stream_idx]; 2095 nb_fs = fc->stream_nb; 2096 do { 2097 for (sm_id = 0; sm_id < nb_fs; sm_id++) 2098 (*pkt_fwd)(fsm[sm_id]); 2099 #ifdef RTE_LIBRTE_BITRATESTATS 2100 if (bitrate_enabled != 0 && 2101 bitrate_lcore_id == rte_lcore_id()) { 2102 tics_current = rte_rdtsc(); 2103 if (tics_current - tics_datum >= tics_per_1sec) { 2104 /* Periodic bitrate calculation */ 2105 for (i = 0; i < cnt_ports; i++) 2106 rte_stats_bitrate_calc(bitrate_data, 2107 ports_ids[i]); 2108 tics_datum = tics_current; 2109 } 2110 } 2111 #endif 2112 #ifdef RTE_LIBRTE_LATENCY_STATS 2113 if (latencystats_enabled != 0 && 2114 latencystats_lcore_id == rte_lcore_id()) 2115 rte_latencystats_update(); 2116 #endif 2117 2118 } while (! fc->stopped); 2119 } 2120 2121 static int 2122 start_pkt_forward_on_core(void *fwd_arg) 2123 { 2124 run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg, 2125 cur_fwd_config.fwd_eng->packet_fwd); 2126 return 0; 2127 } 2128 2129 /* 2130 * Run the TXONLY packet forwarding engine to send a single burst of packets. 2131 * Used to start communication flows in network loopback test configurations. 2132 */ 2133 static int 2134 run_one_txonly_burst_on_core(void *fwd_arg) 2135 { 2136 struct fwd_lcore *fwd_lc; 2137 struct fwd_lcore tmp_lcore; 2138 2139 fwd_lc = (struct fwd_lcore *) fwd_arg; 2140 tmp_lcore = *fwd_lc; 2141 tmp_lcore.stopped = 1; 2142 run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd); 2143 return 0; 2144 } 2145 2146 /* 2147 * Launch packet forwarding: 2148 * - Setup per-port forwarding context. 2149 * - launch logical cores with their forwarding configuration. 2150 */ 2151 static void 2152 launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore) 2153 { 2154 port_fwd_begin_t port_fwd_begin; 2155 unsigned int i; 2156 unsigned int lc_id; 2157 int diag; 2158 2159 port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin; 2160 if (port_fwd_begin != NULL) { 2161 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2162 (*port_fwd_begin)(fwd_ports_ids[i]); 2163 } 2164 for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) { 2165 lc_id = fwd_lcores_cpuids[i]; 2166 if ((interactive == 0) || (lc_id != rte_lcore_id())) { 2167 fwd_lcores[i]->stopped = 0; 2168 diag = rte_eal_remote_launch(pkt_fwd_on_lcore, 2169 fwd_lcores[i], lc_id); 2170 if (diag != 0) 2171 printf("launch lcore %u failed - diag=%d\n", 2172 lc_id, diag); 2173 } 2174 } 2175 } 2176 2177 /* 2178 * Launch packet forwarding configuration. 2179 */ 2180 void 2181 start_packet_forwarding(int with_tx_first) 2182 { 2183 port_fwd_begin_t port_fwd_begin; 2184 port_fwd_end_t port_fwd_end; 2185 struct rte_port *port; 2186 unsigned int i; 2187 portid_t pt_id; 2188 2189 if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq) 2190 rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n"); 2191 2192 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq) 2193 rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n"); 2194 2195 if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 && 2196 strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) && 2197 (!nb_rxq || !nb_txq)) 2198 rte_exit(EXIT_FAILURE, 2199 "Either rxq or txq are 0, cannot use %s fwd mode\n", 2200 cur_fwd_eng->fwd_mode_name); 2201 2202 if (all_ports_started() == 0) { 2203 printf("Not all ports were started\n"); 2204 return; 2205 } 2206 if (test_done == 0) { 2207 printf("Packet forwarding already started\n"); 2208 return; 2209 } 2210 2211 2212 if(dcb_test) { 2213 for (i = 0; i < nb_fwd_ports; i++) { 2214 pt_id = fwd_ports_ids[i]; 2215 port = &ports[pt_id]; 2216 if (!port->dcb_flag) { 2217 printf("In DCB mode, all forwarding ports must " 2218 "be configured in this mode.\n"); 2219 return; 2220 } 2221 } 2222 if (nb_fwd_lcores == 1) { 2223 printf("In DCB mode,the nb forwarding cores " 2224 "should be larger than 1.\n"); 2225 return; 2226 } 2227 } 2228 test_done = 0; 2229 2230 fwd_config_setup(); 2231 2232 if(!no_flush_rx) 2233 flush_fwd_rx_queues(); 2234 2235 pkt_fwd_config_display(&cur_fwd_config); 2236 rxtx_config_display(); 2237 2238 fwd_stats_reset(); 2239 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2240 pt_id = fwd_ports_ids[i]; 2241 port = &ports[pt_id]; 2242 map_port_queue_stats_mapping_registers(pt_id, port); 2243 } 2244 if (with_tx_first) { 2245 port_fwd_begin = tx_only_engine.port_fwd_begin; 2246 if (port_fwd_begin != NULL) { 2247 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2248 (*port_fwd_begin)(fwd_ports_ids[i]); 2249 } 2250 while (with_tx_first--) { 2251 launch_packet_forwarding( 2252 run_one_txonly_burst_on_core); 2253 rte_eal_mp_wait_lcore(); 2254 } 2255 port_fwd_end = tx_only_engine.port_fwd_end; 2256 if (port_fwd_end != NULL) { 2257 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2258 (*port_fwd_end)(fwd_ports_ids[i]); 2259 } 2260 } 2261 launch_packet_forwarding(start_pkt_forward_on_core); 2262 } 2263 2264 void 2265 stop_packet_forwarding(void) 2266 { 2267 port_fwd_end_t port_fwd_end; 2268 lcoreid_t lc_id; 2269 portid_t pt_id; 2270 int i; 2271 2272 if (test_done) { 2273 printf("Packet forwarding not started\n"); 2274 return; 2275 } 2276 printf("Telling cores to stop..."); 2277 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) 2278 fwd_lcores[lc_id]->stopped = 1; 2279 printf("\nWaiting for lcores to finish...\n"); 2280 rte_eal_mp_wait_lcore(); 2281 port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end; 2282 if (port_fwd_end != NULL) { 2283 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2284 pt_id = fwd_ports_ids[i]; 2285 (*port_fwd_end)(pt_id); 2286 } 2287 } 2288 2289 fwd_stats_display(); 2290 2291 printf("\nDone.\n"); 2292 test_done = 1; 2293 } 2294 2295 void 2296 dev_set_link_up(portid_t pid) 2297 { 2298 if (rte_eth_dev_set_link_up(pid) < 0) 2299 printf("\nSet link up fail.\n"); 2300 } 2301 2302 void 2303 dev_set_link_down(portid_t pid) 2304 { 2305 if (rte_eth_dev_set_link_down(pid) < 0) 2306 printf("\nSet link down fail.\n"); 2307 } 2308 2309 static int 2310 all_ports_started(void) 2311 { 2312 portid_t pi; 2313 struct rte_port *port; 2314 2315 RTE_ETH_FOREACH_DEV(pi) { 2316 port = &ports[pi]; 2317 /* Check if there is a port which is not started */ 2318 if ((port->port_status != RTE_PORT_STARTED) && 2319 (port->slave_flag == 0)) 2320 return 0; 2321 } 2322 2323 /* No port is not started */ 2324 return 1; 2325 } 2326 2327 int 2328 port_is_stopped(portid_t port_id) 2329 { 2330 struct rte_port *port = &ports[port_id]; 2331 2332 if ((port->port_status != RTE_PORT_STOPPED) && 2333 (port->slave_flag == 0)) 2334 return 0; 2335 return 1; 2336 } 2337 2338 int 2339 all_ports_stopped(void) 2340 { 2341 portid_t pi; 2342 2343 RTE_ETH_FOREACH_DEV(pi) { 2344 if (!port_is_stopped(pi)) 2345 return 0; 2346 } 2347 2348 return 1; 2349 } 2350 2351 int 2352 port_is_started(portid_t port_id) 2353 { 2354 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2355 return 0; 2356 2357 if (ports[port_id].port_status != RTE_PORT_STARTED) 2358 return 0; 2359 2360 return 1; 2361 } 2362 2363 /* Configure the Rx and Tx hairpin queues for the selected port. */ 2364 static int 2365 setup_hairpin_queues(portid_t pi, portid_t p_pi, uint16_t cnt_pi) 2366 { 2367 queueid_t qi; 2368 struct rte_eth_hairpin_conf hairpin_conf = { 2369 .peer_count = 1, 2370 }; 2371 int i; 2372 int diag; 2373 struct rte_port *port = &ports[pi]; 2374 uint16_t peer_rx_port = pi; 2375 uint16_t peer_tx_port = pi; 2376 uint32_t manual = 1; 2377 uint32_t tx_exp = hairpin_mode & 0x10; 2378 2379 if (!(hairpin_mode & 0xf)) { 2380 peer_rx_port = pi; 2381 peer_tx_port = pi; 2382 manual = 0; 2383 } else if (hairpin_mode & 0x1) { 2384 peer_tx_port = rte_eth_find_next_owned_by(pi + 1, 2385 RTE_ETH_DEV_NO_OWNER); 2386 if (peer_tx_port >= RTE_MAX_ETHPORTS) 2387 peer_tx_port = rte_eth_find_next_owned_by(0, 2388 RTE_ETH_DEV_NO_OWNER); 2389 if (p_pi != RTE_MAX_ETHPORTS) { 2390 peer_rx_port = p_pi; 2391 } else { 2392 uint16_t next_pi; 2393 2394 /* Last port will be the peer RX port of the first. */ 2395 RTE_ETH_FOREACH_DEV(next_pi) 2396 peer_rx_port = next_pi; 2397 } 2398 manual = 1; 2399 } else if (hairpin_mode & 0x2) { 2400 if (cnt_pi & 0x1) { 2401 peer_rx_port = p_pi; 2402 } else { 2403 peer_rx_port = rte_eth_find_next_owned_by(pi + 1, 2404 RTE_ETH_DEV_NO_OWNER); 2405 if (peer_rx_port >= RTE_MAX_ETHPORTS) 2406 peer_rx_port = pi; 2407 } 2408 peer_tx_port = peer_rx_port; 2409 manual = 1; 2410 } 2411 2412 for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) { 2413 hairpin_conf.peers[0].port = peer_rx_port; 2414 hairpin_conf.peers[0].queue = i + nb_rxq; 2415 hairpin_conf.manual_bind = !!manual; 2416 hairpin_conf.tx_explicit = !!tx_exp; 2417 diag = rte_eth_tx_hairpin_queue_setup 2418 (pi, qi, nb_txd, &hairpin_conf); 2419 i++; 2420 if (diag == 0) 2421 continue; 2422 2423 /* Fail to setup rx queue, return */ 2424 if (rte_atomic16_cmpset(&(port->port_status), 2425 RTE_PORT_HANDLING, 2426 RTE_PORT_STOPPED) == 0) 2427 printf("Port %d can not be set back " 2428 "to stopped\n", pi); 2429 printf("Fail to configure port %d hairpin " 2430 "queues\n", pi); 2431 /* try to reconfigure queues next time */ 2432 port->need_reconfig_queues = 1; 2433 return -1; 2434 } 2435 for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) { 2436 hairpin_conf.peers[0].port = peer_tx_port; 2437 hairpin_conf.peers[0].queue = i + nb_txq; 2438 hairpin_conf.manual_bind = !!manual; 2439 hairpin_conf.tx_explicit = !!tx_exp; 2440 diag = rte_eth_rx_hairpin_queue_setup 2441 (pi, qi, nb_rxd, &hairpin_conf); 2442 i++; 2443 if (diag == 0) 2444 continue; 2445 2446 /* Fail to setup rx queue, return */ 2447 if (rte_atomic16_cmpset(&(port->port_status), 2448 RTE_PORT_HANDLING, 2449 RTE_PORT_STOPPED) == 0) 2450 printf("Port %d can not be set back " 2451 "to stopped\n", pi); 2452 printf("Fail to configure port %d hairpin " 2453 "queues\n", pi); 2454 /* try to reconfigure queues next time */ 2455 port->need_reconfig_queues = 1; 2456 return -1; 2457 } 2458 return 0; 2459 } 2460 2461 int 2462 start_port(portid_t pid) 2463 { 2464 int diag, need_check_link_status = -1; 2465 portid_t pi; 2466 portid_t p_pi = RTE_MAX_ETHPORTS; 2467 portid_t pl[RTE_MAX_ETHPORTS]; 2468 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2469 uint16_t cnt_pi = 0; 2470 uint16_t cfg_pi = 0; 2471 int peer_pi; 2472 queueid_t qi; 2473 struct rte_port *port; 2474 struct rte_ether_addr mac_addr; 2475 struct rte_eth_hairpin_cap cap; 2476 2477 if (port_id_is_invalid(pid, ENABLED_WARN)) 2478 return 0; 2479 2480 if(dcb_config) 2481 dcb_test = 1; 2482 RTE_ETH_FOREACH_DEV(pi) { 2483 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2484 continue; 2485 2486 need_check_link_status = 0; 2487 port = &ports[pi]; 2488 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED, 2489 RTE_PORT_HANDLING) == 0) { 2490 printf("Port %d is now not stopped\n", pi); 2491 continue; 2492 } 2493 2494 if (port->need_reconfig > 0) { 2495 port->need_reconfig = 0; 2496 2497 if (flow_isolate_all) { 2498 int ret = port_flow_isolate(pi, 1); 2499 if (ret) { 2500 printf("Failed to apply isolated" 2501 " mode on port %d\n", pi); 2502 return -1; 2503 } 2504 } 2505 configure_rxtx_dump_callbacks(0); 2506 printf("Configuring Port %d (socket %u)\n", pi, 2507 port->socket_id); 2508 if (nb_hairpinq > 0 && 2509 rte_eth_dev_hairpin_capability_get(pi, &cap)) { 2510 printf("Port %d doesn't support hairpin " 2511 "queues\n", pi); 2512 return -1; 2513 } 2514 /* configure port */ 2515 diag = rte_eth_dev_configure(pi, nb_rxq + nb_hairpinq, 2516 nb_txq + nb_hairpinq, 2517 &(port->dev_conf)); 2518 if (diag != 0) { 2519 if (rte_atomic16_cmpset(&(port->port_status), 2520 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2521 printf("Port %d can not be set back " 2522 "to stopped\n", pi); 2523 printf("Fail to configure port %d\n", pi); 2524 /* try to reconfigure port next time */ 2525 port->need_reconfig = 1; 2526 return -1; 2527 } 2528 } 2529 if (port->need_reconfig_queues > 0) { 2530 port->need_reconfig_queues = 0; 2531 /* setup tx queues */ 2532 for (qi = 0; qi < nb_txq; qi++) { 2533 if ((numa_support) && 2534 (txring_numa[pi] != NUMA_NO_CONFIG)) 2535 diag = rte_eth_tx_queue_setup(pi, qi, 2536 port->nb_tx_desc[qi], 2537 txring_numa[pi], 2538 &(port->tx_conf[qi])); 2539 else 2540 diag = rte_eth_tx_queue_setup(pi, qi, 2541 port->nb_tx_desc[qi], 2542 port->socket_id, 2543 &(port->tx_conf[qi])); 2544 2545 if (diag == 0) 2546 continue; 2547 2548 /* Fail to setup tx queue, return */ 2549 if (rte_atomic16_cmpset(&(port->port_status), 2550 RTE_PORT_HANDLING, 2551 RTE_PORT_STOPPED) == 0) 2552 printf("Port %d can not be set back " 2553 "to stopped\n", pi); 2554 printf("Fail to configure port %d tx queues\n", 2555 pi); 2556 /* try to reconfigure queues next time */ 2557 port->need_reconfig_queues = 1; 2558 return -1; 2559 } 2560 for (qi = 0; qi < nb_rxq; qi++) { 2561 /* setup rx queues */ 2562 if ((numa_support) && 2563 (rxring_numa[pi] != NUMA_NO_CONFIG)) { 2564 struct rte_mempool * mp = 2565 mbuf_pool_find 2566 (rxring_numa[pi], 0); 2567 if (mp == NULL) { 2568 printf("Failed to setup RX queue:" 2569 "No mempool allocation" 2570 " on the socket %d\n", 2571 rxring_numa[pi]); 2572 return -1; 2573 } 2574 2575 diag = rte_eth_rx_queue_setup(pi, qi, 2576 port->nb_rx_desc[qi], 2577 rxring_numa[pi], 2578 &(port->rx_conf[qi]), 2579 mp); 2580 } else { 2581 struct rte_mempool *mp = 2582 mbuf_pool_find 2583 (port->socket_id, 0); 2584 if (mp == NULL) { 2585 printf("Failed to setup RX queue:" 2586 "No mempool allocation" 2587 " on the socket %d\n", 2588 port->socket_id); 2589 return -1; 2590 } 2591 diag = rte_eth_rx_queue_setup(pi, qi, 2592 port->nb_rx_desc[qi], 2593 port->socket_id, 2594 &(port->rx_conf[qi]), 2595 mp); 2596 } 2597 if (diag == 0) 2598 continue; 2599 2600 /* Fail to setup rx queue, return */ 2601 if (rte_atomic16_cmpset(&(port->port_status), 2602 RTE_PORT_HANDLING, 2603 RTE_PORT_STOPPED) == 0) 2604 printf("Port %d can not be set back " 2605 "to stopped\n", pi); 2606 printf("Fail to configure port %d rx queues\n", 2607 pi); 2608 /* try to reconfigure queues next time */ 2609 port->need_reconfig_queues = 1; 2610 return -1; 2611 } 2612 /* setup hairpin queues */ 2613 if (setup_hairpin_queues(pi, p_pi, cnt_pi) != 0) 2614 return -1; 2615 } 2616 configure_rxtx_dump_callbacks(verbose_level); 2617 if (clear_ptypes) { 2618 diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN, 2619 NULL, 0); 2620 if (diag < 0) 2621 printf( 2622 "Port %d: Failed to disable Ptype parsing\n", 2623 pi); 2624 } 2625 2626 p_pi = pi; 2627 cnt_pi++; 2628 2629 /* start port */ 2630 if (rte_eth_dev_start(pi) < 0) { 2631 printf("Fail to start port %d\n", pi); 2632 2633 /* Fail to setup rx queue, return */ 2634 if (rte_atomic16_cmpset(&(port->port_status), 2635 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2636 printf("Port %d can not be set back to " 2637 "stopped\n", pi); 2638 continue; 2639 } 2640 2641 if (rte_atomic16_cmpset(&(port->port_status), 2642 RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0) 2643 printf("Port %d can not be set into started\n", pi); 2644 2645 if (eth_macaddr_get_print_err(pi, &mac_addr) == 0) 2646 printf("Port %d: %02X:%02X:%02X:%02X:%02X:%02X\n", pi, 2647 mac_addr.addr_bytes[0], mac_addr.addr_bytes[1], 2648 mac_addr.addr_bytes[2], mac_addr.addr_bytes[3], 2649 mac_addr.addr_bytes[4], mac_addr.addr_bytes[5]); 2650 2651 /* at least one port started, need checking link status */ 2652 need_check_link_status = 1; 2653 2654 pl[cfg_pi++] = pi; 2655 } 2656 2657 if (need_check_link_status == 1 && !no_link_check) 2658 check_all_ports_link_status(RTE_PORT_ALL); 2659 else if (need_check_link_status == 0) 2660 printf("Please stop the ports first\n"); 2661 2662 if (hairpin_mode & 0xf) { 2663 uint16_t i; 2664 int j; 2665 2666 /* bind all started hairpin ports */ 2667 for (i = 0; i < cfg_pi; i++) { 2668 pi = pl[i]; 2669 /* bind current Tx to all peer Rx */ 2670 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2671 RTE_MAX_ETHPORTS, 1); 2672 if (peer_pi < 0) 2673 return peer_pi; 2674 for (j = 0; j < peer_pi; j++) { 2675 if (!port_is_started(peer_pl[j])) 2676 continue; 2677 diag = rte_eth_hairpin_bind(pi, peer_pl[j]); 2678 if (diag < 0) { 2679 printf("Error during binding hairpin" 2680 " Tx port %u to %u: %s\n", 2681 pi, peer_pl[j], 2682 rte_strerror(-diag)); 2683 return -1; 2684 } 2685 } 2686 /* bind all peer Tx to current Rx */ 2687 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2688 RTE_MAX_ETHPORTS, 0); 2689 if (peer_pi < 0) 2690 return peer_pi; 2691 for (j = 0; j < peer_pi; j++) { 2692 if (!port_is_started(peer_pl[j])) 2693 continue; 2694 diag = rte_eth_hairpin_bind(peer_pl[j], pi); 2695 if (diag < 0) { 2696 printf("Error during binding hairpin" 2697 " Tx port %u to %u: %s\n", 2698 peer_pl[j], pi, 2699 rte_strerror(-diag)); 2700 return -1; 2701 } 2702 } 2703 } 2704 } 2705 2706 printf("Done\n"); 2707 return 0; 2708 } 2709 2710 void 2711 stop_port(portid_t pid) 2712 { 2713 portid_t pi; 2714 struct rte_port *port; 2715 int need_check_link_status = 0; 2716 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2717 int peer_pi; 2718 2719 if (dcb_test) { 2720 dcb_test = 0; 2721 dcb_config = 0; 2722 } 2723 2724 if (port_id_is_invalid(pid, ENABLED_WARN)) 2725 return; 2726 2727 printf("Stopping ports...\n"); 2728 2729 RTE_ETH_FOREACH_DEV(pi) { 2730 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2731 continue; 2732 2733 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2734 printf("Please remove port %d from forwarding configuration.\n", pi); 2735 continue; 2736 } 2737 2738 if (port_is_bonding_slave(pi)) { 2739 printf("Please remove port %d from bonded device.\n", pi); 2740 continue; 2741 } 2742 2743 port = &ports[pi]; 2744 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED, 2745 RTE_PORT_HANDLING) == 0) 2746 continue; 2747 2748 if (hairpin_mode & 0xf) { 2749 int j; 2750 2751 rte_eth_hairpin_unbind(pi, RTE_MAX_ETHPORTS); 2752 /* unbind all peer Tx from current Rx */ 2753 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2754 RTE_MAX_ETHPORTS, 0); 2755 if (peer_pi < 0) 2756 continue; 2757 for (j = 0; j < peer_pi; j++) { 2758 if (!port_is_started(peer_pl[j])) 2759 continue; 2760 rte_eth_hairpin_unbind(peer_pl[j], pi); 2761 } 2762 } 2763 2764 rte_eth_dev_stop(pi); 2765 2766 if (rte_atomic16_cmpset(&(port->port_status), 2767 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2768 printf("Port %d can not be set into stopped\n", pi); 2769 need_check_link_status = 1; 2770 } 2771 if (need_check_link_status && !no_link_check) 2772 check_all_ports_link_status(RTE_PORT_ALL); 2773 2774 printf("Done\n"); 2775 } 2776 2777 static void 2778 remove_invalid_ports_in(portid_t *array, portid_t *total) 2779 { 2780 portid_t i; 2781 portid_t new_total = 0; 2782 2783 for (i = 0; i < *total; i++) 2784 if (!port_id_is_invalid(array[i], DISABLED_WARN)) { 2785 array[new_total] = array[i]; 2786 new_total++; 2787 } 2788 *total = new_total; 2789 } 2790 2791 static void 2792 remove_invalid_ports(void) 2793 { 2794 remove_invalid_ports_in(ports_ids, &nb_ports); 2795 remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports); 2796 nb_cfg_ports = nb_fwd_ports; 2797 } 2798 2799 void 2800 close_port(portid_t pid) 2801 { 2802 portid_t pi; 2803 struct rte_port *port; 2804 2805 if (port_id_is_invalid(pid, ENABLED_WARN)) 2806 return; 2807 2808 printf("Closing ports...\n"); 2809 2810 RTE_ETH_FOREACH_DEV(pi) { 2811 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2812 continue; 2813 2814 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2815 printf("Please remove port %d from forwarding configuration.\n", pi); 2816 continue; 2817 } 2818 2819 if (port_is_bonding_slave(pi)) { 2820 printf("Please remove port %d from bonded device.\n", pi); 2821 continue; 2822 } 2823 2824 port = &ports[pi]; 2825 if (rte_atomic16_cmpset(&(port->port_status), 2826 RTE_PORT_CLOSED, RTE_PORT_CLOSED) == 1) { 2827 printf("Port %d is already closed\n", pi); 2828 continue; 2829 } 2830 2831 port_flow_flush(pi); 2832 rte_eth_dev_close(pi); 2833 } 2834 2835 remove_invalid_ports(); 2836 printf("Done\n"); 2837 } 2838 2839 void 2840 reset_port(portid_t pid) 2841 { 2842 int diag; 2843 portid_t pi; 2844 struct rte_port *port; 2845 2846 if (port_id_is_invalid(pid, ENABLED_WARN)) 2847 return; 2848 2849 if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) || 2850 (pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) { 2851 printf("Can not reset port(s), please stop port(s) first.\n"); 2852 return; 2853 } 2854 2855 printf("Resetting ports...\n"); 2856 2857 RTE_ETH_FOREACH_DEV(pi) { 2858 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2859 continue; 2860 2861 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2862 printf("Please remove port %d from forwarding " 2863 "configuration.\n", pi); 2864 continue; 2865 } 2866 2867 if (port_is_bonding_slave(pi)) { 2868 printf("Please remove port %d from bonded device.\n", 2869 pi); 2870 continue; 2871 } 2872 2873 diag = rte_eth_dev_reset(pi); 2874 if (diag == 0) { 2875 port = &ports[pi]; 2876 port->need_reconfig = 1; 2877 port->need_reconfig_queues = 1; 2878 } else { 2879 printf("Failed to reset port %d. diag=%d\n", pi, diag); 2880 } 2881 } 2882 2883 printf("Done\n"); 2884 } 2885 2886 void 2887 attach_port(char *identifier) 2888 { 2889 portid_t pi; 2890 struct rte_dev_iterator iterator; 2891 2892 printf("Attaching a new port...\n"); 2893 2894 if (identifier == NULL) { 2895 printf("Invalid parameters are specified\n"); 2896 return; 2897 } 2898 2899 if (rte_dev_probe(identifier) < 0) { 2900 TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier); 2901 return; 2902 } 2903 2904 /* first attach mode: event */ 2905 if (setup_on_probe_event) { 2906 /* new ports are detected on RTE_ETH_EVENT_NEW event */ 2907 for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++) 2908 if (ports[pi].port_status == RTE_PORT_HANDLING && 2909 ports[pi].need_setup != 0) 2910 setup_attached_port(pi); 2911 return; 2912 } 2913 2914 /* second attach mode: iterator */ 2915 RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) { 2916 /* setup ports matching the devargs used for probing */ 2917 if (port_is_forwarding(pi)) 2918 continue; /* port was already attached before */ 2919 setup_attached_port(pi); 2920 } 2921 } 2922 2923 static void 2924 setup_attached_port(portid_t pi) 2925 { 2926 unsigned int socket_id; 2927 int ret; 2928 2929 socket_id = (unsigned)rte_eth_dev_socket_id(pi); 2930 /* if socket_id is invalid, set to the first available socket. */ 2931 if (check_socket_id(socket_id) < 0) 2932 socket_id = socket_ids[0]; 2933 reconfig(pi, socket_id); 2934 ret = rte_eth_promiscuous_enable(pi); 2935 if (ret != 0) 2936 printf("Error during enabling promiscuous mode for port %u: %s - ignore\n", 2937 pi, rte_strerror(-ret)); 2938 2939 ports_ids[nb_ports++] = pi; 2940 fwd_ports_ids[nb_fwd_ports++] = pi; 2941 nb_cfg_ports = nb_fwd_ports; 2942 ports[pi].need_setup = 0; 2943 ports[pi].port_status = RTE_PORT_STOPPED; 2944 2945 printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports); 2946 printf("Done\n"); 2947 } 2948 2949 static void 2950 detach_device(struct rte_device *dev) 2951 { 2952 portid_t sibling; 2953 2954 if (dev == NULL) { 2955 printf("Device already removed\n"); 2956 return; 2957 } 2958 2959 printf("Removing a device...\n"); 2960 2961 RTE_ETH_FOREACH_DEV_OF(sibling, dev) { 2962 if (ports[sibling].port_status != RTE_PORT_CLOSED) { 2963 if (ports[sibling].port_status != RTE_PORT_STOPPED) { 2964 printf("Port %u not stopped\n", sibling); 2965 return; 2966 } 2967 port_flow_flush(sibling); 2968 } 2969 } 2970 2971 if (rte_dev_remove(dev) < 0) { 2972 TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name); 2973 return; 2974 } 2975 remove_invalid_ports(); 2976 2977 printf("Device is detached\n"); 2978 printf("Now total ports is %d\n", nb_ports); 2979 printf("Done\n"); 2980 return; 2981 } 2982 2983 void 2984 detach_port_device(portid_t port_id) 2985 { 2986 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2987 return; 2988 2989 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 2990 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 2991 printf("Port not stopped\n"); 2992 return; 2993 } 2994 printf("Port was not closed\n"); 2995 } 2996 2997 detach_device(rte_eth_devices[port_id].device); 2998 } 2999 3000 void 3001 detach_devargs(char *identifier) 3002 { 3003 struct rte_dev_iterator iterator; 3004 struct rte_devargs da; 3005 portid_t port_id; 3006 3007 printf("Removing a device...\n"); 3008 3009 memset(&da, 0, sizeof(da)); 3010 if (rte_devargs_parsef(&da, "%s", identifier)) { 3011 printf("cannot parse identifier\n"); 3012 if (da.args) 3013 free(da.args); 3014 return; 3015 } 3016 3017 RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) { 3018 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3019 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3020 printf("Port %u not stopped\n", port_id); 3021 rte_eth_iterator_cleanup(&iterator); 3022 return; 3023 } 3024 port_flow_flush(port_id); 3025 } 3026 } 3027 3028 if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) { 3029 TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n", 3030 da.name, da.bus->name); 3031 return; 3032 } 3033 3034 remove_invalid_ports(); 3035 3036 printf("Device %s is detached\n", identifier); 3037 printf("Now total ports is %d\n", nb_ports); 3038 printf("Done\n"); 3039 } 3040 3041 void 3042 pmd_test_exit(void) 3043 { 3044 portid_t pt_id; 3045 unsigned int i; 3046 int ret; 3047 3048 if (test_done == 0) 3049 stop_packet_forwarding(); 3050 3051 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3052 if (mempools[i]) { 3053 if (mp_alloc_type == MP_ALLOC_ANON) 3054 rte_mempool_mem_iter(mempools[i], dma_unmap_cb, 3055 NULL); 3056 } 3057 } 3058 if (ports != NULL) { 3059 no_link_check = 1; 3060 RTE_ETH_FOREACH_DEV(pt_id) { 3061 printf("\nStopping port %d...\n", pt_id); 3062 fflush(stdout); 3063 stop_port(pt_id); 3064 } 3065 RTE_ETH_FOREACH_DEV(pt_id) { 3066 printf("\nShutting down port %d...\n", pt_id); 3067 fflush(stdout); 3068 close_port(pt_id); 3069 } 3070 } 3071 3072 if (hot_plug) { 3073 ret = rte_dev_event_monitor_stop(); 3074 if (ret) { 3075 RTE_LOG(ERR, EAL, 3076 "fail to stop device event monitor."); 3077 return; 3078 } 3079 3080 ret = rte_dev_event_callback_unregister(NULL, 3081 dev_event_callback, NULL); 3082 if (ret < 0) { 3083 RTE_LOG(ERR, EAL, 3084 "fail to unregister device event callback.\n"); 3085 return; 3086 } 3087 3088 ret = rte_dev_hotplug_handle_disable(); 3089 if (ret) { 3090 RTE_LOG(ERR, EAL, 3091 "fail to disable hotplug handling.\n"); 3092 return; 3093 } 3094 } 3095 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3096 if (mempools[i]) 3097 rte_mempool_free(mempools[i]); 3098 } 3099 3100 printf("\nBye...\n"); 3101 } 3102 3103 typedef void (*cmd_func_t)(void); 3104 struct pmd_test_command { 3105 const char *cmd_name; 3106 cmd_func_t cmd_func; 3107 }; 3108 3109 /* Check the link status of all ports in up to 9s, and print them finally */ 3110 static void 3111 check_all_ports_link_status(uint32_t port_mask) 3112 { 3113 #define CHECK_INTERVAL 100 /* 100ms */ 3114 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 3115 portid_t portid; 3116 uint8_t count, all_ports_up, print_flag = 0; 3117 struct rte_eth_link link; 3118 int ret; 3119 char link_status[RTE_ETH_LINK_MAX_STR_LEN]; 3120 3121 printf("Checking link statuses...\n"); 3122 fflush(stdout); 3123 for (count = 0; count <= MAX_CHECK_TIME; count++) { 3124 all_ports_up = 1; 3125 RTE_ETH_FOREACH_DEV(portid) { 3126 if ((port_mask & (1 << portid)) == 0) 3127 continue; 3128 memset(&link, 0, sizeof(link)); 3129 ret = rte_eth_link_get_nowait(portid, &link); 3130 if (ret < 0) { 3131 all_ports_up = 0; 3132 if (print_flag == 1) 3133 printf("Port %u link get failed: %s\n", 3134 portid, rte_strerror(-ret)); 3135 continue; 3136 } 3137 /* print link status if flag set */ 3138 if (print_flag == 1) { 3139 rte_eth_link_to_str(link_status, 3140 sizeof(link_status), &link); 3141 printf("Port %d %s\n", portid, link_status); 3142 continue; 3143 } 3144 /* clear all_ports_up flag if any link down */ 3145 if (link.link_status == ETH_LINK_DOWN) { 3146 all_ports_up = 0; 3147 break; 3148 } 3149 } 3150 /* after finally printing all link status, get out */ 3151 if (print_flag == 1) 3152 break; 3153 3154 if (all_ports_up == 0) { 3155 fflush(stdout); 3156 rte_delay_ms(CHECK_INTERVAL); 3157 } 3158 3159 /* set the print_flag if all ports up or timeout */ 3160 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 3161 print_flag = 1; 3162 } 3163 3164 if (lsc_interrupt) 3165 break; 3166 } 3167 } 3168 3169 static void 3170 rmv_port_callback(void *arg) 3171 { 3172 int need_to_start = 0; 3173 int org_no_link_check = no_link_check; 3174 portid_t port_id = (intptr_t)arg; 3175 struct rte_device *dev; 3176 3177 RTE_ETH_VALID_PORTID_OR_RET(port_id); 3178 3179 if (!test_done && port_is_forwarding(port_id)) { 3180 need_to_start = 1; 3181 stop_packet_forwarding(); 3182 } 3183 no_link_check = 1; 3184 stop_port(port_id); 3185 no_link_check = org_no_link_check; 3186 3187 /* Save rte_device pointer before closing ethdev port */ 3188 dev = rte_eth_devices[port_id].device; 3189 close_port(port_id); 3190 detach_device(dev); /* might be already removed or have more ports */ 3191 3192 if (need_to_start) 3193 start_packet_forwarding(0); 3194 } 3195 3196 /* This function is used by the interrupt thread */ 3197 static int 3198 eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param, 3199 void *ret_param) 3200 { 3201 RTE_SET_USED(param); 3202 RTE_SET_USED(ret_param); 3203 3204 if (type >= RTE_ETH_EVENT_MAX) { 3205 fprintf(stderr, "\nPort %" PRIu16 ": %s called upon invalid event %d\n", 3206 port_id, __func__, type); 3207 fflush(stderr); 3208 } else if (event_print_mask & (UINT32_C(1) << type)) { 3209 printf("\nPort %" PRIu16 ": %s event\n", port_id, 3210 eth_event_desc[type]); 3211 fflush(stdout); 3212 } 3213 3214 switch (type) { 3215 case RTE_ETH_EVENT_NEW: 3216 ports[port_id].need_setup = 1; 3217 ports[port_id].port_status = RTE_PORT_HANDLING; 3218 break; 3219 case RTE_ETH_EVENT_INTR_RMV: 3220 if (port_id_is_invalid(port_id, DISABLED_WARN)) 3221 break; 3222 if (rte_eal_alarm_set(100000, 3223 rmv_port_callback, (void *)(intptr_t)port_id)) 3224 fprintf(stderr, "Could not set up deferred device removal\n"); 3225 break; 3226 case RTE_ETH_EVENT_DESTROY: 3227 ports[port_id].port_status = RTE_PORT_CLOSED; 3228 printf("Port %u is closed\n", port_id); 3229 break; 3230 default: 3231 break; 3232 } 3233 return 0; 3234 } 3235 3236 static int 3237 register_eth_event_callback(void) 3238 { 3239 int ret; 3240 enum rte_eth_event_type event; 3241 3242 for (event = RTE_ETH_EVENT_UNKNOWN; 3243 event < RTE_ETH_EVENT_MAX; event++) { 3244 ret = rte_eth_dev_callback_register(RTE_ETH_ALL, 3245 event, 3246 eth_event_callback, 3247 NULL); 3248 if (ret != 0) { 3249 TESTPMD_LOG(ERR, "Failed to register callback for " 3250 "%s event\n", eth_event_desc[event]); 3251 return -1; 3252 } 3253 } 3254 3255 return 0; 3256 } 3257 3258 /* This function is used by the interrupt thread */ 3259 static void 3260 dev_event_callback(const char *device_name, enum rte_dev_event_type type, 3261 __rte_unused void *arg) 3262 { 3263 uint16_t port_id; 3264 int ret; 3265 3266 if (type >= RTE_DEV_EVENT_MAX) { 3267 fprintf(stderr, "%s called upon invalid event %d\n", 3268 __func__, type); 3269 fflush(stderr); 3270 } 3271 3272 switch (type) { 3273 case RTE_DEV_EVENT_REMOVE: 3274 RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n", 3275 device_name); 3276 ret = rte_eth_dev_get_port_by_name(device_name, &port_id); 3277 if (ret) { 3278 RTE_LOG(ERR, EAL, "can not get port by device %s!\n", 3279 device_name); 3280 return; 3281 } 3282 /* 3283 * Because the user's callback is invoked in eal interrupt 3284 * callback, the interrupt callback need to be finished before 3285 * it can be unregistered when detaching device. So finish 3286 * callback soon and use a deferred removal to detach device 3287 * is need. It is a workaround, once the device detaching be 3288 * moved into the eal in the future, the deferred removal could 3289 * be deleted. 3290 */ 3291 if (rte_eal_alarm_set(100000, 3292 rmv_port_callback, (void *)(intptr_t)port_id)) 3293 RTE_LOG(ERR, EAL, 3294 "Could not set up deferred device removal\n"); 3295 break; 3296 case RTE_DEV_EVENT_ADD: 3297 RTE_LOG(ERR, EAL, "The device: %s has been added!\n", 3298 device_name); 3299 /* TODO: After finish kernel driver binding, 3300 * begin to attach port. 3301 */ 3302 break; 3303 default: 3304 break; 3305 } 3306 } 3307 3308 static int 3309 set_tx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port) 3310 { 3311 uint16_t i; 3312 int diag; 3313 uint8_t mapping_found = 0; 3314 3315 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 3316 if ((tx_queue_stats_mappings[i].port_id == port_id) && 3317 (tx_queue_stats_mappings[i].queue_id < nb_txq )) { 3318 diag = rte_eth_dev_set_tx_queue_stats_mapping(port_id, 3319 tx_queue_stats_mappings[i].queue_id, 3320 tx_queue_stats_mappings[i].stats_counter_id); 3321 if (diag != 0) 3322 return diag; 3323 mapping_found = 1; 3324 } 3325 } 3326 if (mapping_found) 3327 port->tx_queue_stats_mapping_enabled = 1; 3328 return 0; 3329 } 3330 3331 static int 3332 set_rx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port) 3333 { 3334 uint16_t i; 3335 int diag; 3336 uint8_t mapping_found = 0; 3337 3338 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 3339 if ((rx_queue_stats_mappings[i].port_id == port_id) && 3340 (rx_queue_stats_mappings[i].queue_id < nb_rxq )) { 3341 diag = rte_eth_dev_set_rx_queue_stats_mapping(port_id, 3342 rx_queue_stats_mappings[i].queue_id, 3343 rx_queue_stats_mappings[i].stats_counter_id); 3344 if (diag != 0) 3345 return diag; 3346 mapping_found = 1; 3347 } 3348 } 3349 if (mapping_found) 3350 port->rx_queue_stats_mapping_enabled = 1; 3351 return 0; 3352 } 3353 3354 static void 3355 map_port_queue_stats_mapping_registers(portid_t pi, struct rte_port *port) 3356 { 3357 int diag = 0; 3358 3359 diag = set_tx_queue_stats_mapping_registers(pi, port); 3360 if (diag != 0) { 3361 if (diag == -ENOTSUP) { 3362 port->tx_queue_stats_mapping_enabled = 0; 3363 printf("TX queue stats mapping not supported port id=%d\n", pi); 3364 } 3365 else 3366 rte_exit(EXIT_FAILURE, 3367 "set_tx_queue_stats_mapping_registers " 3368 "failed for port id=%d diag=%d\n", 3369 pi, diag); 3370 } 3371 3372 diag = set_rx_queue_stats_mapping_registers(pi, port); 3373 if (diag != 0) { 3374 if (diag == -ENOTSUP) { 3375 port->rx_queue_stats_mapping_enabled = 0; 3376 printf("RX queue stats mapping not supported port id=%d\n", pi); 3377 } 3378 else 3379 rte_exit(EXIT_FAILURE, 3380 "set_rx_queue_stats_mapping_registers " 3381 "failed for port id=%d diag=%d\n", 3382 pi, diag); 3383 } 3384 } 3385 3386 static void 3387 rxtx_port_config(struct rte_port *port) 3388 { 3389 uint16_t qid; 3390 uint64_t offloads; 3391 3392 for (qid = 0; qid < nb_rxq; qid++) { 3393 offloads = port->rx_conf[qid].offloads; 3394 port->rx_conf[qid] = port->dev_info.default_rxconf; 3395 if (offloads != 0) 3396 port->rx_conf[qid].offloads = offloads; 3397 3398 /* Check if any Rx parameters have been passed */ 3399 if (rx_pthresh != RTE_PMD_PARAM_UNSET) 3400 port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh; 3401 3402 if (rx_hthresh != RTE_PMD_PARAM_UNSET) 3403 port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh; 3404 3405 if (rx_wthresh != RTE_PMD_PARAM_UNSET) 3406 port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh; 3407 3408 if (rx_free_thresh != RTE_PMD_PARAM_UNSET) 3409 port->rx_conf[qid].rx_free_thresh = rx_free_thresh; 3410 3411 if (rx_drop_en != RTE_PMD_PARAM_UNSET) 3412 port->rx_conf[qid].rx_drop_en = rx_drop_en; 3413 3414 port->nb_rx_desc[qid] = nb_rxd; 3415 } 3416 3417 for (qid = 0; qid < nb_txq; qid++) { 3418 offloads = port->tx_conf[qid].offloads; 3419 port->tx_conf[qid] = port->dev_info.default_txconf; 3420 if (offloads != 0) 3421 port->tx_conf[qid].offloads = offloads; 3422 3423 /* Check if any Tx parameters have been passed */ 3424 if (tx_pthresh != RTE_PMD_PARAM_UNSET) 3425 port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh; 3426 3427 if (tx_hthresh != RTE_PMD_PARAM_UNSET) 3428 port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh; 3429 3430 if (tx_wthresh != RTE_PMD_PARAM_UNSET) 3431 port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh; 3432 3433 if (tx_rs_thresh != RTE_PMD_PARAM_UNSET) 3434 port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh; 3435 3436 if (tx_free_thresh != RTE_PMD_PARAM_UNSET) 3437 port->tx_conf[qid].tx_free_thresh = tx_free_thresh; 3438 3439 port->nb_tx_desc[qid] = nb_txd; 3440 } 3441 } 3442 3443 void 3444 init_port_config(void) 3445 { 3446 portid_t pid; 3447 struct rte_port *port; 3448 int ret; 3449 3450 RTE_ETH_FOREACH_DEV(pid) { 3451 port = &ports[pid]; 3452 port->dev_conf.fdir_conf = fdir_conf; 3453 3454 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 3455 if (ret != 0) 3456 return; 3457 3458 if (nb_rxq > 1) { 3459 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3460 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 3461 rss_hf & port->dev_info.flow_type_rss_offloads; 3462 } else { 3463 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3464 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0; 3465 } 3466 3467 if (port->dcb_flag == 0) { 3468 if( port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) 3469 port->dev_conf.rxmode.mq_mode = 3470 (enum rte_eth_rx_mq_mode) 3471 (rx_mq_mode & ETH_MQ_RX_RSS); 3472 else 3473 port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE; 3474 } 3475 3476 rxtx_port_config(port); 3477 3478 ret = eth_macaddr_get_print_err(pid, &port->eth_addr); 3479 if (ret != 0) 3480 return; 3481 3482 map_port_queue_stats_mapping_registers(pid, port); 3483 #if defined RTE_LIBRTE_IXGBE_PMD && defined RTE_LIBRTE_IXGBE_BYPASS 3484 rte_pmd_ixgbe_bypass_init(pid); 3485 #endif 3486 3487 if (lsc_interrupt && 3488 (rte_eth_devices[pid].data->dev_flags & 3489 RTE_ETH_DEV_INTR_LSC)) 3490 port->dev_conf.intr_conf.lsc = 1; 3491 if (rmv_interrupt && 3492 (rte_eth_devices[pid].data->dev_flags & 3493 RTE_ETH_DEV_INTR_RMV)) 3494 port->dev_conf.intr_conf.rmv = 1; 3495 } 3496 } 3497 3498 void set_port_slave_flag(portid_t slave_pid) 3499 { 3500 struct rte_port *port; 3501 3502 port = &ports[slave_pid]; 3503 port->slave_flag = 1; 3504 } 3505 3506 void clear_port_slave_flag(portid_t slave_pid) 3507 { 3508 struct rte_port *port; 3509 3510 port = &ports[slave_pid]; 3511 port->slave_flag = 0; 3512 } 3513 3514 uint8_t port_is_bonding_slave(portid_t slave_pid) 3515 { 3516 struct rte_port *port; 3517 3518 port = &ports[slave_pid]; 3519 if ((rte_eth_devices[slave_pid].data->dev_flags & 3520 RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1)) 3521 return 1; 3522 return 0; 3523 } 3524 3525 const uint16_t vlan_tags[] = { 3526 0, 1, 2, 3, 4, 5, 6, 7, 3527 8, 9, 10, 11, 12, 13, 14, 15, 3528 16, 17, 18, 19, 20, 21, 22, 23, 3529 24, 25, 26, 27, 28, 29, 30, 31 3530 }; 3531 3532 static int 3533 get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf, 3534 enum dcb_mode_enable dcb_mode, 3535 enum rte_eth_nb_tcs num_tcs, 3536 uint8_t pfc_en) 3537 { 3538 uint8_t i; 3539 int32_t rc; 3540 struct rte_eth_rss_conf rss_conf; 3541 3542 /* 3543 * Builds up the correct configuration for dcb+vt based on the vlan tags array 3544 * given above, and the number of traffic classes available for use. 3545 */ 3546 if (dcb_mode == DCB_VT_ENABLED) { 3547 struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf = 3548 ð_conf->rx_adv_conf.vmdq_dcb_conf; 3549 struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf = 3550 ð_conf->tx_adv_conf.vmdq_dcb_tx_conf; 3551 3552 /* VMDQ+DCB RX and TX configurations */ 3553 vmdq_rx_conf->enable_default_pool = 0; 3554 vmdq_rx_conf->default_pool = 0; 3555 vmdq_rx_conf->nb_queue_pools = 3556 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3557 vmdq_tx_conf->nb_queue_pools = 3558 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3559 3560 vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools; 3561 for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) { 3562 vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i]; 3563 vmdq_rx_conf->pool_map[i].pools = 3564 1 << (i % vmdq_rx_conf->nb_queue_pools); 3565 } 3566 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3567 vmdq_rx_conf->dcb_tc[i] = i % num_tcs; 3568 vmdq_tx_conf->dcb_tc[i] = i % num_tcs; 3569 } 3570 3571 /* set DCB mode of RX and TX of multiple queues */ 3572 eth_conf->rxmode.mq_mode = 3573 (enum rte_eth_rx_mq_mode) 3574 (rx_mq_mode & ETH_MQ_RX_VMDQ_DCB); 3575 eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB; 3576 } else { 3577 struct rte_eth_dcb_rx_conf *rx_conf = 3578 ð_conf->rx_adv_conf.dcb_rx_conf; 3579 struct rte_eth_dcb_tx_conf *tx_conf = 3580 ð_conf->tx_adv_conf.dcb_tx_conf; 3581 3582 memset(&rss_conf, 0, sizeof(struct rte_eth_rss_conf)); 3583 3584 rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf); 3585 if (rc != 0) 3586 return rc; 3587 3588 rx_conf->nb_tcs = num_tcs; 3589 tx_conf->nb_tcs = num_tcs; 3590 3591 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3592 rx_conf->dcb_tc[i] = i % num_tcs; 3593 tx_conf->dcb_tc[i] = i % num_tcs; 3594 } 3595 3596 eth_conf->rxmode.mq_mode = 3597 (enum rte_eth_rx_mq_mode) 3598 (rx_mq_mode & ETH_MQ_RX_DCB_RSS); 3599 eth_conf->rx_adv_conf.rss_conf = rss_conf; 3600 eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB; 3601 } 3602 3603 if (pfc_en) 3604 eth_conf->dcb_capability_en = 3605 ETH_DCB_PG_SUPPORT | ETH_DCB_PFC_SUPPORT; 3606 else 3607 eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT; 3608 3609 return 0; 3610 } 3611 3612 int 3613 init_port_dcb_config(portid_t pid, 3614 enum dcb_mode_enable dcb_mode, 3615 enum rte_eth_nb_tcs num_tcs, 3616 uint8_t pfc_en) 3617 { 3618 struct rte_eth_conf port_conf; 3619 struct rte_port *rte_port; 3620 int retval; 3621 uint16_t i; 3622 3623 rte_port = &ports[pid]; 3624 3625 memset(&port_conf, 0, sizeof(struct rte_eth_conf)); 3626 /* Enter DCB configuration status */ 3627 dcb_config = 1; 3628 3629 port_conf.rxmode = rte_port->dev_conf.rxmode; 3630 port_conf.txmode = rte_port->dev_conf.txmode; 3631 3632 /*set configuration of DCB in vt mode and DCB in non-vt mode*/ 3633 retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en); 3634 if (retval < 0) 3635 return retval; 3636 port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3637 3638 /* re-configure the device . */ 3639 retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf); 3640 if (retval < 0) 3641 return retval; 3642 3643 retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info); 3644 if (retval != 0) 3645 return retval; 3646 3647 /* If dev_info.vmdq_pool_base is greater than 0, 3648 * the queue id of vmdq pools is started after pf queues. 3649 */ 3650 if (dcb_mode == DCB_VT_ENABLED && 3651 rte_port->dev_info.vmdq_pool_base > 0) { 3652 printf("VMDQ_DCB multi-queue mode is nonsensical" 3653 " for port %d.", pid); 3654 return -1; 3655 } 3656 3657 /* Assume the ports in testpmd have the same dcb capability 3658 * and has the same number of rxq and txq in dcb mode 3659 */ 3660 if (dcb_mode == DCB_VT_ENABLED) { 3661 if (rte_port->dev_info.max_vfs > 0) { 3662 nb_rxq = rte_port->dev_info.nb_rx_queues; 3663 nb_txq = rte_port->dev_info.nb_tx_queues; 3664 } else { 3665 nb_rxq = rte_port->dev_info.max_rx_queues; 3666 nb_txq = rte_port->dev_info.max_tx_queues; 3667 } 3668 } else { 3669 /*if vt is disabled, use all pf queues */ 3670 if (rte_port->dev_info.vmdq_pool_base == 0) { 3671 nb_rxq = rte_port->dev_info.max_rx_queues; 3672 nb_txq = rte_port->dev_info.max_tx_queues; 3673 } else { 3674 nb_rxq = (queueid_t)num_tcs; 3675 nb_txq = (queueid_t)num_tcs; 3676 3677 } 3678 } 3679 rx_free_thresh = 64; 3680 3681 memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf)); 3682 3683 rxtx_port_config(rte_port); 3684 /* VLAN filter */ 3685 rte_port->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3686 for (i = 0; i < RTE_DIM(vlan_tags); i++) 3687 rx_vft_set(pid, vlan_tags[i], 1); 3688 3689 retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr); 3690 if (retval != 0) 3691 return retval; 3692 3693 map_port_queue_stats_mapping_registers(pid, rte_port); 3694 3695 rte_port->dcb_flag = 1; 3696 3697 return 0; 3698 } 3699 3700 static void 3701 init_port(void) 3702 { 3703 int i; 3704 3705 /* Configuration of Ethernet ports. */ 3706 ports = rte_zmalloc("testpmd: ports", 3707 sizeof(struct rte_port) * RTE_MAX_ETHPORTS, 3708 RTE_CACHE_LINE_SIZE); 3709 if (ports == NULL) { 3710 rte_exit(EXIT_FAILURE, 3711 "rte_zmalloc(%d struct rte_port) failed\n", 3712 RTE_MAX_ETHPORTS); 3713 } 3714 for (i = 0; i < RTE_MAX_ETHPORTS; i++) 3715 LIST_INIT(&ports[i].flow_tunnel_list); 3716 /* Initialize ports NUMA structures */ 3717 memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3718 memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3719 memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3720 } 3721 3722 static void 3723 force_quit(void) 3724 { 3725 pmd_test_exit(); 3726 prompt_exit(); 3727 } 3728 3729 static void 3730 print_stats(void) 3731 { 3732 uint8_t i; 3733 const char clr[] = { 27, '[', '2', 'J', '\0' }; 3734 const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 3735 3736 /* Clear screen and move to top left */ 3737 printf("%s%s", clr, top_left); 3738 3739 printf("\nPort statistics ===================================="); 3740 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 3741 nic_stats_display(fwd_ports_ids[i]); 3742 3743 fflush(stdout); 3744 } 3745 3746 static void 3747 signal_handler(int signum) 3748 { 3749 if (signum == SIGINT || signum == SIGTERM) { 3750 printf("\nSignal %d received, preparing to exit...\n", 3751 signum); 3752 #ifdef RTE_LIBRTE_PDUMP 3753 /* uninitialize packet capture framework */ 3754 rte_pdump_uninit(); 3755 #endif 3756 #ifdef RTE_LIBRTE_LATENCY_STATS 3757 if (latencystats_enabled != 0) 3758 rte_latencystats_uninit(); 3759 #endif 3760 force_quit(); 3761 /* Set flag to indicate the force termination. */ 3762 f_quit = 1; 3763 /* exit with the expected status */ 3764 signal(signum, SIG_DFL); 3765 kill(getpid(), signum); 3766 } 3767 } 3768 3769 int 3770 main(int argc, char** argv) 3771 { 3772 int diag; 3773 portid_t port_id; 3774 uint16_t count; 3775 int ret; 3776 3777 signal(SIGINT, signal_handler); 3778 signal(SIGTERM, signal_handler); 3779 3780 testpmd_logtype = rte_log_register("testpmd"); 3781 if (testpmd_logtype < 0) 3782 rte_exit(EXIT_FAILURE, "Cannot register log type"); 3783 rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG); 3784 3785 diag = rte_eal_init(argc, argv); 3786 if (diag < 0) 3787 rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n", 3788 rte_strerror(rte_errno)); 3789 3790 if (rte_eal_process_type() == RTE_PROC_SECONDARY) 3791 rte_exit(EXIT_FAILURE, 3792 "Secondary process type not supported.\n"); 3793 3794 ret = register_eth_event_callback(); 3795 if (ret != 0) 3796 rte_exit(EXIT_FAILURE, "Cannot register for ethdev events"); 3797 3798 #ifdef RTE_LIBRTE_PDUMP 3799 /* initialize packet capture framework */ 3800 rte_pdump_init(); 3801 #endif 3802 3803 count = 0; 3804 RTE_ETH_FOREACH_DEV(port_id) { 3805 ports_ids[count] = port_id; 3806 count++; 3807 } 3808 nb_ports = (portid_t) count; 3809 if (nb_ports == 0) 3810 TESTPMD_LOG(WARNING, "No probed ethernet devices\n"); 3811 3812 /* allocate port structures, and init them */ 3813 init_port(); 3814 3815 set_def_fwd_config(); 3816 if (nb_lcores == 0) 3817 rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n" 3818 "Check the core mask argument\n"); 3819 3820 /* Bitrate/latency stats disabled by default */ 3821 #ifdef RTE_LIBRTE_BITRATESTATS 3822 bitrate_enabled = 0; 3823 #endif 3824 #ifdef RTE_LIBRTE_LATENCY_STATS 3825 latencystats_enabled = 0; 3826 #endif 3827 3828 /* on FreeBSD, mlockall() is disabled by default */ 3829 #ifdef RTE_EXEC_ENV_FREEBSD 3830 do_mlockall = 0; 3831 #else 3832 do_mlockall = 1; 3833 #endif 3834 3835 argc -= diag; 3836 argv += diag; 3837 if (argc > 1) 3838 launch_args_parse(argc, argv); 3839 3840 if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) { 3841 TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n", 3842 strerror(errno)); 3843 } 3844 3845 if (tx_first && interactive) 3846 rte_exit(EXIT_FAILURE, "--tx-first cannot be used on " 3847 "interactive mode.\n"); 3848 3849 if (tx_first && lsc_interrupt) { 3850 printf("Warning: lsc_interrupt needs to be off when " 3851 " using tx_first. Disabling.\n"); 3852 lsc_interrupt = 0; 3853 } 3854 3855 if (!nb_rxq && !nb_txq) 3856 printf("Warning: Either rx or tx queues should be non-zero\n"); 3857 3858 if (nb_rxq > 1 && nb_rxq > nb_txq) 3859 printf("Warning: nb_rxq=%d enables RSS configuration, " 3860 "but nb_txq=%d will prevent to fully test it.\n", 3861 nb_rxq, nb_txq); 3862 3863 init_config(); 3864 3865 if (hot_plug) { 3866 ret = rte_dev_hotplug_handle_enable(); 3867 if (ret) { 3868 RTE_LOG(ERR, EAL, 3869 "fail to enable hotplug handling."); 3870 return -1; 3871 } 3872 3873 ret = rte_dev_event_monitor_start(); 3874 if (ret) { 3875 RTE_LOG(ERR, EAL, 3876 "fail to start device event monitoring."); 3877 return -1; 3878 } 3879 3880 ret = rte_dev_event_callback_register(NULL, 3881 dev_event_callback, NULL); 3882 if (ret) { 3883 RTE_LOG(ERR, EAL, 3884 "fail to register device event callback\n"); 3885 return -1; 3886 } 3887 } 3888 3889 if (!no_device_start && start_port(RTE_PORT_ALL) != 0) 3890 rte_exit(EXIT_FAILURE, "Start ports failed\n"); 3891 3892 /* set all ports to promiscuous mode by default */ 3893 RTE_ETH_FOREACH_DEV(port_id) { 3894 ret = rte_eth_promiscuous_enable(port_id); 3895 if (ret != 0) 3896 printf("Error during enabling promiscuous mode for port %u: %s - ignore\n", 3897 port_id, rte_strerror(-ret)); 3898 } 3899 3900 /* Init metrics library */ 3901 rte_metrics_init(rte_socket_id()); 3902 3903 #ifdef RTE_LIBRTE_LATENCY_STATS 3904 if (latencystats_enabled != 0) { 3905 int ret = rte_latencystats_init(1, NULL); 3906 if (ret) 3907 printf("Warning: latencystats init()" 3908 " returned error %d\n", ret); 3909 printf("Latencystats running on lcore %d\n", 3910 latencystats_lcore_id); 3911 } 3912 #endif 3913 3914 /* Setup bitrate stats */ 3915 #ifdef RTE_LIBRTE_BITRATESTATS 3916 if (bitrate_enabled != 0) { 3917 bitrate_data = rte_stats_bitrate_create(); 3918 if (bitrate_data == NULL) 3919 rte_exit(EXIT_FAILURE, 3920 "Could not allocate bitrate data.\n"); 3921 rte_stats_bitrate_reg(bitrate_data); 3922 } 3923 #endif 3924 3925 #ifdef RTE_LIBRTE_CMDLINE 3926 if (strlen(cmdline_filename) != 0) 3927 cmdline_read_from_file(cmdline_filename); 3928 3929 if (interactive == 1) { 3930 if (auto_start) { 3931 printf("Start automatic packet forwarding\n"); 3932 start_packet_forwarding(0); 3933 } 3934 prompt(); 3935 pmd_test_exit(); 3936 } else 3937 #endif 3938 { 3939 char c; 3940 int rc; 3941 3942 f_quit = 0; 3943 3944 printf("No commandline core given, start packet forwarding\n"); 3945 start_packet_forwarding(tx_first); 3946 if (stats_period != 0) { 3947 uint64_t prev_time = 0, cur_time, diff_time = 0; 3948 uint64_t timer_period; 3949 3950 /* Convert to number of cycles */ 3951 timer_period = stats_period * rte_get_timer_hz(); 3952 3953 while (f_quit == 0) { 3954 cur_time = rte_get_timer_cycles(); 3955 diff_time += cur_time - prev_time; 3956 3957 if (diff_time >= timer_period) { 3958 print_stats(); 3959 /* Reset the timer */ 3960 diff_time = 0; 3961 } 3962 /* Sleep to avoid unnecessary checks */ 3963 prev_time = cur_time; 3964 sleep(1); 3965 } 3966 } 3967 3968 printf("Press enter to exit\n"); 3969 rc = read(0, &c, 1); 3970 pmd_test_exit(); 3971 if (rc < 0) 3972 return 1; 3973 } 3974 3975 ret = rte_eal_cleanup(); 3976 if (ret != 0) 3977 rte_exit(EXIT_FAILURE, 3978 "EAL cleanup failed: %s\n", strerror(-ret)); 3979 3980 return EXIT_SUCCESS; 3981 } 3982