xref: /dpdk/app/test-pmd/testpmd.c (revision 71bdd8a1785d25f91de7908ff915e4db7871eb2b)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2017 Intel Corporation
3  */
4 
5 #include <stdarg.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <signal.h>
9 #include <string.h>
10 #include <time.h>
11 #include <fcntl.h>
12 #include <sys/mman.h>
13 #include <sys/types.h>
14 #include <errno.h>
15 #include <stdbool.h>
16 
17 #include <sys/queue.h>
18 #include <sys/stat.h>
19 
20 #include <stdint.h>
21 #include <unistd.h>
22 #include <inttypes.h>
23 
24 #include <rte_common.h>
25 #include <rte_errno.h>
26 #include <rte_byteorder.h>
27 #include <rte_log.h>
28 #include <rte_debug.h>
29 #include <rte_cycles.h>
30 #include <rte_memory.h>
31 #include <rte_memcpy.h>
32 #include <rte_launch.h>
33 #include <rte_eal.h>
34 #include <rte_alarm.h>
35 #include <rte_per_lcore.h>
36 #include <rte_lcore.h>
37 #include <rte_atomic.h>
38 #include <rte_branch_prediction.h>
39 #include <rte_mempool.h>
40 #include <rte_malloc.h>
41 #include <rte_mbuf.h>
42 #include <rte_mbuf_pool_ops.h>
43 #include <rte_interrupts.h>
44 #include <rte_pci.h>
45 #include <rte_ether.h>
46 #include <rte_ethdev.h>
47 #include <rte_dev.h>
48 #include <rte_string_fns.h>
49 #ifdef RTE_LIBRTE_IXGBE_PMD
50 #include <rte_pmd_ixgbe.h>
51 #endif
52 #ifdef RTE_LIBRTE_PDUMP
53 #include <rte_pdump.h>
54 #endif
55 #include <rte_flow.h>
56 #include <rte_metrics.h>
57 #ifdef RTE_LIBRTE_BITRATE
58 #include <rte_bitrate.h>
59 #endif
60 #ifdef RTE_LIBRTE_LATENCY_STATS
61 #include <rte_latencystats.h>
62 #endif
63 
64 #include "testpmd.h"
65 
66 #ifndef MAP_HUGETLB
67 /* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */
68 #define HUGE_FLAG (0x40000)
69 #else
70 #define HUGE_FLAG MAP_HUGETLB
71 #endif
72 
73 #ifndef MAP_HUGE_SHIFT
74 /* older kernels (or FreeBSD) will not have this define */
75 #define HUGE_SHIFT (26)
76 #else
77 #define HUGE_SHIFT MAP_HUGE_SHIFT
78 #endif
79 
80 #define EXTMEM_HEAP_NAME "extmem"
81 #define EXTBUF_ZONE_SIZE RTE_PGSIZE_2M
82 
83 uint16_t verbose_level = 0; /**< Silent by default. */
84 int testpmd_logtype; /**< Log type for testpmd logs */
85 
86 /* use master core for command line ? */
87 uint8_t interactive = 0;
88 uint8_t auto_start = 0;
89 uint8_t tx_first;
90 char cmdline_filename[PATH_MAX] = {0};
91 
92 /*
93  * NUMA support configuration.
94  * When set, the NUMA support attempts to dispatch the allocation of the
95  * RX and TX memory rings, and of the DMA memory buffers (mbufs) for the
96  * probed ports among the CPU sockets 0 and 1.
97  * Otherwise, all memory is allocated from CPU socket 0.
98  */
99 uint8_t numa_support = 1; /**< numa enabled by default */
100 
101 /*
102  * In UMA mode,all memory is allocated from socket 0 if --socket-num is
103  * not configured.
104  */
105 uint8_t socket_num = UMA_NO_CONFIG;
106 
107 /*
108  * Select mempool allocation type:
109  * - native: use regular DPDK memory
110  * - anon: use regular DPDK memory to create mempool, but populate using
111  *         anonymous memory (may not be IOVA-contiguous)
112  * - xmem: use externally allocated hugepage memory
113  */
114 uint8_t mp_alloc_type = MP_ALLOC_NATIVE;
115 
116 /*
117  * Store specified sockets on which memory pool to be used by ports
118  * is allocated.
119  */
120 uint8_t port_numa[RTE_MAX_ETHPORTS];
121 
122 /*
123  * Store specified sockets on which RX ring to be used by ports
124  * is allocated.
125  */
126 uint8_t rxring_numa[RTE_MAX_ETHPORTS];
127 
128 /*
129  * Store specified sockets on which TX ring to be used by ports
130  * is allocated.
131  */
132 uint8_t txring_numa[RTE_MAX_ETHPORTS];
133 
134 /*
135  * Record the Ethernet address of peer target ports to which packets are
136  * forwarded.
137  * Must be instantiated with the ethernet addresses of peer traffic generator
138  * ports.
139  */
140 struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS];
141 portid_t nb_peer_eth_addrs = 0;
142 
143 /*
144  * Probed Target Environment.
145  */
146 struct rte_port *ports;	       /**< For all probed ethernet ports. */
147 portid_t nb_ports;             /**< Number of probed ethernet ports. */
148 struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */
149 lcoreid_t nb_lcores;           /**< Number of probed logical cores. */
150 
151 portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */
152 
153 /*
154  * Test Forwarding Configuration.
155  *    nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores
156  *    nb_fwd_ports  <= nb_cfg_ports  <= nb_ports
157  */
158 lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */
159 lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */
160 portid_t  nb_cfg_ports;  /**< Number of configured ports. */
161 portid_t  nb_fwd_ports;  /**< Number of forwarding ports. */
162 
163 unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */
164 portid_t fwd_ports_ids[RTE_MAX_ETHPORTS];      /**< Port ids configuration. */
165 
166 struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */
167 streamid_t nb_fwd_streams;       /**< Is equal to (nb_ports * nb_rxq). */
168 
169 /*
170  * Forwarding engines.
171  */
172 struct fwd_engine * fwd_engines[] = {
173 	&io_fwd_engine,
174 	&mac_fwd_engine,
175 	&mac_swap_engine,
176 	&flow_gen_engine,
177 	&rx_only_engine,
178 	&tx_only_engine,
179 	&csum_fwd_engine,
180 	&icmp_echo_engine,
181 	&noisy_vnf_engine,
182 #if defined RTE_LIBRTE_PMD_SOFTNIC
183 	&softnic_fwd_engine,
184 #endif
185 #ifdef RTE_LIBRTE_IEEE1588
186 	&ieee1588_fwd_engine,
187 #endif
188 	NULL,
189 };
190 
191 struct rte_mempool *mempools[RTE_MAX_NUMA_NODES];
192 uint16_t mempool_flags;
193 
194 struct fwd_config cur_fwd_config;
195 struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */
196 uint32_t retry_enabled;
197 uint32_t burst_tx_delay_time = BURST_TX_WAIT_US;
198 uint32_t burst_tx_retry_num = BURST_TX_RETRIES;
199 
200 uint16_t mbuf_data_size = DEFAULT_MBUF_DATA_SIZE; /**< Mbuf data space size. */
201 uint32_t param_total_num_mbufs = 0;  /**< number of mbufs in all pools - if
202                                       * specified on command-line. */
203 uint16_t stats_period; /**< Period to show statistics (disabled by default) */
204 
205 /*
206  * In container, it cannot terminate the process which running with 'stats-period'
207  * option. Set flag to exit stats period loop after received SIGINT/SIGTERM.
208  */
209 uint8_t f_quit;
210 
211 /*
212  * Configuration of packet segments used by the "txonly" processing engine.
213  */
214 uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */
215 uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = {
216 	TXONLY_DEF_PACKET_LEN,
217 };
218 uint8_t  tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */
219 
220 enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF;
221 /**< Split policy for packets to TX. */
222 
223 uint8_t txonly_multi_flow;
224 /**< Whether multiple flows are generated in TXONLY mode. */
225 
226 uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */
227 uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */
228 
229 /* current configuration is in DCB or not,0 means it is not in DCB mode */
230 uint8_t dcb_config = 0;
231 
232 /* Whether the dcb is in testing status */
233 uint8_t dcb_test = 0;
234 
235 /*
236  * Configurable number of RX/TX queues.
237  */
238 queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */
239 queueid_t nb_rxq = 1; /**< Number of RX queues per port. */
240 queueid_t nb_txq = 1; /**< Number of TX queues per port. */
241 
242 /*
243  * Configurable number of RX/TX ring descriptors.
244  * Defaults are supplied by drivers via ethdev.
245  */
246 #define RTE_TEST_RX_DESC_DEFAULT 0
247 #define RTE_TEST_TX_DESC_DEFAULT 0
248 uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */
249 uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */
250 
251 #define RTE_PMD_PARAM_UNSET -1
252 /*
253  * Configurable values of RX and TX ring threshold registers.
254  */
255 
256 int8_t rx_pthresh = RTE_PMD_PARAM_UNSET;
257 int8_t rx_hthresh = RTE_PMD_PARAM_UNSET;
258 int8_t rx_wthresh = RTE_PMD_PARAM_UNSET;
259 
260 int8_t tx_pthresh = RTE_PMD_PARAM_UNSET;
261 int8_t tx_hthresh = RTE_PMD_PARAM_UNSET;
262 int8_t tx_wthresh = RTE_PMD_PARAM_UNSET;
263 
264 /*
265  * Configurable value of RX free threshold.
266  */
267 int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET;
268 
269 /*
270  * Configurable value of RX drop enable.
271  */
272 int8_t rx_drop_en = RTE_PMD_PARAM_UNSET;
273 
274 /*
275  * Configurable value of TX free threshold.
276  */
277 int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET;
278 
279 /*
280  * Configurable value of TX RS bit threshold.
281  */
282 int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET;
283 
284 /*
285  * Configurable value of buffered packets before sending.
286  */
287 uint16_t noisy_tx_sw_bufsz;
288 
289 /*
290  * Configurable value of packet buffer timeout.
291  */
292 uint16_t noisy_tx_sw_buf_flush_time;
293 
294 /*
295  * Configurable value for size of VNF internal memory area
296  * used for simulating noisy neighbour behaviour
297  */
298 uint64_t noisy_lkup_mem_sz;
299 
300 /*
301  * Configurable value of number of random writes done in
302  * VNF simulation memory area.
303  */
304 uint64_t noisy_lkup_num_writes;
305 
306 /*
307  * Configurable value of number of random reads done in
308  * VNF simulation memory area.
309  */
310 uint64_t noisy_lkup_num_reads;
311 
312 /*
313  * Configurable value of number of random reads/writes done in
314  * VNF simulation memory area.
315  */
316 uint64_t noisy_lkup_num_reads_writes;
317 
318 /*
319  * Receive Side Scaling (RSS) configuration.
320  */
321 uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */
322 
323 /*
324  * Port topology configuration
325  */
326 uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */
327 
328 /*
329  * Avoids to flush all the RX streams before starts forwarding.
330  */
331 uint8_t no_flush_rx = 0; /* flush by default */
332 
333 /*
334  * Flow API isolated mode.
335  */
336 uint8_t flow_isolate_all;
337 
338 /*
339  * Avoids to check link status when starting/stopping a port.
340  */
341 uint8_t no_link_check = 0; /* check by default */
342 
343 /*
344  * Don't automatically start all ports in interactive mode.
345  */
346 uint8_t no_device_start = 0;
347 
348 /*
349  * Enable link status change notification
350  */
351 uint8_t lsc_interrupt = 1; /* enabled by default */
352 
353 /*
354  * Enable device removal notification.
355  */
356 uint8_t rmv_interrupt = 1; /* enabled by default */
357 
358 uint8_t hot_plug = 0; /**< hotplug disabled by default. */
359 
360 /* After attach, port setup is called on event or by iterator */
361 bool setup_on_probe_event = true;
362 
363 /* Clear ptypes on port initialization. */
364 uint8_t clear_ptypes = true;
365 
366 /* Pretty printing of ethdev events */
367 static const char * const eth_event_desc[] = {
368 	[RTE_ETH_EVENT_UNKNOWN] = "unknown",
369 	[RTE_ETH_EVENT_INTR_LSC] = "link state change",
370 	[RTE_ETH_EVENT_QUEUE_STATE] = "queue state",
371 	[RTE_ETH_EVENT_INTR_RESET] = "reset",
372 	[RTE_ETH_EVENT_VF_MBOX] = "VF mbox",
373 	[RTE_ETH_EVENT_IPSEC] = "IPsec",
374 	[RTE_ETH_EVENT_MACSEC] = "MACsec",
375 	[RTE_ETH_EVENT_INTR_RMV] = "device removal",
376 	[RTE_ETH_EVENT_NEW] = "device probed",
377 	[RTE_ETH_EVENT_DESTROY] = "device released",
378 	[RTE_ETH_EVENT_MAX] = NULL,
379 };
380 
381 /*
382  * Display or mask ether events
383  * Default to all events except VF_MBOX
384  */
385 uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) |
386 			    (UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) |
387 			    (UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) |
388 			    (UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) |
389 			    (UINT32_C(1) << RTE_ETH_EVENT_IPSEC) |
390 			    (UINT32_C(1) << RTE_ETH_EVENT_MACSEC) |
391 			    (UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV);
392 /*
393  * Decide if all memory are locked for performance.
394  */
395 int do_mlockall = 0;
396 
397 /*
398  * NIC bypass mode configuration options.
399  */
400 
401 #if defined RTE_LIBRTE_IXGBE_PMD && defined RTE_LIBRTE_IXGBE_BYPASS
402 /* The NIC bypass watchdog timeout. */
403 uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF;
404 #endif
405 
406 
407 #ifdef RTE_LIBRTE_LATENCY_STATS
408 
409 /*
410  * Set when latency stats is enabled in the commandline
411  */
412 uint8_t latencystats_enabled;
413 
414 /*
415  * Lcore ID to serive latency statistics.
416  */
417 lcoreid_t latencystats_lcore_id = -1;
418 
419 #endif
420 
421 /*
422  * Ethernet device configuration.
423  */
424 struct rte_eth_rxmode rx_mode = {
425 	.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
426 		/**< Default maximum frame length. */
427 };
428 
429 struct rte_eth_txmode tx_mode = {
430 	.offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE,
431 };
432 
433 struct rte_fdir_conf fdir_conf = {
434 	.mode = RTE_FDIR_MODE_NONE,
435 	.pballoc = RTE_FDIR_PBALLOC_64K,
436 	.status = RTE_FDIR_REPORT_STATUS,
437 	.mask = {
438 		.vlan_tci_mask = 0xFFEF,
439 		.ipv4_mask     = {
440 			.src_ip = 0xFFFFFFFF,
441 			.dst_ip = 0xFFFFFFFF,
442 		},
443 		.ipv6_mask     = {
444 			.src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
445 			.dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF},
446 		},
447 		.src_port_mask = 0xFFFF,
448 		.dst_port_mask = 0xFFFF,
449 		.mac_addr_byte_mask = 0xFF,
450 		.tunnel_type_mask = 1,
451 		.tunnel_id_mask = 0xFFFFFFFF,
452 	},
453 	.drop_queue = 127,
454 };
455 
456 volatile int test_done = 1; /* stop packet forwarding when set to 1. */
457 
458 struct queue_stats_mappings tx_queue_stats_mappings_array[MAX_TX_QUEUE_STATS_MAPPINGS];
459 struct queue_stats_mappings rx_queue_stats_mappings_array[MAX_RX_QUEUE_STATS_MAPPINGS];
460 
461 struct queue_stats_mappings *tx_queue_stats_mappings = tx_queue_stats_mappings_array;
462 struct queue_stats_mappings *rx_queue_stats_mappings = rx_queue_stats_mappings_array;
463 
464 uint16_t nb_tx_queue_stats_mappings = 0;
465 uint16_t nb_rx_queue_stats_mappings = 0;
466 
467 /*
468  * Display zero values by default for xstats
469  */
470 uint8_t xstats_hide_zero;
471 
472 unsigned int num_sockets = 0;
473 unsigned int socket_ids[RTE_MAX_NUMA_NODES];
474 
475 #ifdef RTE_LIBRTE_BITRATE
476 /* Bitrate statistics */
477 struct rte_stats_bitrates *bitrate_data;
478 lcoreid_t bitrate_lcore_id;
479 uint8_t bitrate_enabled;
480 #endif
481 
482 struct gro_status gro_ports[RTE_MAX_ETHPORTS];
483 uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES;
484 
485 /* Forward function declarations */
486 static void setup_attached_port(portid_t pi);
487 static void map_port_queue_stats_mapping_registers(portid_t pi,
488 						   struct rte_port *port);
489 static void check_all_ports_link_status(uint32_t port_mask);
490 static int eth_event_callback(portid_t port_id,
491 			      enum rte_eth_event_type type,
492 			      void *param, void *ret_param);
493 static void dev_event_callback(const char *device_name,
494 				enum rte_dev_event_type type,
495 				void *param);
496 
497 /*
498  * Check if all the ports are started.
499  * If yes, return positive value. If not, return zero.
500  */
501 static int all_ports_started(void);
502 
503 struct gso_status gso_ports[RTE_MAX_ETHPORTS];
504 uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN;
505 
506 /* Holds the registered mbuf dynamic flags names. */
507 char dynf_names[64][RTE_MBUF_DYN_NAMESIZE];
508 
509 /*
510  * Helper function to check if socket is already discovered.
511  * If yes, return positive value. If not, return zero.
512  */
513 int
514 new_socket_id(unsigned int socket_id)
515 {
516 	unsigned int i;
517 
518 	for (i = 0; i < num_sockets; i++) {
519 		if (socket_ids[i] == socket_id)
520 			return 0;
521 	}
522 	return 1;
523 }
524 
525 /*
526  * Setup default configuration.
527  */
528 static void
529 set_default_fwd_lcores_config(void)
530 {
531 	unsigned int i;
532 	unsigned int nb_lc;
533 	unsigned int sock_num;
534 
535 	nb_lc = 0;
536 	for (i = 0; i < RTE_MAX_LCORE; i++) {
537 		if (!rte_lcore_is_enabled(i))
538 			continue;
539 		sock_num = rte_lcore_to_socket_id(i);
540 		if (new_socket_id(sock_num)) {
541 			if (num_sockets >= RTE_MAX_NUMA_NODES) {
542 				rte_exit(EXIT_FAILURE,
543 					 "Total sockets greater than %u\n",
544 					 RTE_MAX_NUMA_NODES);
545 			}
546 			socket_ids[num_sockets++] = sock_num;
547 		}
548 		if (i == rte_get_master_lcore())
549 			continue;
550 		fwd_lcores_cpuids[nb_lc++] = i;
551 	}
552 	nb_lcores = (lcoreid_t) nb_lc;
553 	nb_cfg_lcores = nb_lcores;
554 	nb_fwd_lcores = 1;
555 }
556 
557 static void
558 set_def_peer_eth_addrs(void)
559 {
560 	portid_t i;
561 
562 	for (i = 0; i < RTE_MAX_ETHPORTS; i++) {
563 		peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR;
564 		peer_eth_addrs[i].addr_bytes[5] = i;
565 	}
566 }
567 
568 static void
569 set_default_fwd_ports_config(void)
570 {
571 	portid_t pt_id;
572 	int i = 0;
573 
574 	RTE_ETH_FOREACH_DEV(pt_id) {
575 		fwd_ports_ids[i++] = pt_id;
576 
577 		/* Update sockets info according to the attached device */
578 		int socket_id = rte_eth_dev_socket_id(pt_id);
579 		if (socket_id >= 0 && new_socket_id(socket_id)) {
580 			if (num_sockets >= RTE_MAX_NUMA_NODES) {
581 				rte_exit(EXIT_FAILURE,
582 					 "Total sockets greater than %u\n",
583 					 RTE_MAX_NUMA_NODES);
584 			}
585 			socket_ids[num_sockets++] = socket_id;
586 		}
587 	}
588 
589 	nb_cfg_ports = nb_ports;
590 	nb_fwd_ports = nb_ports;
591 }
592 
593 void
594 set_def_fwd_config(void)
595 {
596 	set_default_fwd_lcores_config();
597 	set_def_peer_eth_addrs();
598 	set_default_fwd_ports_config();
599 }
600 
601 /* extremely pessimistic estimation of memory required to create a mempool */
602 static int
603 calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out)
604 {
605 	unsigned int n_pages, mbuf_per_pg, leftover;
606 	uint64_t total_mem, mbuf_mem, obj_sz;
607 
608 	/* there is no good way to predict how much space the mempool will
609 	 * occupy because it will allocate chunks on the fly, and some of those
610 	 * will come from default DPDK memory while some will come from our
611 	 * external memory, so just assume 128MB will be enough for everyone.
612 	 */
613 	uint64_t hdr_mem = 128 << 20;
614 
615 	/* account for possible non-contiguousness */
616 	obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL);
617 	if (obj_sz > pgsz) {
618 		TESTPMD_LOG(ERR, "Object size is bigger than page size\n");
619 		return -1;
620 	}
621 
622 	mbuf_per_pg = pgsz / obj_sz;
623 	leftover = (nb_mbufs % mbuf_per_pg) > 0;
624 	n_pages = (nb_mbufs / mbuf_per_pg) + leftover;
625 
626 	mbuf_mem = n_pages * pgsz;
627 
628 	total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz);
629 
630 	if (total_mem > SIZE_MAX) {
631 		TESTPMD_LOG(ERR, "Memory size too big\n");
632 		return -1;
633 	}
634 	*out = (size_t)total_mem;
635 
636 	return 0;
637 }
638 
639 static int
640 pagesz_flags(uint64_t page_sz)
641 {
642 	/* as per mmap() manpage, all page sizes are log2 of page size
643 	 * shifted by MAP_HUGE_SHIFT
644 	 */
645 	int log2 = rte_log2_u64(page_sz);
646 
647 	return (log2 << HUGE_SHIFT);
648 }
649 
650 static void *
651 alloc_mem(size_t memsz, size_t pgsz, bool huge)
652 {
653 	void *addr;
654 	int flags;
655 
656 	/* allocate anonymous hugepages */
657 	flags = MAP_ANONYMOUS | MAP_PRIVATE;
658 	if (huge)
659 		flags |= HUGE_FLAG | pagesz_flags(pgsz);
660 
661 	addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0);
662 	if (addr == MAP_FAILED)
663 		return NULL;
664 
665 	return addr;
666 }
667 
668 struct extmem_param {
669 	void *addr;
670 	size_t len;
671 	size_t pgsz;
672 	rte_iova_t *iova_table;
673 	unsigned int iova_table_len;
674 };
675 
676 static int
677 create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param,
678 		bool huge)
679 {
680 	uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */
681 			RTE_PGSIZE_16M, RTE_PGSIZE_16G};    /* POWER */
682 	unsigned int cur_page, n_pages, pgsz_idx;
683 	size_t mem_sz, cur_pgsz;
684 	rte_iova_t *iovas = NULL;
685 	void *addr;
686 	int ret;
687 
688 	for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) {
689 		/* skip anything that is too big */
690 		if (pgsizes[pgsz_idx] > SIZE_MAX)
691 			continue;
692 
693 		cur_pgsz = pgsizes[pgsz_idx];
694 
695 		/* if we were told not to allocate hugepages, override */
696 		if (!huge)
697 			cur_pgsz = sysconf(_SC_PAGESIZE);
698 
699 		ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz);
700 		if (ret < 0) {
701 			TESTPMD_LOG(ERR, "Cannot calculate memory size\n");
702 			return -1;
703 		}
704 
705 		/* allocate our memory */
706 		addr = alloc_mem(mem_sz, cur_pgsz, huge);
707 
708 		/* if we couldn't allocate memory with a specified page size,
709 		 * that doesn't mean we can't do it with other page sizes, so
710 		 * try another one.
711 		 */
712 		if (addr == NULL)
713 			continue;
714 
715 		/* store IOVA addresses for every page in this memory area */
716 		n_pages = mem_sz / cur_pgsz;
717 
718 		iovas = malloc(sizeof(*iovas) * n_pages);
719 
720 		if (iovas == NULL) {
721 			TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n");
722 			goto fail;
723 		}
724 		/* lock memory if it's not huge pages */
725 		if (!huge)
726 			mlock(addr, mem_sz);
727 
728 		/* populate IOVA addresses */
729 		for (cur_page = 0; cur_page < n_pages; cur_page++) {
730 			rte_iova_t iova;
731 			size_t offset;
732 			void *cur;
733 
734 			offset = cur_pgsz * cur_page;
735 			cur = RTE_PTR_ADD(addr, offset);
736 
737 			/* touch the page before getting its IOVA */
738 			*(volatile char *)cur = 0;
739 
740 			iova = rte_mem_virt2iova(cur);
741 
742 			iovas[cur_page] = iova;
743 		}
744 
745 		break;
746 	}
747 	/* if we couldn't allocate anything */
748 	if (iovas == NULL)
749 		return -1;
750 
751 	param->addr = addr;
752 	param->len = mem_sz;
753 	param->pgsz = cur_pgsz;
754 	param->iova_table = iovas;
755 	param->iova_table_len = n_pages;
756 
757 	return 0;
758 fail:
759 	if (iovas)
760 		free(iovas);
761 	if (addr)
762 		munmap(addr, mem_sz);
763 
764 	return -1;
765 }
766 
767 static int
768 setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge)
769 {
770 	struct extmem_param param;
771 	int socket_id, ret;
772 
773 	memset(&param, 0, sizeof(param));
774 
775 	/* check if our heap exists */
776 	socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME);
777 	if (socket_id < 0) {
778 		/* create our heap */
779 		ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME);
780 		if (ret < 0) {
781 			TESTPMD_LOG(ERR, "Cannot create heap\n");
782 			return -1;
783 		}
784 	}
785 
786 	ret = create_extmem(nb_mbufs, mbuf_sz, &param, huge);
787 	if (ret < 0) {
788 		TESTPMD_LOG(ERR, "Cannot create memory area\n");
789 		return -1;
790 	}
791 
792 	/* we now have a valid memory area, so add it to heap */
793 	ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME,
794 			param.addr, param.len, param.iova_table,
795 			param.iova_table_len, param.pgsz);
796 
797 	/* when using VFIO, memory is automatically mapped for DMA by EAL */
798 
799 	/* not needed any more */
800 	free(param.iova_table);
801 
802 	if (ret < 0) {
803 		TESTPMD_LOG(ERR, "Cannot add memory to heap\n");
804 		munmap(param.addr, param.len);
805 		return -1;
806 	}
807 
808 	/* success */
809 
810 	TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n",
811 			param.len >> 20);
812 
813 	return 0;
814 }
815 static void
816 dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused,
817 	     struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused)
818 {
819 	uint16_t pid = 0;
820 	int ret;
821 
822 	RTE_ETH_FOREACH_DEV(pid) {
823 		struct rte_eth_dev *dev =
824 			&rte_eth_devices[pid];
825 
826 		ret = rte_dev_dma_unmap(dev->device, memhdr->addr, 0,
827 					memhdr->len);
828 		if (ret) {
829 			TESTPMD_LOG(DEBUG,
830 				    "unable to DMA unmap addr 0x%p "
831 				    "for device %s\n",
832 				    memhdr->addr, dev->data->name);
833 		}
834 	}
835 	ret = rte_extmem_unregister(memhdr->addr, memhdr->len);
836 	if (ret) {
837 		TESTPMD_LOG(DEBUG,
838 			    "unable to un-register addr 0x%p\n", memhdr->addr);
839 	}
840 }
841 
842 static void
843 dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused,
844 	   struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused)
845 {
846 	uint16_t pid = 0;
847 	size_t page_size = sysconf(_SC_PAGESIZE);
848 	int ret;
849 
850 	ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0,
851 				  page_size);
852 	if (ret) {
853 		TESTPMD_LOG(DEBUG,
854 			    "unable to register addr 0x%p\n", memhdr->addr);
855 		return;
856 	}
857 	RTE_ETH_FOREACH_DEV(pid) {
858 		struct rte_eth_dev *dev =
859 			&rte_eth_devices[pid];
860 
861 		ret = rte_dev_dma_map(dev->device, memhdr->addr, 0,
862 				      memhdr->len);
863 		if (ret) {
864 			TESTPMD_LOG(DEBUG,
865 				    "unable to DMA map addr 0x%p "
866 				    "for device %s\n",
867 				    memhdr->addr, dev->data->name);
868 		}
869 	}
870 }
871 
872 static unsigned int
873 setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id,
874 	    char *pool_name, struct rte_pktmbuf_extmem **ext_mem)
875 {
876 	struct rte_pktmbuf_extmem *xmem;
877 	unsigned int ext_num, zone_num, elt_num;
878 	uint16_t elt_size;
879 
880 	elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE);
881 	elt_num = EXTBUF_ZONE_SIZE / elt_size;
882 	zone_num = (nb_mbufs + elt_num - 1) / elt_num;
883 
884 	xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num);
885 	if (xmem == NULL) {
886 		TESTPMD_LOG(ERR, "Cannot allocate memory for "
887 				 "external buffer descriptors\n");
888 		*ext_mem = NULL;
889 		return 0;
890 	}
891 	for (ext_num = 0; ext_num < zone_num; ext_num++) {
892 		struct rte_pktmbuf_extmem *xseg = xmem + ext_num;
893 		const struct rte_memzone *mz;
894 		char mz_name[RTE_MEMZONE_NAMESIZE];
895 		int ret;
896 
897 		ret = snprintf(mz_name, sizeof(mz_name),
898 			RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num);
899 		if (ret < 0 || ret >= (int)sizeof(mz_name)) {
900 			errno = ENAMETOOLONG;
901 			ext_num = 0;
902 			break;
903 		}
904 		mz = rte_memzone_reserve_aligned(mz_name, EXTBUF_ZONE_SIZE,
905 						 socket_id,
906 						 RTE_MEMZONE_IOVA_CONTIG |
907 						 RTE_MEMZONE_1GB |
908 						 RTE_MEMZONE_SIZE_HINT_ONLY,
909 						 EXTBUF_ZONE_SIZE);
910 		if (mz == NULL) {
911 			/*
912 			 * The caller exits on external buffer creation
913 			 * error, so there is no need to free memzones.
914 			 */
915 			errno = ENOMEM;
916 			ext_num = 0;
917 			break;
918 		}
919 		xseg->buf_ptr = mz->addr;
920 		xseg->buf_iova = mz->iova;
921 		xseg->buf_len = EXTBUF_ZONE_SIZE;
922 		xseg->elt_size = elt_size;
923 	}
924 	if (ext_num == 0 && xmem != NULL) {
925 		free(xmem);
926 		xmem = NULL;
927 	}
928 	*ext_mem = xmem;
929 	return ext_num;
930 }
931 
932 /*
933  * Configuration initialisation done once at init time.
934  */
935 static struct rte_mempool *
936 mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf,
937 		 unsigned int socket_id)
938 {
939 	char pool_name[RTE_MEMPOOL_NAMESIZE];
940 	struct rte_mempool *rte_mp = NULL;
941 	uint32_t mb_size;
942 
943 	mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size;
944 	mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name));
945 
946 	TESTPMD_LOG(INFO,
947 		"create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n",
948 		pool_name, nb_mbuf, mbuf_seg_size, socket_id);
949 
950 	switch (mp_alloc_type) {
951 	case MP_ALLOC_NATIVE:
952 		{
953 			/* wrapper to rte_mempool_create() */
954 			TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
955 					rte_mbuf_best_mempool_ops());
956 			rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf,
957 				mb_mempool_cache, 0, mbuf_seg_size, socket_id);
958 			break;
959 		}
960 	case MP_ALLOC_ANON:
961 		{
962 			rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf,
963 				mb_size, (unsigned int) mb_mempool_cache,
964 				sizeof(struct rte_pktmbuf_pool_private),
965 				socket_id, mempool_flags);
966 			if (rte_mp == NULL)
967 				goto err;
968 
969 			if (rte_mempool_populate_anon(rte_mp) == 0) {
970 				rte_mempool_free(rte_mp);
971 				rte_mp = NULL;
972 				goto err;
973 			}
974 			rte_pktmbuf_pool_init(rte_mp, NULL);
975 			rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL);
976 			rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL);
977 			break;
978 		}
979 	case MP_ALLOC_XMEM:
980 	case MP_ALLOC_XMEM_HUGE:
981 		{
982 			int heap_socket;
983 			bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE;
984 
985 			if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0)
986 				rte_exit(EXIT_FAILURE, "Could not create external memory\n");
987 
988 			heap_socket =
989 				rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME);
990 			if (heap_socket < 0)
991 				rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n");
992 
993 			TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
994 					rte_mbuf_best_mempool_ops());
995 			rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf,
996 					mb_mempool_cache, 0, mbuf_seg_size,
997 					heap_socket);
998 			break;
999 		}
1000 	case MP_ALLOC_XBUF:
1001 		{
1002 			struct rte_pktmbuf_extmem *ext_mem;
1003 			unsigned int ext_num;
1004 
1005 			ext_num = setup_extbuf(nb_mbuf,	mbuf_seg_size,
1006 					       socket_id, pool_name, &ext_mem);
1007 			if (ext_num == 0)
1008 				rte_exit(EXIT_FAILURE,
1009 					 "Can't create pinned data buffers\n");
1010 
1011 			TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n",
1012 					rte_mbuf_best_mempool_ops());
1013 			rte_mp = rte_pktmbuf_pool_create_extbuf
1014 					(pool_name, nb_mbuf, mb_mempool_cache,
1015 					 0, mbuf_seg_size, socket_id,
1016 					 ext_mem, ext_num);
1017 			free(ext_mem);
1018 			break;
1019 		}
1020 	default:
1021 		{
1022 			rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n");
1023 		}
1024 	}
1025 
1026 err:
1027 	if (rte_mp == NULL) {
1028 		rte_exit(EXIT_FAILURE,
1029 			"Creation of mbuf pool for socket %u failed: %s\n",
1030 			socket_id, rte_strerror(rte_errno));
1031 	} else if (verbose_level > 0) {
1032 		rte_mempool_dump(stdout, rte_mp);
1033 	}
1034 	return rte_mp;
1035 }
1036 
1037 /*
1038  * Check given socket id is valid or not with NUMA mode,
1039  * if valid, return 0, else return -1
1040  */
1041 static int
1042 check_socket_id(const unsigned int socket_id)
1043 {
1044 	static int warning_once = 0;
1045 
1046 	if (new_socket_id(socket_id)) {
1047 		if (!warning_once && numa_support)
1048 			printf("Warning: NUMA should be configured manually by"
1049 			       " using --port-numa-config and"
1050 			       " --ring-numa-config parameters along with"
1051 			       " --numa.\n");
1052 		warning_once = 1;
1053 		return -1;
1054 	}
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Get the allowed maximum number of RX queues.
1060  * *pid return the port id which has minimal value of
1061  * max_rx_queues in all ports.
1062  */
1063 queueid_t
1064 get_allowed_max_nb_rxq(portid_t *pid)
1065 {
1066 	queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT;
1067 	bool max_rxq_valid = false;
1068 	portid_t pi;
1069 	struct rte_eth_dev_info dev_info;
1070 
1071 	RTE_ETH_FOREACH_DEV(pi) {
1072 		if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
1073 			continue;
1074 
1075 		max_rxq_valid = true;
1076 		if (dev_info.max_rx_queues < allowed_max_rxq) {
1077 			allowed_max_rxq = dev_info.max_rx_queues;
1078 			*pid = pi;
1079 		}
1080 	}
1081 	return max_rxq_valid ? allowed_max_rxq : 0;
1082 }
1083 
1084 /*
1085  * Check input rxq is valid or not.
1086  * If input rxq is not greater than any of maximum number
1087  * of RX queues of all ports, it is valid.
1088  * if valid, return 0, else return -1
1089  */
1090 int
1091 check_nb_rxq(queueid_t rxq)
1092 {
1093 	queueid_t allowed_max_rxq;
1094 	portid_t pid = 0;
1095 
1096 	allowed_max_rxq = get_allowed_max_nb_rxq(&pid);
1097 	if (rxq > allowed_max_rxq) {
1098 		printf("Fail: input rxq (%u) can't be greater "
1099 		       "than max_rx_queues (%u) of port %u\n",
1100 		       rxq,
1101 		       allowed_max_rxq,
1102 		       pid);
1103 		return -1;
1104 	}
1105 	return 0;
1106 }
1107 
1108 /*
1109  * Get the allowed maximum number of TX queues.
1110  * *pid return the port id which has minimal value of
1111  * max_tx_queues in all ports.
1112  */
1113 queueid_t
1114 get_allowed_max_nb_txq(portid_t *pid)
1115 {
1116 	queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT;
1117 	bool max_txq_valid = false;
1118 	portid_t pi;
1119 	struct rte_eth_dev_info dev_info;
1120 
1121 	RTE_ETH_FOREACH_DEV(pi) {
1122 		if (eth_dev_info_get_print_err(pi, &dev_info) != 0)
1123 			continue;
1124 
1125 		max_txq_valid = true;
1126 		if (dev_info.max_tx_queues < allowed_max_txq) {
1127 			allowed_max_txq = dev_info.max_tx_queues;
1128 			*pid = pi;
1129 		}
1130 	}
1131 	return max_txq_valid ? allowed_max_txq : 0;
1132 }
1133 
1134 /*
1135  * Check input txq is valid or not.
1136  * If input txq is not greater than any of maximum number
1137  * of TX queues of all ports, it is valid.
1138  * if valid, return 0, else return -1
1139  */
1140 int
1141 check_nb_txq(queueid_t txq)
1142 {
1143 	queueid_t allowed_max_txq;
1144 	portid_t pid = 0;
1145 
1146 	allowed_max_txq = get_allowed_max_nb_txq(&pid);
1147 	if (txq > allowed_max_txq) {
1148 		printf("Fail: input txq (%u) can't be greater "
1149 		       "than max_tx_queues (%u) of port %u\n",
1150 		       txq,
1151 		       allowed_max_txq,
1152 		       pid);
1153 		return -1;
1154 	}
1155 	return 0;
1156 }
1157 
1158 /*
1159  * Get the allowed maximum number of hairpin queues.
1160  * *pid return the port id which has minimal value of
1161  * max_hairpin_queues in all ports.
1162  */
1163 queueid_t
1164 get_allowed_max_nb_hairpinq(portid_t *pid)
1165 {
1166 	queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT;
1167 	portid_t pi;
1168 	struct rte_eth_hairpin_cap cap;
1169 
1170 	RTE_ETH_FOREACH_DEV(pi) {
1171 		if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) {
1172 			*pid = pi;
1173 			return 0;
1174 		}
1175 		if (cap.max_nb_queues < allowed_max_hairpinq) {
1176 			allowed_max_hairpinq = cap.max_nb_queues;
1177 			*pid = pi;
1178 		}
1179 	}
1180 	return allowed_max_hairpinq;
1181 }
1182 
1183 /*
1184  * Check input hairpin is valid or not.
1185  * If input hairpin is not greater than any of maximum number
1186  * of hairpin queues of all ports, it is valid.
1187  * if valid, return 0, else return -1
1188  */
1189 int
1190 check_nb_hairpinq(queueid_t hairpinq)
1191 {
1192 	queueid_t allowed_max_hairpinq;
1193 	portid_t pid = 0;
1194 
1195 	allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid);
1196 	if (hairpinq > allowed_max_hairpinq) {
1197 		printf("Fail: input hairpin (%u) can't be greater "
1198 		       "than max_hairpin_queues (%u) of port %u\n",
1199 		       hairpinq, allowed_max_hairpinq, pid);
1200 		return -1;
1201 	}
1202 	return 0;
1203 }
1204 
1205 static void
1206 init_config(void)
1207 {
1208 	portid_t pid;
1209 	struct rte_port *port;
1210 	struct rte_mempool *mbp;
1211 	unsigned int nb_mbuf_per_pool;
1212 	lcoreid_t  lc_id;
1213 	uint8_t port_per_socket[RTE_MAX_NUMA_NODES];
1214 	struct rte_gro_param gro_param;
1215 	uint32_t gso_types;
1216 	uint16_t data_size;
1217 	bool warning = 0;
1218 	int k;
1219 	int ret;
1220 
1221 	memset(port_per_socket,0,RTE_MAX_NUMA_NODES);
1222 
1223 	/* Configuration of logical cores. */
1224 	fwd_lcores = rte_zmalloc("testpmd: fwd_lcores",
1225 				sizeof(struct fwd_lcore *) * nb_lcores,
1226 				RTE_CACHE_LINE_SIZE);
1227 	if (fwd_lcores == NULL) {
1228 		rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) "
1229 							"failed\n", nb_lcores);
1230 	}
1231 	for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
1232 		fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore",
1233 					       sizeof(struct fwd_lcore),
1234 					       RTE_CACHE_LINE_SIZE);
1235 		if (fwd_lcores[lc_id] == NULL) {
1236 			rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) "
1237 								"failed\n");
1238 		}
1239 		fwd_lcores[lc_id]->cpuid_idx = lc_id;
1240 	}
1241 
1242 	RTE_ETH_FOREACH_DEV(pid) {
1243 		port = &ports[pid];
1244 		/* Apply default TxRx configuration for all ports */
1245 		port->dev_conf.txmode = tx_mode;
1246 		port->dev_conf.rxmode = rx_mode;
1247 
1248 		ret = eth_dev_info_get_print_err(pid, &port->dev_info);
1249 		if (ret != 0)
1250 			rte_exit(EXIT_FAILURE,
1251 				 "rte_eth_dev_info_get() failed\n");
1252 
1253 		if (!(port->dev_info.tx_offload_capa &
1254 		      DEV_TX_OFFLOAD_MBUF_FAST_FREE))
1255 			port->dev_conf.txmode.offloads &=
1256 				~DEV_TX_OFFLOAD_MBUF_FAST_FREE;
1257 		if (numa_support) {
1258 			if (port_numa[pid] != NUMA_NO_CONFIG)
1259 				port_per_socket[port_numa[pid]]++;
1260 			else {
1261 				uint32_t socket_id = rte_eth_dev_socket_id(pid);
1262 
1263 				/*
1264 				 * if socket_id is invalid,
1265 				 * set to the first available socket.
1266 				 */
1267 				if (check_socket_id(socket_id) < 0)
1268 					socket_id = socket_ids[0];
1269 				port_per_socket[socket_id]++;
1270 			}
1271 		}
1272 
1273 		/* Apply Rx offloads configuration */
1274 		for (k = 0; k < port->dev_info.max_rx_queues; k++)
1275 			port->rx_conf[k].offloads =
1276 				port->dev_conf.rxmode.offloads;
1277 		/* Apply Tx offloads configuration */
1278 		for (k = 0; k < port->dev_info.max_tx_queues; k++)
1279 			port->tx_conf[k].offloads =
1280 				port->dev_conf.txmode.offloads;
1281 
1282 		/* set flag to initialize port/queue */
1283 		port->need_reconfig = 1;
1284 		port->need_reconfig_queues = 1;
1285 		port->tx_metadata = 0;
1286 
1287 		/* Check for maximum number of segments per MTU. Accordingly
1288 		 * update the mbuf data size.
1289 		 */
1290 		if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX &&
1291 				port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) {
1292 			data_size = rx_mode.max_rx_pkt_len /
1293 				port->dev_info.rx_desc_lim.nb_mtu_seg_max;
1294 
1295 			if ((data_size + RTE_PKTMBUF_HEADROOM) >
1296 							mbuf_data_size) {
1297 				mbuf_data_size = data_size +
1298 						 RTE_PKTMBUF_HEADROOM;
1299 				warning = 1;
1300 			}
1301 		}
1302 	}
1303 
1304 	if (warning)
1305 		TESTPMD_LOG(WARNING, "Configured mbuf size %hu\n",
1306 			    mbuf_data_size);
1307 
1308 	/*
1309 	 * Create pools of mbuf.
1310 	 * If NUMA support is disabled, create a single pool of mbuf in
1311 	 * socket 0 memory by default.
1312 	 * Otherwise, create a pool of mbuf in the memory of sockets 0 and 1.
1313 	 *
1314 	 * Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and
1315 	 * nb_txd can be configured at run time.
1316 	 */
1317 	if (param_total_num_mbufs)
1318 		nb_mbuf_per_pool = param_total_num_mbufs;
1319 	else {
1320 		nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX +
1321 			(nb_lcores * mb_mempool_cache) +
1322 			RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST;
1323 		nb_mbuf_per_pool *= RTE_MAX_ETHPORTS;
1324 	}
1325 
1326 	if (numa_support) {
1327 		uint8_t i;
1328 
1329 		for (i = 0; i < num_sockets; i++)
1330 			mempools[i] = mbuf_pool_create(mbuf_data_size,
1331 						       nb_mbuf_per_pool,
1332 						       socket_ids[i]);
1333 	} else {
1334 		if (socket_num == UMA_NO_CONFIG)
1335 			mempools[0] = mbuf_pool_create(mbuf_data_size,
1336 						       nb_mbuf_per_pool, 0);
1337 		else
1338 			mempools[socket_num] = mbuf_pool_create
1339 							(mbuf_data_size,
1340 							 nb_mbuf_per_pool,
1341 							 socket_num);
1342 	}
1343 
1344 	init_port_config();
1345 
1346 	gso_types = DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
1347 		DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_UDP_TSO;
1348 	/*
1349 	 * Records which Mbuf pool to use by each logical core, if needed.
1350 	 */
1351 	for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
1352 		mbp = mbuf_pool_find(
1353 			rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]));
1354 
1355 		if (mbp == NULL)
1356 			mbp = mbuf_pool_find(0);
1357 		fwd_lcores[lc_id]->mbp = mbp;
1358 		/* initialize GSO context */
1359 		fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp;
1360 		fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp;
1361 		fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types;
1362 		fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN -
1363 			RTE_ETHER_CRC_LEN;
1364 		fwd_lcores[lc_id]->gso_ctx.flag = 0;
1365 	}
1366 
1367 	/* Configuration of packet forwarding streams. */
1368 	if (init_fwd_streams() < 0)
1369 		rte_exit(EXIT_FAILURE, "FAIL from init_fwd_streams()\n");
1370 
1371 	fwd_config_setup();
1372 
1373 	/* create a gro context for each lcore */
1374 	gro_param.gro_types = RTE_GRO_TCP_IPV4;
1375 	gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES;
1376 	gro_param.max_item_per_flow = MAX_PKT_BURST;
1377 	for (lc_id = 0; lc_id < nb_lcores; lc_id++) {
1378 		gro_param.socket_id = rte_lcore_to_socket_id(
1379 				fwd_lcores_cpuids[lc_id]);
1380 		fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param);
1381 		if (fwd_lcores[lc_id]->gro_ctx == NULL) {
1382 			rte_exit(EXIT_FAILURE,
1383 					"rte_gro_ctx_create() failed\n");
1384 		}
1385 	}
1386 
1387 #if defined RTE_LIBRTE_PMD_SOFTNIC
1388 	if (strcmp(cur_fwd_eng->fwd_mode_name, "softnic") == 0) {
1389 		RTE_ETH_FOREACH_DEV(pid) {
1390 			port = &ports[pid];
1391 			const char *driver = port->dev_info.driver_name;
1392 
1393 			if (strcmp(driver, "net_softnic") == 0)
1394 				port->softport.fwd_lcore_arg = fwd_lcores;
1395 		}
1396 	}
1397 #endif
1398 
1399 }
1400 
1401 
1402 void
1403 reconfig(portid_t new_port_id, unsigned socket_id)
1404 {
1405 	struct rte_port *port;
1406 	int ret;
1407 
1408 	/* Reconfiguration of Ethernet ports. */
1409 	port = &ports[new_port_id];
1410 
1411 	ret = eth_dev_info_get_print_err(new_port_id, &port->dev_info);
1412 	if (ret != 0)
1413 		return;
1414 
1415 	/* set flag to initialize port/queue */
1416 	port->need_reconfig = 1;
1417 	port->need_reconfig_queues = 1;
1418 	port->socket_id = socket_id;
1419 
1420 	init_port_config();
1421 }
1422 
1423 
1424 int
1425 init_fwd_streams(void)
1426 {
1427 	portid_t pid;
1428 	struct rte_port *port;
1429 	streamid_t sm_id, nb_fwd_streams_new;
1430 	queueid_t q;
1431 
1432 	/* set socket id according to numa or not */
1433 	RTE_ETH_FOREACH_DEV(pid) {
1434 		port = &ports[pid];
1435 		if (nb_rxq > port->dev_info.max_rx_queues) {
1436 			printf("Fail: nb_rxq(%d) is greater than "
1437 				"max_rx_queues(%d)\n", nb_rxq,
1438 				port->dev_info.max_rx_queues);
1439 			return -1;
1440 		}
1441 		if (nb_txq > port->dev_info.max_tx_queues) {
1442 			printf("Fail: nb_txq(%d) is greater than "
1443 				"max_tx_queues(%d)\n", nb_txq,
1444 				port->dev_info.max_tx_queues);
1445 			return -1;
1446 		}
1447 		if (numa_support) {
1448 			if (port_numa[pid] != NUMA_NO_CONFIG)
1449 				port->socket_id = port_numa[pid];
1450 			else {
1451 				port->socket_id = rte_eth_dev_socket_id(pid);
1452 
1453 				/*
1454 				 * if socket_id is invalid,
1455 				 * set to the first available socket.
1456 				 */
1457 				if (check_socket_id(port->socket_id) < 0)
1458 					port->socket_id = socket_ids[0];
1459 			}
1460 		}
1461 		else {
1462 			if (socket_num == UMA_NO_CONFIG)
1463 				port->socket_id = 0;
1464 			else
1465 				port->socket_id = socket_num;
1466 		}
1467 	}
1468 
1469 	q = RTE_MAX(nb_rxq, nb_txq);
1470 	if (q == 0) {
1471 		printf("Fail: Cannot allocate fwd streams as number of queues is 0\n");
1472 		return -1;
1473 	}
1474 	nb_fwd_streams_new = (streamid_t)(nb_ports * q);
1475 	if (nb_fwd_streams_new == nb_fwd_streams)
1476 		return 0;
1477 	/* clear the old */
1478 	if (fwd_streams != NULL) {
1479 		for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) {
1480 			if (fwd_streams[sm_id] == NULL)
1481 				continue;
1482 			rte_free(fwd_streams[sm_id]);
1483 			fwd_streams[sm_id] = NULL;
1484 		}
1485 		rte_free(fwd_streams);
1486 		fwd_streams = NULL;
1487 	}
1488 
1489 	/* init new */
1490 	nb_fwd_streams = nb_fwd_streams_new;
1491 	if (nb_fwd_streams) {
1492 		fwd_streams = rte_zmalloc("testpmd: fwd_streams",
1493 			sizeof(struct fwd_stream *) * nb_fwd_streams,
1494 			RTE_CACHE_LINE_SIZE);
1495 		if (fwd_streams == NULL)
1496 			rte_exit(EXIT_FAILURE, "rte_zmalloc(%d"
1497 				 " (struct fwd_stream *)) failed\n",
1498 				 nb_fwd_streams);
1499 
1500 		for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) {
1501 			fwd_streams[sm_id] = rte_zmalloc("testpmd:"
1502 				" struct fwd_stream", sizeof(struct fwd_stream),
1503 				RTE_CACHE_LINE_SIZE);
1504 			if (fwd_streams[sm_id] == NULL)
1505 				rte_exit(EXIT_FAILURE, "rte_zmalloc"
1506 					 "(struct fwd_stream) failed\n");
1507 		}
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1514 static void
1515 pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs)
1516 {
1517 	unsigned int total_burst;
1518 	unsigned int nb_burst;
1519 	unsigned int burst_stats[3];
1520 	uint16_t pktnb_stats[3];
1521 	uint16_t nb_pkt;
1522 	int burst_percent[3];
1523 
1524 	/*
1525 	 * First compute the total number of packet bursts and the
1526 	 * two highest numbers of bursts of the same number of packets.
1527 	 */
1528 	total_burst = 0;
1529 	burst_stats[0] = burst_stats[1] = burst_stats[2] = 0;
1530 	pktnb_stats[0] = pktnb_stats[1] = pktnb_stats[2] = 0;
1531 	for (nb_pkt = 0; nb_pkt < MAX_PKT_BURST; nb_pkt++) {
1532 		nb_burst = pbs->pkt_burst_spread[nb_pkt];
1533 		if (nb_burst == 0)
1534 			continue;
1535 		total_burst += nb_burst;
1536 		if (nb_burst > burst_stats[0]) {
1537 			burst_stats[1] = burst_stats[0];
1538 			pktnb_stats[1] = pktnb_stats[0];
1539 			burst_stats[0] = nb_burst;
1540 			pktnb_stats[0] = nb_pkt;
1541 		} else if (nb_burst > burst_stats[1]) {
1542 			burst_stats[1] = nb_burst;
1543 			pktnb_stats[1] = nb_pkt;
1544 		}
1545 	}
1546 	if (total_burst == 0)
1547 		return;
1548 	burst_percent[0] = (burst_stats[0] * 100) / total_burst;
1549 	printf("  %s-bursts : %u [%d%% of %d pkts", rx_tx, total_burst,
1550 	       burst_percent[0], (int) pktnb_stats[0]);
1551 	if (burst_stats[0] == total_burst) {
1552 		printf("]\n");
1553 		return;
1554 	}
1555 	if (burst_stats[0] + burst_stats[1] == total_burst) {
1556 		printf(" + %d%% of %d pkts]\n",
1557 		       100 - burst_percent[0], pktnb_stats[1]);
1558 		return;
1559 	}
1560 	burst_percent[1] = (burst_stats[1] * 100) / total_burst;
1561 	burst_percent[2] = 100 - (burst_percent[0] + burst_percent[1]);
1562 	if ((burst_percent[1] == 0) || (burst_percent[2] == 0)) {
1563 		printf(" + %d%% of others]\n", 100 - burst_percent[0]);
1564 		return;
1565 	}
1566 	printf(" + %d%% of %d pkts + %d%% of others]\n",
1567 	       burst_percent[1], (int) pktnb_stats[1], burst_percent[2]);
1568 }
1569 #endif /* RTE_TEST_PMD_RECORD_BURST_STATS */
1570 
1571 static void
1572 fwd_stream_stats_display(streamid_t stream_id)
1573 {
1574 	struct fwd_stream *fs;
1575 	static const char *fwd_top_stats_border = "-------";
1576 
1577 	fs = fwd_streams[stream_id];
1578 	if ((fs->rx_packets == 0) && (fs->tx_packets == 0) &&
1579 	    (fs->fwd_dropped == 0))
1580 		return;
1581 	printf("\n  %s Forward Stats for RX Port=%2d/Queue=%2d -> "
1582 	       "TX Port=%2d/Queue=%2d %s\n",
1583 	       fwd_top_stats_border, fs->rx_port, fs->rx_queue,
1584 	       fs->tx_port, fs->tx_queue, fwd_top_stats_border);
1585 	printf("  RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64
1586 	       " TX-dropped: %-14"PRIu64,
1587 	       fs->rx_packets, fs->tx_packets, fs->fwd_dropped);
1588 
1589 	/* if checksum mode */
1590 	if (cur_fwd_eng == &csum_fwd_engine) {
1591 		printf("  RX- bad IP checksum: %-14"PRIu64
1592 		       "  Rx- bad L4 checksum: %-14"PRIu64
1593 		       " Rx- bad outer L4 checksum: %-14"PRIu64"\n",
1594 			fs->rx_bad_ip_csum, fs->rx_bad_l4_csum,
1595 			fs->rx_bad_outer_l4_csum);
1596 	} else {
1597 		printf("\n");
1598 	}
1599 
1600 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1601 	pkt_burst_stats_display("RX", &fs->rx_burst_stats);
1602 	pkt_burst_stats_display("TX", &fs->tx_burst_stats);
1603 #endif
1604 }
1605 
1606 void
1607 fwd_stats_display(void)
1608 {
1609 	static const char *fwd_stats_border = "----------------------";
1610 	static const char *acc_stats_border = "+++++++++++++++";
1611 	struct {
1612 		struct fwd_stream *rx_stream;
1613 		struct fwd_stream *tx_stream;
1614 		uint64_t tx_dropped;
1615 		uint64_t rx_bad_ip_csum;
1616 		uint64_t rx_bad_l4_csum;
1617 		uint64_t rx_bad_outer_l4_csum;
1618 	} ports_stats[RTE_MAX_ETHPORTS];
1619 	uint64_t total_rx_dropped = 0;
1620 	uint64_t total_tx_dropped = 0;
1621 	uint64_t total_rx_nombuf = 0;
1622 	struct rte_eth_stats stats;
1623 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1624 	uint64_t fwd_cycles = 0;
1625 #endif
1626 	uint64_t total_recv = 0;
1627 	uint64_t total_xmit = 0;
1628 	struct rte_port *port;
1629 	streamid_t sm_id;
1630 	portid_t pt_id;
1631 	int i;
1632 
1633 	memset(ports_stats, 0, sizeof(ports_stats));
1634 
1635 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1636 		struct fwd_stream *fs = fwd_streams[sm_id];
1637 
1638 		if (cur_fwd_config.nb_fwd_streams >
1639 		    cur_fwd_config.nb_fwd_ports) {
1640 			fwd_stream_stats_display(sm_id);
1641 		} else {
1642 			ports_stats[fs->tx_port].tx_stream = fs;
1643 			ports_stats[fs->rx_port].rx_stream = fs;
1644 		}
1645 
1646 		ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped;
1647 
1648 		ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum;
1649 		ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum;
1650 		ports_stats[fs->rx_port].rx_bad_outer_l4_csum +=
1651 				fs->rx_bad_outer_l4_csum;
1652 
1653 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1654 		fwd_cycles += fs->core_cycles;
1655 #endif
1656 	}
1657 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
1658 		uint8_t j;
1659 
1660 		pt_id = fwd_ports_ids[i];
1661 		port = &ports[pt_id];
1662 
1663 		rte_eth_stats_get(pt_id, &stats);
1664 		stats.ipackets -= port->stats.ipackets;
1665 		stats.opackets -= port->stats.opackets;
1666 		stats.ibytes -= port->stats.ibytes;
1667 		stats.obytes -= port->stats.obytes;
1668 		stats.imissed -= port->stats.imissed;
1669 		stats.oerrors -= port->stats.oerrors;
1670 		stats.rx_nombuf -= port->stats.rx_nombuf;
1671 
1672 		total_recv += stats.ipackets;
1673 		total_xmit += stats.opackets;
1674 		total_rx_dropped += stats.imissed;
1675 		total_tx_dropped += ports_stats[pt_id].tx_dropped;
1676 		total_tx_dropped += stats.oerrors;
1677 		total_rx_nombuf  += stats.rx_nombuf;
1678 
1679 		printf("\n  %s Forward statistics for port %-2d %s\n",
1680 		       fwd_stats_border, pt_id, fwd_stats_border);
1681 
1682 		if (!port->rx_queue_stats_mapping_enabled &&
1683 		    !port->tx_queue_stats_mapping_enabled) {
1684 			printf("  RX-packets: %-14"PRIu64
1685 			       " RX-dropped: %-14"PRIu64
1686 			       "RX-total: %-"PRIu64"\n",
1687 			       stats.ipackets, stats.imissed,
1688 			       stats.ipackets + stats.imissed);
1689 
1690 			if (cur_fwd_eng == &csum_fwd_engine)
1691 				printf("  Bad-ipcsum: %-14"PRIu64
1692 				       " Bad-l4csum: %-14"PRIu64
1693 				       "Bad-outer-l4csum: %-14"PRIu64"\n",
1694 				       ports_stats[pt_id].rx_bad_ip_csum,
1695 				       ports_stats[pt_id].rx_bad_l4_csum,
1696 				       ports_stats[pt_id].rx_bad_outer_l4_csum);
1697 			if (stats.ierrors + stats.rx_nombuf > 0) {
1698 				printf("  RX-error: %-"PRIu64"\n",
1699 				       stats.ierrors);
1700 				printf("  RX-nombufs: %-14"PRIu64"\n",
1701 				       stats.rx_nombuf);
1702 			}
1703 
1704 			printf("  TX-packets: %-14"PRIu64
1705 			       " TX-dropped: %-14"PRIu64
1706 			       "TX-total: %-"PRIu64"\n",
1707 			       stats.opackets, ports_stats[pt_id].tx_dropped,
1708 			       stats.opackets + ports_stats[pt_id].tx_dropped);
1709 		} else {
1710 			printf("  RX-packets:             %14"PRIu64
1711 			       "    RX-dropped:%14"PRIu64
1712 			       "    RX-total:%14"PRIu64"\n",
1713 			       stats.ipackets, stats.imissed,
1714 			       stats.ipackets + stats.imissed);
1715 
1716 			if (cur_fwd_eng == &csum_fwd_engine)
1717 				printf("  Bad-ipcsum:%14"PRIu64
1718 				       "    Bad-l4csum:%14"PRIu64
1719 				       "    Bad-outer-l4csum: %-14"PRIu64"\n",
1720 				       ports_stats[pt_id].rx_bad_ip_csum,
1721 				       ports_stats[pt_id].rx_bad_l4_csum,
1722 				       ports_stats[pt_id].rx_bad_outer_l4_csum);
1723 			if ((stats.ierrors + stats.rx_nombuf) > 0) {
1724 				printf("  RX-error:%"PRIu64"\n", stats.ierrors);
1725 				printf("  RX-nombufs:             %14"PRIu64"\n",
1726 				       stats.rx_nombuf);
1727 			}
1728 
1729 			printf("  TX-packets:             %14"PRIu64
1730 			       "    TX-dropped:%14"PRIu64
1731 			       "    TX-total:%14"PRIu64"\n",
1732 			       stats.opackets, ports_stats[pt_id].tx_dropped,
1733 			       stats.opackets + ports_stats[pt_id].tx_dropped);
1734 		}
1735 
1736 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1737 		if (ports_stats[pt_id].rx_stream)
1738 			pkt_burst_stats_display("RX",
1739 				&ports_stats[pt_id].rx_stream->rx_burst_stats);
1740 		if (ports_stats[pt_id].tx_stream)
1741 			pkt_burst_stats_display("TX",
1742 				&ports_stats[pt_id].tx_stream->tx_burst_stats);
1743 #endif
1744 
1745 		if (port->rx_queue_stats_mapping_enabled) {
1746 			printf("\n");
1747 			for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) {
1748 				printf("  Stats reg %2d RX-packets:%14"PRIu64
1749 				       "     RX-errors:%14"PRIu64
1750 				       "    RX-bytes:%14"PRIu64"\n",
1751 				       j, stats.q_ipackets[j],
1752 				       stats.q_errors[j], stats.q_ibytes[j]);
1753 			}
1754 			printf("\n");
1755 		}
1756 		if (port->tx_queue_stats_mapping_enabled) {
1757 			for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) {
1758 				printf("  Stats reg %2d TX-packets:%14"PRIu64
1759 				       "                                 TX-bytes:%14"
1760 				       PRIu64"\n",
1761 				       j, stats.q_opackets[j],
1762 				       stats.q_obytes[j]);
1763 			}
1764 		}
1765 
1766 		printf("  %s--------------------------------%s\n",
1767 		       fwd_stats_border, fwd_stats_border);
1768 	}
1769 
1770 	printf("\n  %s Accumulated forward statistics for all ports"
1771 	       "%s\n",
1772 	       acc_stats_border, acc_stats_border);
1773 	printf("  RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: "
1774 	       "%-"PRIu64"\n"
1775 	       "  TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: "
1776 	       "%-"PRIu64"\n",
1777 	       total_recv, total_rx_dropped, total_recv + total_rx_dropped,
1778 	       total_xmit, total_tx_dropped, total_xmit + total_tx_dropped);
1779 	if (total_rx_nombuf > 0)
1780 		printf("  RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf);
1781 	printf("  %s++++++++++++++++++++++++++++++++++++++++++++++"
1782 	       "%s\n",
1783 	       acc_stats_border, acc_stats_border);
1784 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1785 	if (total_recv > 0)
1786 		printf("\n  CPU cycles/packet=%u (total cycles="
1787 		       "%"PRIu64" / total RX packets=%"PRIu64")\n",
1788 		       (unsigned int)(fwd_cycles / total_recv),
1789 		       fwd_cycles, total_recv);
1790 #endif
1791 }
1792 
1793 void
1794 fwd_stats_reset(void)
1795 {
1796 	streamid_t sm_id;
1797 	portid_t pt_id;
1798 	int i;
1799 
1800 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
1801 		pt_id = fwd_ports_ids[i];
1802 		rte_eth_stats_get(pt_id, &ports[pt_id].stats);
1803 	}
1804 	for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1805 		struct fwd_stream *fs = fwd_streams[sm_id];
1806 
1807 		fs->rx_packets = 0;
1808 		fs->tx_packets = 0;
1809 		fs->fwd_dropped = 0;
1810 		fs->rx_bad_ip_csum = 0;
1811 		fs->rx_bad_l4_csum = 0;
1812 		fs->rx_bad_outer_l4_csum = 0;
1813 
1814 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1815 		memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats));
1816 		memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats));
1817 #endif
1818 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1819 		fs->core_cycles = 0;
1820 #endif
1821 	}
1822 }
1823 
1824 static void
1825 flush_fwd_rx_queues(void)
1826 {
1827 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
1828 	portid_t  rxp;
1829 	portid_t port_id;
1830 	queueid_t rxq;
1831 	uint16_t  nb_rx;
1832 	uint16_t  i;
1833 	uint8_t   j;
1834 	uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
1835 	uint64_t timer_period;
1836 
1837 	/* convert to number of cycles */
1838 	timer_period = rte_get_timer_hz(); /* 1 second timeout */
1839 
1840 	for (j = 0; j < 2; j++) {
1841 		for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) {
1842 			for (rxq = 0; rxq < nb_rxq; rxq++) {
1843 				port_id = fwd_ports_ids[rxp];
1844 				/**
1845 				* testpmd can stuck in the below do while loop
1846 				* if rte_eth_rx_burst() always returns nonzero
1847 				* packets. So timer is added to exit this loop
1848 				* after 1sec timer expiry.
1849 				*/
1850 				prev_tsc = rte_rdtsc();
1851 				do {
1852 					nb_rx = rte_eth_rx_burst(port_id, rxq,
1853 						pkts_burst, MAX_PKT_BURST);
1854 					for (i = 0; i < nb_rx; i++)
1855 						rte_pktmbuf_free(pkts_burst[i]);
1856 
1857 					cur_tsc = rte_rdtsc();
1858 					diff_tsc = cur_tsc - prev_tsc;
1859 					timer_tsc += diff_tsc;
1860 				} while ((nb_rx > 0) &&
1861 					(timer_tsc < timer_period));
1862 				timer_tsc = 0;
1863 			}
1864 		}
1865 		rte_delay_ms(10); /* wait 10 milli-seconds before retrying */
1866 	}
1867 }
1868 
1869 static void
1870 run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd)
1871 {
1872 	struct fwd_stream **fsm;
1873 	streamid_t nb_fs;
1874 	streamid_t sm_id;
1875 #ifdef RTE_LIBRTE_BITRATE
1876 	uint64_t tics_per_1sec;
1877 	uint64_t tics_datum;
1878 	uint64_t tics_current;
1879 	uint16_t i, cnt_ports;
1880 
1881 	cnt_ports = nb_ports;
1882 	tics_datum = rte_rdtsc();
1883 	tics_per_1sec = rte_get_timer_hz();
1884 #endif
1885 	fsm = &fwd_streams[fc->stream_idx];
1886 	nb_fs = fc->stream_nb;
1887 	do {
1888 		for (sm_id = 0; sm_id < nb_fs; sm_id++)
1889 			(*pkt_fwd)(fsm[sm_id]);
1890 #ifdef RTE_LIBRTE_BITRATE
1891 		if (bitrate_enabled != 0 &&
1892 				bitrate_lcore_id == rte_lcore_id()) {
1893 			tics_current = rte_rdtsc();
1894 			if (tics_current - tics_datum >= tics_per_1sec) {
1895 				/* Periodic bitrate calculation */
1896 				for (i = 0; i < cnt_ports; i++)
1897 					rte_stats_bitrate_calc(bitrate_data,
1898 						ports_ids[i]);
1899 				tics_datum = tics_current;
1900 			}
1901 		}
1902 #endif
1903 #ifdef RTE_LIBRTE_LATENCY_STATS
1904 		if (latencystats_enabled != 0 &&
1905 				latencystats_lcore_id == rte_lcore_id())
1906 			rte_latencystats_update();
1907 #endif
1908 
1909 	} while (! fc->stopped);
1910 }
1911 
1912 static int
1913 start_pkt_forward_on_core(void *fwd_arg)
1914 {
1915 	run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg,
1916 			     cur_fwd_config.fwd_eng->packet_fwd);
1917 	return 0;
1918 }
1919 
1920 /*
1921  * Run the TXONLY packet forwarding engine to send a single burst of packets.
1922  * Used to start communication flows in network loopback test configurations.
1923  */
1924 static int
1925 run_one_txonly_burst_on_core(void *fwd_arg)
1926 {
1927 	struct fwd_lcore *fwd_lc;
1928 	struct fwd_lcore tmp_lcore;
1929 
1930 	fwd_lc = (struct fwd_lcore *) fwd_arg;
1931 	tmp_lcore = *fwd_lc;
1932 	tmp_lcore.stopped = 1;
1933 	run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd);
1934 	return 0;
1935 }
1936 
1937 /*
1938  * Launch packet forwarding:
1939  *     - Setup per-port forwarding context.
1940  *     - launch logical cores with their forwarding configuration.
1941  */
1942 static void
1943 launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore)
1944 {
1945 	port_fwd_begin_t port_fwd_begin;
1946 	unsigned int i;
1947 	unsigned int lc_id;
1948 	int diag;
1949 
1950 	port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin;
1951 	if (port_fwd_begin != NULL) {
1952 		for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
1953 			(*port_fwd_begin)(fwd_ports_ids[i]);
1954 	}
1955 	for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) {
1956 		lc_id = fwd_lcores_cpuids[i];
1957 		if ((interactive == 0) || (lc_id != rte_lcore_id())) {
1958 			fwd_lcores[i]->stopped = 0;
1959 			diag = rte_eal_remote_launch(pkt_fwd_on_lcore,
1960 						     fwd_lcores[i], lc_id);
1961 			if (diag != 0)
1962 				printf("launch lcore %u failed - diag=%d\n",
1963 				       lc_id, diag);
1964 		}
1965 	}
1966 }
1967 
1968 /*
1969  * Launch packet forwarding configuration.
1970  */
1971 void
1972 start_packet_forwarding(int with_tx_first)
1973 {
1974 	port_fwd_begin_t port_fwd_begin;
1975 	port_fwd_end_t  port_fwd_end;
1976 	struct rte_port *port;
1977 	unsigned int i;
1978 	portid_t   pt_id;
1979 
1980 	if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq)
1981 		rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n");
1982 
1983 	if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq)
1984 		rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n");
1985 
1986 	if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 &&
1987 		strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) &&
1988 		(!nb_rxq || !nb_txq))
1989 		rte_exit(EXIT_FAILURE,
1990 			"Either rxq or txq are 0, cannot use %s fwd mode\n",
1991 			cur_fwd_eng->fwd_mode_name);
1992 
1993 	if (all_ports_started() == 0) {
1994 		printf("Not all ports were started\n");
1995 		return;
1996 	}
1997 	if (test_done == 0) {
1998 		printf("Packet forwarding already started\n");
1999 		return;
2000 	}
2001 
2002 
2003 	if(dcb_test) {
2004 		for (i = 0; i < nb_fwd_ports; i++) {
2005 			pt_id = fwd_ports_ids[i];
2006 			port = &ports[pt_id];
2007 			if (!port->dcb_flag) {
2008 				printf("In DCB mode, all forwarding ports must "
2009                                        "be configured in this mode.\n");
2010 				return;
2011 			}
2012 		}
2013 		if (nb_fwd_lcores == 1) {
2014 			printf("In DCB mode,the nb forwarding cores "
2015                                "should be larger than 1.\n");
2016 			return;
2017 		}
2018 	}
2019 	test_done = 0;
2020 
2021 	fwd_config_setup();
2022 
2023 	if(!no_flush_rx)
2024 		flush_fwd_rx_queues();
2025 
2026 	pkt_fwd_config_display(&cur_fwd_config);
2027 	rxtx_config_display();
2028 
2029 	fwd_stats_reset();
2030 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2031 		pt_id = fwd_ports_ids[i];
2032 		port = &ports[pt_id];
2033 		map_port_queue_stats_mapping_registers(pt_id, port);
2034 	}
2035 	if (with_tx_first) {
2036 		port_fwd_begin = tx_only_engine.port_fwd_begin;
2037 		if (port_fwd_begin != NULL) {
2038 			for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
2039 				(*port_fwd_begin)(fwd_ports_ids[i]);
2040 		}
2041 		while (with_tx_first--) {
2042 			launch_packet_forwarding(
2043 					run_one_txonly_burst_on_core);
2044 			rte_eal_mp_wait_lcore();
2045 		}
2046 		port_fwd_end = tx_only_engine.port_fwd_end;
2047 		if (port_fwd_end != NULL) {
2048 			for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
2049 				(*port_fwd_end)(fwd_ports_ids[i]);
2050 		}
2051 	}
2052 	launch_packet_forwarding(start_pkt_forward_on_core);
2053 }
2054 
2055 void
2056 stop_packet_forwarding(void)
2057 {
2058 	port_fwd_end_t port_fwd_end;
2059 	lcoreid_t lc_id;
2060 	portid_t pt_id;
2061 	int i;
2062 
2063 	if (test_done) {
2064 		printf("Packet forwarding not started\n");
2065 		return;
2066 	}
2067 	printf("Telling cores to stop...");
2068 	for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++)
2069 		fwd_lcores[lc_id]->stopped = 1;
2070 	printf("\nWaiting for lcores to finish...\n");
2071 	rte_eal_mp_wait_lcore();
2072 	port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end;
2073 	if (port_fwd_end != NULL) {
2074 		for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
2075 			pt_id = fwd_ports_ids[i];
2076 			(*port_fwd_end)(pt_id);
2077 		}
2078 	}
2079 
2080 	fwd_stats_display();
2081 
2082 	printf("\nDone.\n");
2083 	test_done = 1;
2084 }
2085 
2086 void
2087 dev_set_link_up(portid_t pid)
2088 {
2089 	if (rte_eth_dev_set_link_up(pid) < 0)
2090 		printf("\nSet link up fail.\n");
2091 }
2092 
2093 void
2094 dev_set_link_down(portid_t pid)
2095 {
2096 	if (rte_eth_dev_set_link_down(pid) < 0)
2097 		printf("\nSet link down fail.\n");
2098 }
2099 
2100 static int
2101 all_ports_started(void)
2102 {
2103 	portid_t pi;
2104 	struct rte_port *port;
2105 
2106 	RTE_ETH_FOREACH_DEV(pi) {
2107 		port = &ports[pi];
2108 		/* Check if there is a port which is not started */
2109 		if ((port->port_status != RTE_PORT_STARTED) &&
2110 			(port->slave_flag == 0))
2111 			return 0;
2112 	}
2113 
2114 	/* No port is not started */
2115 	return 1;
2116 }
2117 
2118 int
2119 port_is_stopped(portid_t port_id)
2120 {
2121 	struct rte_port *port = &ports[port_id];
2122 
2123 	if ((port->port_status != RTE_PORT_STOPPED) &&
2124 	    (port->slave_flag == 0))
2125 		return 0;
2126 	return 1;
2127 }
2128 
2129 int
2130 all_ports_stopped(void)
2131 {
2132 	portid_t pi;
2133 
2134 	RTE_ETH_FOREACH_DEV(pi) {
2135 		if (!port_is_stopped(pi))
2136 			return 0;
2137 	}
2138 
2139 	return 1;
2140 }
2141 
2142 int
2143 port_is_started(portid_t port_id)
2144 {
2145 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2146 		return 0;
2147 
2148 	if (ports[port_id].port_status != RTE_PORT_STARTED)
2149 		return 0;
2150 
2151 	return 1;
2152 }
2153 
2154 /* Configure the Rx and Tx hairpin queues for the selected port. */
2155 static int
2156 setup_hairpin_queues(portid_t pi)
2157 {
2158 	queueid_t qi;
2159 	struct rte_eth_hairpin_conf hairpin_conf = {
2160 		.peer_count = 1,
2161 	};
2162 	int i;
2163 	int diag;
2164 	struct rte_port *port = &ports[pi];
2165 
2166 	for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) {
2167 		hairpin_conf.peers[0].port = pi;
2168 		hairpin_conf.peers[0].queue = i + nb_rxq;
2169 		diag = rte_eth_tx_hairpin_queue_setup
2170 			(pi, qi, nb_txd, &hairpin_conf);
2171 		i++;
2172 		if (diag == 0)
2173 			continue;
2174 
2175 		/* Fail to setup rx queue, return */
2176 		if (rte_atomic16_cmpset(&(port->port_status),
2177 					RTE_PORT_HANDLING,
2178 					RTE_PORT_STOPPED) == 0)
2179 			printf("Port %d can not be set back "
2180 					"to stopped\n", pi);
2181 		printf("Fail to configure port %d hairpin "
2182 				"queues\n", pi);
2183 		/* try to reconfigure queues next time */
2184 		port->need_reconfig_queues = 1;
2185 		return -1;
2186 	}
2187 	for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) {
2188 		hairpin_conf.peers[0].port = pi;
2189 		hairpin_conf.peers[0].queue = i + nb_txq;
2190 		diag = rte_eth_rx_hairpin_queue_setup
2191 			(pi, qi, nb_rxd, &hairpin_conf);
2192 		i++;
2193 		if (diag == 0)
2194 			continue;
2195 
2196 		/* Fail to setup rx queue, return */
2197 		if (rte_atomic16_cmpset(&(port->port_status),
2198 					RTE_PORT_HANDLING,
2199 					RTE_PORT_STOPPED) == 0)
2200 			printf("Port %d can not be set back "
2201 					"to stopped\n", pi);
2202 		printf("Fail to configure port %d hairpin "
2203 				"queues\n", pi);
2204 		/* try to reconfigure queues next time */
2205 		port->need_reconfig_queues = 1;
2206 		return -1;
2207 	}
2208 	return 0;
2209 }
2210 
2211 int
2212 start_port(portid_t pid)
2213 {
2214 	int diag, need_check_link_status = -1;
2215 	portid_t pi;
2216 	queueid_t qi;
2217 	struct rte_port *port;
2218 	struct rte_ether_addr mac_addr;
2219 	struct rte_eth_hairpin_cap cap;
2220 
2221 	if (port_id_is_invalid(pid, ENABLED_WARN))
2222 		return 0;
2223 
2224 	if(dcb_config)
2225 		dcb_test = 1;
2226 	RTE_ETH_FOREACH_DEV(pi) {
2227 		if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
2228 			continue;
2229 
2230 		need_check_link_status = 0;
2231 		port = &ports[pi];
2232 		if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED,
2233 						 RTE_PORT_HANDLING) == 0) {
2234 			printf("Port %d is now not stopped\n", pi);
2235 			continue;
2236 		}
2237 
2238 		if (port->need_reconfig > 0) {
2239 			port->need_reconfig = 0;
2240 
2241 			if (flow_isolate_all) {
2242 				int ret = port_flow_isolate(pi, 1);
2243 				if (ret) {
2244 					printf("Failed to apply isolated"
2245 					       " mode on port %d\n", pi);
2246 					return -1;
2247 				}
2248 			}
2249 			configure_rxtx_dump_callbacks(0);
2250 			printf("Configuring Port %d (socket %u)\n", pi,
2251 					port->socket_id);
2252 			if (nb_hairpinq > 0 &&
2253 			    rte_eth_dev_hairpin_capability_get(pi, &cap)) {
2254 				printf("Port %d doesn't support hairpin "
2255 				       "queues\n", pi);
2256 				return -1;
2257 			}
2258 			/* configure port */
2259 			diag = rte_eth_dev_configure(pi, nb_rxq + nb_hairpinq,
2260 						     nb_txq + nb_hairpinq,
2261 						     &(port->dev_conf));
2262 			if (diag != 0) {
2263 				if (rte_atomic16_cmpset(&(port->port_status),
2264 				RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0)
2265 					printf("Port %d can not be set back "
2266 							"to stopped\n", pi);
2267 				printf("Fail to configure port %d\n", pi);
2268 				/* try to reconfigure port next time */
2269 				port->need_reconfig = 1;
2270 				return -1;
2271 			}
2272 		}
2273 		if (port->need_reconfig_queues > 0) {
2274 			port->need_reconfig_queues = 0;
2275 			/* setup tx queues */
2276 			for (qi = 0; qi < nb_txq; qi++) {
2277 				if ((numa_support) &&
2278 					(txring_numa[pi] != NUMA_NO_CONFIG))
2279 					diag = rte_eth_tx_queue_setup(pi, qi,
2280 						port->nb_tx_desc[qi],
2281 						txring_numa[pi],
2282 						&(port->tx_conf[qi]));
2283 				else
2284 					diag = rte_eth_tx_queue_setup(pi, qi,
2285 						port->nb_tx_desc[qi],
2286 						port->socket_id,
2287 						&(port->tx_conf[qi]));
2288 
2289 				if (diag == 0)
2290 					continue;
2291 
2292 				/* Fail to setup tx queue, return */
2293 				if (rte_atomic16_cmpset(&(port->port_status),
2294 							RTE_PORT_HANDLING,
2295 							RTE_PORT_STOPPED) == 0)
2296 					printf("Port %d can not be set back "
2297 							"to stopped\n", pi);
2298 				printf("Fail to configure port %d tx queues\n",
2299 				       pi);
2300 				/* try to reconfigure queues next time */
2301 				port->need_reconfig_queues = 1;
2302 				return -1;
2303 			}
2304 			for (qi = 0; qi < nb_rxq; qi++) {
2305 				/* setup rx queues */
2306 				if ((numa_support) &&
2307 					(rxring_numa[pi] != NUMA_NO_CONFIG)) {
2308 					struct rte_mempool * mp =
2309 						mbuf_pool_find(rxring_numa[pi]);
2310 					if (mp == NULL) {
2311 						printf("Failed to setup RX queue:"
2312 							"No mempool allocation"
2313 							" on the socket %d\n",
2314 							rxring_numa[pi]);
2315 						return -1;
2316 					}
2317 
2318 					diag = rte_eth_rx_queue_setup(pi, qi,
2319 					     port->nb_rx_desc[qi],
2320 					     rxring_numa[pi],
2321 					     &(port->rx_conf[qi]),
2322 					     mp);
2323 				} else {
2324 					struct rte_mempool *mp =
2325 						mbuf_pool_find(port->socket_id);
2326 					if (mp == NULL) {
2327 						printf("Failed to setup RX queue:"
2328 							"No mempool allocation"
2329 							" on the socket %d\n",
2330 							port->socket_id);
2331 						return -1;
2332 					}
2333 					diag = rte_eth_rx_queue_setup(pi, qi,
2334 					     port->nb_rx_desc[qi],
2335 					     port->socket_id,
2336 					     &(port->rx_conf[qi]),
2337 					     mp);
2338 				}
2339 				if (diag == 0)
2340 					continue;
2341 
2342 				/* Fail to setup rx queue, return */
2343 				if (rte_atomic16_cmpset(&(port->port_status),
2344 							RTE_PORT_HANDLING,
2345 							RTE_PORT_STOPPED) == 0)
2346 					printf("Port %d can not be set back "
2347 							"to stopped\n", pi);
2348 				printf("Fail to configure port %d rx queues\n",
2349 				       pi);
2350 				/* try to reconfigure queues next time */
2351 				port->need_reconfig_queues = 1;
2352 				return -1;
2353 			}
2354 			/* setup hairpin queues */
2355 			if (setup_hairpin_queues(pi) != 0)
2356 				return -1;
2357 		}
2358 		configure_rxtx_dump_callbacks(verbose_level);
2359 		if (clear_ptypes) {
2360 			diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN,
2361 					NULL, 0);
2362 			if (diag < 0)
2363 				printf(
2364 				"Port %d: Failed to disable Ptype parsing\n",
2365 				pi);
2366 		}
2367 
2368 		/* start port */
2369 		if (rte_eth_dev_start(pi) < 0) {
2370 			printf("Fail to start port %d\n", pi);
2371 
2372 			/* Fail to setup rx queue, return */
2373 			if (rte_atomic16_cmpset(&(port->port_status),
2374 				RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0)
2375 				printf("Port %d can not be set back to "
2376 							"stopped\n", pi);
2377 			continue;
2378 		}
2379 
2380 		if (rte_atomic16_cmpset(&(port->port_status),
2381 			RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0)
2382 			printf("Port %d can not be set into started\n", pi);
2383 
2384 		if (eth_macaddr_get_print_err(pi, &mac_addr) == 0)
2385 			printf("Port %d: %02X:%02X:%02X:%02X:%02X:%02X\n", pi,
2386 				mac_addr.addr_bytes[0], mac_addr.addr_bytes[1],
2387 				mac_addr.addr_bytes[2], mac_addr.addr_bytes[3],
2388 				mac_addr.addr_bytes[4], mac_addr.addr_bytes[5]);
2389 
2390 		/* at least one port started, need checking link status */
2391 		need_check_link_status = 1;
2392 	}
2393 
2394 	if (need_check_link_status == 1 && !no_link_check)
2395 		check_all_ports_link_status(RTE_PORT_ALL);
2396 	else if (need_check_link_status == 0)
2397 		printf("Please stop the ports first\n");
2398 
2399 	printf("Done\n");
2400 	return 0;
2401 }
2402 
2403 void
2404 stop_port(portid_t pid)
2405 {
2406 	portid_t pi;
2407 	struct rte_port *port;
2408 	int need_check_link_status = 0;
2409 
2410 	if (dcb_test) {
2411 		dcb_test = 0;
2412 		dcb_config = 0;
2413 	}
2414 
2415 	if (port_id_is_invalid(pid, ENABLED_WARN))
2416 		return;
2417 
2418 	printf("Stopping ports...\n");
2419 
2420 	RTE_ETH_FOREACH_DEV(pi) {
2421 		if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
2422 			continue;
2423 
2424 		if (port_is_forwarding(pi) != 0 && test_done == 0) {
2425 			printf("Please remove port %d from forwarding configuration.\n", pi);
2426 			continue;
2427 		}
2428 
2429 		if (port_is_bonding_slave(pi)) {
2430 			printf("Please remove port %d from bonded device.\n", pi);
2431 			continue;
2432 		}
2433 
2434 		port = &ports[pi];
2435 		if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED,
2436 						RTE_PORT_HANDLING) == 0)
2437 			continue;
2438 
2439 		rte_eth_dev_stop(pi);
2440 
2441 		if (rte_atomic16_cmpset(&(port->port_status),
2442 			RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0)
2443 			printf("Port %d can not be set into stopped\n", pi);
2444 		need_check_link_status = 1;
2445 	}
2446 	if (need_check_link_status && !no_link_check)
2447 		check_all_ports_link_status(RTE_PORT_ALL);
2448 
2449 	printf("Done\n");
2450 }
2451 
2452 static void
2453 remove_invalid_ports_in(portid_t *array, portid_t *total)
2454 {
2455 	portid_t i;
2456 	portid_t new_total = 0;
2457 
2458 	for (i = 0; i < *total; i++)
2459 		if (!port_id_is_invalid(array[i], DISABLED_WARN)) {
2460 			array[new_total] = array[i];
2461 			new_total++;
2462 		}
2463 	*total = new_total;
2464 }
2465 
2466 static void
2467 remove_invalid_ports(void)
2468 {
2469 	remove_invalid_ports_in(ports_ids, &nb_ports);
2470 	remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports);
2471 	nb_cfg_ports = nb_fwd_ports;
2472 }
2473 
2474 void
2475 close_port(portid_t pid)
2476 {
2477 	portid_t pi;
2478 	struct rte_port *port;
2479 
2480 	if (port_id_is_invalid(pid, ENABLED_WARN))
2481 		return;
2482 
2483 	printf("Closing ports...\n");
2484 
2485 	RTE_ETH_FOREACH_DEV(pi) {
2486 		if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
2487 			continue;
2488 
2489 		if (port_is_forwarding(pi) != 0 && test_done == 0) {
2490 			printf("Please remove port %d from forwarding configuration.\n", pi);
2491 			continue;
2492 		}
2493 
2494 		if (port_is_bonding_slave(pi)) {
2495 			printf("Please remove port %d from bonded device.\n", pi);
2496 			continue;
2497 		}
2498 
2499 		port = &ports[pi];
2500 		if (rte_atomic16_cmpset(&(port->port_status),
2501 			RTE_PORT_CLOSED, RTE_PORT_CLOSED) == 1) {
2502 			printf("Port %d is already closed\n", pi);
2503 			continue;
2504 		}
2505 
2506 		if (rte_atomic16_cmpset(&(port->port_status),
2507 			RTE_PORT_STOPPED, RTE_PORT_HANDLING) == 0) {
2508 			printf("Port %d is now not stopped\n", pi);
2509 			continue;
2510 		}
2511 
2512 		if (port->flow_list)
2513 			port_flow_flush(pi);
2514 		rte_eth_dev_close(pi);
2515 
2516 		remove_invalid_ports();
2517 
2518 		if (rte_atomic16_cmpset(&(port->port_status),
2519 			RTE_PORT_HANDLING, RTE_PORT_CLOSED) == 0)
2520 			printf("Port %d cannot be set to closed\n", pi);
2521 	}
2522 
2523 	printf("Done\n");
2524 }
2525 
2526 void
2527 reset_port(portid_t pid)
2528 {
2529 	int diag;
2530 	portid_t pi;
2531 	struct rte_port *port;
2532 
2533 	if (port_id_is_invalid(pid, ENABLED_WARN))
2534 		return;
2535 
2536 	if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) ||
2537 		(pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) {
2538 		printf("Can not reset port(s), please stop port(s) first.\n");
2539 		return;
2540 	}
2541 
2542 	printf("Resetting ports...\n");
2543 
2544 	RTE_ETH_FOREACH_DEV(pi) {
2545 		if (pid != pi && pid != (portid_t)RTE_PORT_ALL)
2546 			continue;
2547 
2548 		if (port_is_forwarding(pi) != 0 && test_done == 0) {
2549 			printf("Please remove port %d from forwarding "
2550 			       "configuration.\n", pi);
2551 			continue;
2552 		}
2553 
2554 		if (port_is_bonding_slave(pi)) {
2555 			printf("Please remove port %d from bonded device.\n",
2556 			       pi);
2557 			continue;
2558 		}
2559 
2560 		diag = rte_eth_dev_reset(pi);
2561 		if (diag == 0) {
2562 			port = &ports[pi];
2563 			port->need_reconfig = 1;
2564 			port->need_reconfig_queues = 1;
2565 		} else {
2566 			printf("Failed to reset port %d. diag=%d\n", pi, diag);
2567 		}
2568 	}
2569 
2570 	printf("Done\n");
2571 }
2572 
2573 void
2574 attach_port(char *identifier)
2575 {
2576 	portid_t pi;
2577 	struct rte_dev_iterator iterator;
2578 
2579 	printf("Attaching a new port...\n");
2580 
2581 	if (identifier == NULL) {
2582 		printf("Invalid parameters are specified\n");
2583 		return;
2584 	}
2585 
2586 	if (rte_dev_probe(identifier) < 0) {
2587 		TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier);
2588 		return;
2589 	}
2590 
2591 	/* first attach mode: event */
2592 	if (setup_on_probe_event) {
2593 		/* new ports are detected on RTE_ETH_EVENT_NEW event */
2594 		for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++)
2595 			if (ports[pi].port_status == RTE_PORT_HANDLING &&
2596 					ports[pi].need_setup != 0)
2597 				setup_attached_port(pi);
2598 		return;
2599 	}
2600 
2601 	/* second attach mode: iterator */
2602 	RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) {
2603 		/* setup ports matching the devargs used for probing */
2604 		if (port_is_forwarding(pi))
2605 			continue; /* port was already attached before */
2606 		setup_attached_port(pi);
2607 	}
2608 }
2609 
2610 static void
2611 setup_attached_port(portid_t pi)
2612 {
2613 	unsigned int socket_id;
2614 	int ret;
2615 
2616 	socket_id = (unsigned)rte_eth_dev_socket_id(pi);
2617 	/* if socket_id is invalid, set to the first available socket. */
2618 	if (check_socket_id(socket_id) < 0)
2619 		socket_id = socket_ids[0];
2620 	reconfig(pi, socket_id);
2621 	ret = rte_eth_promiscuous_enable(pi);
2622 	if (ret != 0)
2623 		printf("Error during enabling promiscuous mode for port %u: %s - ignore\n",
2624 			pi, rte_strerror(-ret));
2625 
2626 	ports_ids[nb_ports++] = pi;
2627 	fwd_ports_ids[nb_fwd_ports++] = pi;
2628 	nb_cfg_ports = nb_fwd_ports;
2629 	ports[pi].need_setup = 0;
2630 	ports[pi].port_status = RTE_PORT_STOPPED;
2631 
2632 	printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports);
2633 	printf("Done\n");
2634 }
2635 
2636 void
2637 detach_port_device(portid_t port_id)
2638 {
2639 	struct rte_device *dev;
2640 	portid_t sibling;
2641 
2642 	printf("Removing a device...\n");
2643 
2644 	if (port_id_is_invalid(port_id, ENABLED_WARN))
2645 		return;
2646 
2647 	dev = rte_eth_devices[port_id].device;
2648 	if (dev == NULL) {
2649 		printf("Device already removed\n");
2650 		return;
2651 	}
2652 
2653 	if (ports[port_id].port_status != RTE_PORT_CLOSED) {
2654 		if (ports[port_id].port_status != RTE_PORT_STOPPED) {
2655 			printf("Port not stopped\n");
2656 			return;
2657 		}
2658 		printf("Port was not closed\n");
2659 		if (ports[port_id].flow_list)
2660 			port_flow_flush(port_id);
2661 	}
2662 
2663 	if (rte_dev_remove(dev) < 0) {
2664 		TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name);
2665 		return;
2666 	}
2667 	RTE_ETH_FOREACH_DEV_OF(sibling, dev) {
2668 		/* reset mapping between old ports and removed device */
2669 		rte_eth_devices[sibling].device = NULL;
2670 		if (ports[sibling].port_status != RTE_PORT_CLOSED) {
2671 			/* sibling ports are forced to be closed */
2672 			ports[sibling].port_status = RTE_PORT_CLOSED;
2673 			printf("Port %u is closed\n", sibling);
2674 		}
2675 	}
2676 
2677 	remove_invalid_ports();
2678 
2679 	printf("Device of port %u is detached\n", port_id);
2680 	printf("Now total ports is %d\n", nb_ports);
2681 	printf("Done\n");
2682 	return;
2683 }
2684 
2685 void
2686 detach_device(char *identifier)
2687 {
2688 	struct rte_dev_iterator iterator;
2689 	struct rte_devargs da;
2690 	portid_t port_id;
2691 
2692 	printf("Removing a device...\n");
2693 
2694 	memset(&da, 0, sizeof(da));
2695 	if (rte_devargs_parsef(&da, "%s", identifier)) {
2696 		printf("cannot parse identifier\n");
2697 		if (da.args)
2698 			free(da.args);
2699 		return;
2700 	}
2701 
2702 	RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) {
2703 		if (ports[port_id].port_status != RTE_PORT_CLOSED) {
2704 			if (ports[port_id].port_status != RTE_PORT_STOPPED) {
2705 				printf("Port %u not stopped\n", port_id);
2706 				rte_eth_iterator_cleanup(&iterator);
2707 				return;
2708 			}
2709 
2710 			/* sibling ports are forced to be closed */
2711 			if (ports[port_id].flow_list)
2712 				port_flow_flush(port_id);
2713 			ports[port_id].port_status = RTE_PORT_CLOSED;
2714 			printf("Port %u is now closed\n", port_id);
2715 		}
2716 	}
2717 
2718 	if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) {
2719 		TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n",
2720 			    da.name, da.bus->name);
2721 		return;
2722 	}
2723 
2724 	remove_invalid_ports();
2725 
2726 	printf("Device %s is detached\n", identifier);
2727 	printf("Now total ports is %d\n", nb_ports);
2728 	printf("Done\n");
2729 }
2730 
2731 void
2732 pmd_test_exit(void)
2733 {
2734 	portid_t pt_id;
2735 	int ret;
2736 	int i;
2737 
2738 	if (test_done == 0)
2739 		stop_packet_forwarding();
2740 
2741 	for (i = 0 ; i < RTE_MAX_NUMA_NODES ; i++) {
2742 		if (mempools[i]) {
2743 			if (mp_alloc_type == MP_ALLOC_ANON)
2744 				rte_mempool_mem_iter(mempools[i], dma_unmap_cb,
2745 						     NULL);
2746 		}
2747 	}
2748 	if (ports != NULL) {
2749 		no_link_check = 1;
2750 		RTE_ETH_FOREACH_DEV(pt_id) {
2751 			printf("\nStopping port %d...\n", pt_id);
2752 			fflush(stdout);
2753 			stop_port(pt_id);
2754 		}
2755 		RTE_ETH_FOREACH_DEV(pt_id) {
2756 			printf("\nShutting down port %d...\n", pt_id);
2757 			fflush(stdout);
2758 			close_port(pt_id);
2759 		}
2760 	}
2761 
2762 	if (hot_plug) {
2763 		ret = rte_dev_event_monitor_stop();
2764 		if (ret) {
2765 			RTE_LOG(ERR, EAL,
2766 				"fail to stop device event monitor.");
2767 			return;
2768 		}
2769 
2770 		ret = rte_dev_event_callback_unregister(NULL,
2771 			dev_event_callback, NULL);
2772 		if (ret < 0) {
2773 			RTE_LOG(ERR, EAL,
2774 				"fail to unregister device event callback.\n");
2775 			return;
2776 		}
2777 
2778 		ret = rte_dev_hotplug_handle_disable();
2779 		if (ret) {
2780 			RTE_LOG(ERR, EAL,
2781 				"fail to disable hotplug handling.\n");
2782 			return;
2783 		}
2784 	}
2785 	for (i = 0 ; i < RTE_MAX_NUMA_NODES ; i++) {
2786 		if (mempools[i])
2787 			rte_mempool_free(mempools[i]);
2788 	}
2789 
2790 	printf("\nBye...\n");
2791 }
2792 
2793 typedef void (*cmd_func_t)(void);
2794 struct pmd_test_command {
2795 	const char *cmd_name;
2796 	cmd_func_t cmd_func;
2797 };
2798 
2799 /* Check the link status of all ports in up to 9s, and print them finally */
2800 static void
2801 check_all_ports_link_status(uint32_t port_mask)
2802 {
2803 #define CHECK_INTERVAL 100 /* 100ms */
2804 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
2805 	portid_t portid;
2806 	uint8_t count, all_ports_up, print_flag = 0;
2807 	struct rte_eth_link link;
2808 	int ret;
2809 
2810 	printf("Checking link statuses...\n");
2811 	fflush(stdout);
2812 	for (count = 0; count <= MAX_CHECK_TIME; count++) {
2813 		all_ports_up = 1;
2814 		RTE_ETH_FOREACH_DEV(portid) {
2815 			if ((port_mask & (1 << portid)) == 0)
2816 				continue;
2817 			memset(&link, 0, sizeof(link));
2818 			ret = rte_eth_link_get_nowait(portid, &link);
2819 			if (ret < 0) {
2820 				all_ports_up = 0;
2821 				if (print_flag == 1)
2822 					printf("Port %u link get failed: %s\n",
2823 						portid, rte_strerror(-ret));
2824 				continue;
2825 			}
2826 			/* print link status if flag set */
2827 			if (print_flag == 1) {
2828 				if (link.link_status)
2829 					printf(
2830 					"Port%d Link Up. speed %u Mbps- %s\n",
2831 					portid, link.link_speed,
2832 				(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
2833 					("full-duplex") : ("half-duplex\n"));
2834 				else
2835 					printf("Port %d Link Down\n", portid);
2836 				continue;
2837 			}
2838 			/* clear all_ports_up flag if any link down */
2839 			if (link.link_status == ETH_LINK_DOWN) {
2840 				all_ports_up = 0;
2841 				break;
2842 			}
2843 		}
2844 		/* after finally printing all link status, get out */
2845 		if (print_flag == 1)
2846 			break;
2847 
2848 		if (all_ports_up == 0) {
2849 			fflush(stdout);
2850 			rte_delay_ms(CHECK_INTERVAL);
2851 		}
2852 
2853 		/* set the print_flag if all ports up or timeout */
2854 		if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
2855 			print_flag = 1;
2856 		}
2857 
2858 		if (lsc_interrupt)
2859 			break;
2860 	}
2861 }
2862 
2863 /*
2864  * This callback is for remove a port for a device. It has limitation because
2865  * it is not for multiple port removal for a device.
2866  * TODO: the device detach invoke will plan to be removed from user side to
2867  * eal. And convert all PMDs to free port resources on ether device closing.
2868  */
2869 static void
2870 rmv_port_callback(void *arg)
2871 {
2872 	int need_to_start = 0;
2873 	int org_no_link_check = no_link_check;
2874 	portid_t port_id = (intptr_t)arg;
2875 
2876 	RTE_ETH_VALID_PORTID_OR_RET(port_id);
2877 
2878 	if (!test_done && port_is_forwarding(port_id)) {
2879 		need_to_start = 1;
2880 		stop_packet_forwarding();
2881 	}
2882 	no_link_check = 1;
2883 	stop_port(port_id);
2884 	no_link_check = org_no_link_check;
2885 	close_port(port_id);
2886 	detach_port_device(port_id);
2887 	if (need_to_start)
2888 		start_packet_forwarding(0);
2889 }
2890 
2891 /* This function is used by the interrupt thread */
2892 static int
2893 eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param,
2894 		  void *ret_param)
2895 {
2896 	RTE_SET_USED(param);
2897 	RTE_SET_USED(ret_param);
2898 
2899 	if (type >= RTE_ETH_EVENT_MAX) {
2900 		fprintf(stderr, "\nPort %" PRIu16 ": %s called upon invalid event %d\n",
2901 			port_id, __func__, type);
2902 		fflush(stderr);
2903 	} else if (event_print_mask & (UINT32_C(1) << type)) {
2904 		printf("\nPort %" PRIu16 ": %s event\n", port_id,
2905 			eth_event_desc[type]);
2906 		fflush(stdout);
2907 	}
2908 
2909 	switch (type) {
2910 	case RTE_ETH_EVENT_NEW:
2911 		ports[port_id].need_setup = 1;
2912 		ports[port_id].port_status = RTE_PORT_HANDLING;
2913 		break;
2914 	case RTE_ETH_EVENT_INTR_RMV:
2915 		if (port_id_is_invalid(port_id, DISABLED_WARN))
2916 			break;
2917 		if (rte_eal_alarm_set(100000,
2918 				rmv_port_callback, (void *)(intptr_t)port_id))
2919 			fprintf(stderr, "Could not set up deferred device removal\n");
2920 		break;
2921 	default:
2922 		break;
2923 	}
2924 	return 0;
2925 }
2926 
2927 static int
2928 register_eth_event_callback(void)
2929 {
2930 	int ret;
2931 	enum rte_eth_event_type event;
2932 
2933 	for (event = RTE_ETH_EVENT_UNKNOWN;
2934 			event < RTE_ETH_EVENT_MAX; event++) {
2935 		ret = rte_eth_dev_callback_register(RTE_ETH_ALL,
2936 				event,
2937 				eth_event_callback,
2938 				NULL);
2939 		if (ret != 0) {
2940 			TESTPMD_LOG(ERR, "Failed to register callback for "
2941 					"%s event\n", eth_event_desc[event]);
2942 			return -1;
2943 		}
2944 	}
2945 
2946 	return 0;
2947 }
2948 
2949 /* This function is used by the interrupt thread */
2950 static void
2951 dev_event_callback(const char *device_name, enum rte_dev_event_type type,
2952 			     __rte_unused void *arg)
2953 {
2954 	uint16_t port_id;
2955 	int ret;
2956 
2957 	if (type >= RTE_DEV_EVENT_MAX) {
2958 		fprintf(stderr, "%s called upon invalid event %d\n",
2959 			__func__, type);
2960 		fflush(stderr);
2961 	}
2962 
2963 	switch (type) {
2964 	case RTE_DEV_EVENT_REMOVE:
2965 		RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n",
2966 			device_name);
2967 		ret = rte_eth_dev_get_port_by_name(device_name, &port_id);
2968 		if (ret) {
2969 			RTE_LOG(ERR, EAL, "can not get port by device %s!\n",
2970 				device_name);
2971 			return;
2972 		}
2973 		/*
2974 		 * Because the user's callback is invoked in eal interrupt
2975 		 * callback, the interrupt callback need to be finished before
2976 		 * it can be unregistered when detaching device. So finish
2977 		 * callback soon and use a deferred removal to detach device
2978 		 * is need. It is a workaround, once the device detaching be
2979 		 * moved into the eal in the future, the deferred removal could
2980 		 * be deleted.
2981 		 */
2982 		if (rte_eal_alarm_set(100000,
2983 				rmv_port_callback, (void *)(intptr_t)port_id))
2984 			RTE_LOG(ERR, EAL,
2985 				"Could not set up deferred device removal\n");
2986 		break;
2987 	case RTE_DEV_EVENT_ADD:
2988 		RTE_LOG(ERR, EAL, "The device: %s has been added!\n",
2989 			device_name);
2990 		/* TODO: After finish kernel driver binding,
2991 		 * begin to attach port.
2992 		 */
2993 		break;
2994 	default:
2995 		break;
2996 	}
2997 }
2998 
2999 static int
3000 set_tx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port)
3001 {
3002 	uint16_t i;
3003 	int diag;
3004 	uint8_t mapping_found = 0;
3005 
3006 	for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
3007 		if ((tx_queue_stats_mappings[i].port_id == port_id) &&
3008 				(tx_queue_stats_mappings[i].queue_id < nb_txq )) {
3009 			diag = rte_eth_dev_set_tx_queue_stats_mapping(port_id,
3010 					tx_queue_stats_mappings[i].queue_id,
3011 					tx_queue_stats_mappings[i].stats_counter_id);
3012 			if (diag != 0)
3013 				return diag;
3014 			mapping_found = 1;
3015 		}
3016 	}
3017 	if (mapping_found)
3018 		port->tx_queue_stats_mapping_enabled = 1;
3019 	return 0;
3020 }
3021 
3022 static int
3023 set_rx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port)
3024 {
3025 	uint16_t i;
3026 	int diag;
3027 	uint8_t mapping_found = 0;
3028 
3029 	for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
3030 		if ((rx_queue_stats_mappings[i].port_id == port_id) &&
3031 				(rx_queue_stats_mappings[i].queue_id < nb_rxq )) {
3032 			diag = rte_eth_dev_set_rx_queue_stats_mapping(port_id,
3033 					rx_queue_stats_mappings[i].queue_id,
3034 					rx_queue_stats_mappings[i].stats_counter_id);
3035 			if (diag != 0)
3036 				return diag;
3037 			mapping_found = 1;
3038 		}
3039 	}
3040 	if (mapping_found)
3041 		port->rx_queue_stats_mapping_enabled = 1;
3042 	return 0;
3043 }
3044 
3045 static void
3046 map_port_queue_stats_mapping_registers(portid_t pi, struct rte_port *port)
3047 {
3048 	int diag = 0;
3049 
3050 	diag = set_tx_queue_stats_mapping_registers(pi, port);
3051 	if (diag != 0) {
3052 		if (diag == -ENOTSUP) {
3053 			port->tx_queue_stats_mapping_enabled = 0;
3054 			printf("TX queue stats mapping not supported port id=%d\n", pi);
3055 		}
3056 		else
3057 			rte_exit(EXIT_FAILURE,
3058 					"set_tx_queue_stats_mapping_registers "
3059 					"failed for port id=%d diag=%d\n",
3060 					pi, diag);
3061 	}
3062 
3063 	diag = set_rx_queue_stats_mapping_registers(pi, port);
3064 	if (diag != 0) {
3065 		if (diag == -ENOTSUP) {
3066 			port->rx_queue_stats_mapping_enabled = 0;
3067 			printf("RX queue stats mapping not supported port id=%d\n", pi);
3068 		}
3069 		else
3070 			rte_exit(EXIT_FAILURE,
3071 					"set_rx_queue_stats_mapping_registers "
3072 					"failed for port id=%d diag=%d\n",
3073 					pi, diag);
3074 	}
3075 }
3076 
3077 static void
3078 rxtx_port_config(struct rte_port *port)
3079 {
3080 	uint16_t qid;
3081 	uint64_t offloads;
3082 
3083 	for (qid = 0; qid < nb_rxq; qid++) {
3084 		offloads = port->rx_conf[qid].offloads;
3085 		port->rx_conf[qid] = port->dev_info.default_rxconf;
3086 		if (offloads != 0)
3087 			port->rx_conf[qid].offloads = offloads;
3088 
3089 		/* Check if any Rx parameters have been passed */
3090 		if (rx_pthresh != RTE_PMD_PARAM_UNSET)
3091 			port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh;
3092 
3093 		if (rx_hthresh != RTE_PMD_PARAM_UNSET)
3094 			port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh;
3095 
3096 		if (rx_wthresh != RTE_PMD_PARAM_UNSET)
3097 			port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh;
3098 
3099 		if (rx_free_thresh != RTE_PMD_PARAM_UNSET)
3100 			port->rx_conf[qid].rx_free_thresh = rx_free_thresh;
3101 
3102 		if (rx_drop_en != RTE_PMD_PARAM_UNSET)
3103 			port->rx_conf[qid].rx_drop_en = rx_drop_en;
3104 
3105 		port->nb_rx_desc[qid] = nb_rxd;
3106 	}
3107 
3108 	for (qid = 0; qid < nb_txq; qid++) {
3109 		offloads = port->tx_conf[qid].offloads;
3110 		port->tx_conf[qid] = port->dev_info.default_txconf;
3111 		if (offloads != 0)
3112 			port->tx_conf[qid].offloads = offloads;
3113 
3114 		/* Check if any Tx parameters have been passed */
3115 		if (tx_pthresh != RTE_PMD_PARAM_UNSET)
3116 			port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh;
3117 
3118 		if (tx_hthresh != RTE_PMD_PARAM_UNSET)
3119 			port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh;
3120 
3121 		if (tx_wthresh != RTE_PMD_PARAM_UNSET)
3122 			port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh;
3123 
3124 		if (tx_rs_thresh != RTE_PMD_PARAM_UNSET)
3125 			port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh;
3126 
3127 		if (tx_free_thresh != RTE_PMD_PARAM_UNSET)
3128 			port->tx_conf[qid].tx_free_thresh = tx_free_thresh;
3129 
3130 		port->nb_tx_desc[qid] = nb_txd;
3131 	}
3132 }
3133 
3134 void
3135 init_port_config(void)
3136 {
3137 	portid_t pid;
3138 	struct rte_port *port;
3139 	int ret;
3140 
3141 	RTE_ETH_FOREACH_DEV(pid) {
3142 		port = &ports[pid];
3143 		port->dev_conf.fdir_conf = fdir_conf;
3144 
3145 		ret = eth_dev_info_get_print_err(pid, &port->dev_info);
3146 		if (ret != 0)
3147 			return;
3148 
3149 		if (nb_rxq > 1) {
3150 			port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL;
3151 			port->dev_conf.rx_adv_conf.rss_conf.rss_hf =
3152 				rss_hf & port->dev_info.flow_type_rss_offloads;
3153 		} else {
3154 			port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL;
3155 			port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0;
3156 		}
3157 
3158 		if (port->dcb_flag == 0) {
3159 			if( port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0)
3160 				port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_RSS;
3161 			else
3162 				port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE;
3163 		}
3164 
3165 		rxtx_port_config(port);
3166 
3167 		ret = eth_macaddr_get_print_err(pid, &port->eth_addr);
3168 		if (ret != 0)
3169 			return;
3170 
3171 		map_port_queue_stats_mapping_registers(pid, port);
3172 #if defined RTE_LIBRTE_IXGBE_PMD && defined RTE_LIBRTE_IXGBE_BYPASS
3173 		rte_pmd_ixgbe_bypass_init(pid);
3174 #endif
3175 
3176 		if (lsc_interrupt &&
3177 		    (rte_eth_devices[pid].data->dev_flags &
3178 		     RTE_ETH_DEV_INTR_LSC))
3179 			port->dev_conf.intr_conf.lsc = 1;
3180 		if (rmv_interrupt &&
3181 		    (rte_eth_devices[pid].data->dev_flags &
3182 		     RTE_ETH_DEV_INTR_RMV))
3183 			port->dev_conf.intr_conf.rmv = 1;
3184 	}
3185 }
3186 
3187 void set_port_slave_flag(portid_t slave_pid)
3188 {
3189 	struct rte_port *port;
3190 
3191 	port = &ports[slave_pid];
3192 	port->slave_flag = 1;
3193 }
3194 
3195 void clear_port_slave_flag(portid_t slave_pid)
3196 {
3197 	struct rte_port *port;
3198 
3199 	port = &ports[slave_pid];
3200 	port->slave_flag = 0;
3201 }
3202 
3203 uint8_t port_is_bonding_slave(portid_t slave_pid)
3204 {
3205 	struct rte_port *port;
3206 
3207 	port = &ports[slave_pid];
3208 	if ((rte_eth_devices[slave_pid].data->dev_flags &
3209 	    RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1))
3210 		return 1;
3211 	return 0;
3212 }
3213 
3214 const uint16_t vlan_tags[] = {
3215 		0,  1,  2,  3,  4,  5,  6,  7,
3216 		8,  9, 10, 11,  12, 13, 14, 15,
3217 		16, 17, 18, 19, 20, 21, 22, 23,
3218 		24, 25, 26, 27, 28, 29, 30, 31
3219 };
3220 
3221 static  int
3222 get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf,
3223 		 enum dcb_mode_enable dcb_mode,
3224 		 enum rte_eth_nb_tcs num_tcs,
3225 		 uint8_t pfc_en)
3226 {
3227 	uint8_t i;
3228 	int32_t rc;
3229 	struct rte_eth_rss_conf rss_conf;
3230 
3231 	/*
3232 	 * Builds up the correct configuration for dcb+vt based on the vlan tags array
3233 	 * given above, and the number of traffic classes available for use.
3234 	 */
3235 	if (dcb_mode == DCB_VT_ENABLED) {
3236 		struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf =
3237 				&eth_conf->rx_adv_conf.vmdq_dcb_conf;
3238 		struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf =
3239 				&eth_conf->tx_adv_conf.vmdq_dcb_tx_conf;
3240 
3241 		/* VMDQ+DCB RX and TX configurations */
3242 		vmdq_rx_conf->enable_default_pool = 0;
3243 		vmdq_rx_conf->default_pool = 0;
3244 		vmdq_rx_conf->nb_queue_pools =
3245 			(num_tcs ==  ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS);
3246 		vmdq_tx_conf->nb_queue_pools =
3247 			(num_tcs ==  ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS);
3248 
3249 		vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools;
3250 		for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) {
3251 			vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i];
3252 			vmdq_rx_conf->pool_map[i].pools =
3253 				1 << (i % vmdq_rx_conf->nb_queue_pools);
3254 		}
3255 		for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3256 			vmdq_rx_conf->dcb_tc[i] = i % num_tcs;
3257 			vmdq_tx_conf->dcb_tc[i] = i % num_tcs;
3258 		}
3259 
3260 		/* set DCB mode of RX and TX of multiple queues */
3261 		eth_conf->rxmode.mq_mode = ETH_MQ_RX_VMDQ_DCB;
3262 		eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB;
3263 	} else {
3264 		struct rte_eth_dcb_rx_conf *rx_conf =
3265 				&eth_conf->rx_adv_conf.dcb_rx_conf;
3266 		struct rte_eth_dcb_tx_conf *tx_conf =
3267 				&eth_conf->tx_adv_conf.dcb_tx_conf;
3268 
3269 		rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf);
3270 		if (rc != 0)
3271 			return rc;
3272 
3273 		rx_conf->nb_tcs = num_tcs;
3274 		tx_conf->nb_tcs = num_tcs;
3275 
3276 		for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) {
3277 			rx_conf->dcb_tc[i] = i % num_tcs;
3278 			tx_conf->dcb_tc[i] = i % num_tcs;
3279 		}
3280 
3281 		eth_conf->rxmode.mq_mode = ETH_MQ_RX_DCB_RSS;
3282 		eth_conf->rx_adv_conf.rss_conf = rss_conf;
3283 		eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB;
3284 	}
3285 
3286 	if (pfc_en)
3287 		eth_conf->dcb_capability_en =
3288 				ETH_DCB_PG_SUPPORT | ETH_DCB_PFC_SUPPORT;
3289 	else
3290 		eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT;
3291 
3292 	return 0;
3293 }
3294 
3295 int
3296 init_port_dcb_config(portid_t pid,
3297 		     enum dcb_mode_enable dcb_mode,
3298 		     enum rte_eth_nb_tcs num_tcs,
3299 		     uint8_t pfc_en)
3300 {
3301 	struct rte_eth_conf port_conf;
3302 	struct rte_port *rte_port;
3303 	int retval;
3304 	uint16_t i;
3305 
3306 	rte_port = &ports[pid];
3307 
3308 	memset(&port_conf, 0, sizeof(struct rte_eth_conf));
3309 	/* Enter DCB configuration status */
3310 	dcb_config = 1;
3311 
3312 	port_conf.rxmode = rte_port->dev_conf.rxmode;
3313 	port_conf.txmode = rte_port->dev_conf.txmode;
3314 
3315 	/*set configuration of DCB in vt mode and DCB in non-vt mode*/
3316 	retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en);
3317 	if (retval < 0)
3318 		return retval;
3319 	port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
3320 
3321 	/* re-configure the device . */
3322 	retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf);
3323 	if (retval < 0)
3324 		return retval;
3325 
3326 	retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info);
3327 	if (retval != 0)
3328 		return retval;
3329 
3330 	/* If dev_info.vmdq_pool_base is greater than 0,
3331 	 * the queue id of vmdq pools is started after pf queues.
3332 	 */
3333 	if (dcb_mode == DCB_VT_ENABLED &&
3334 	    rte_port->dev_info.vmdq_pool_base > 0) {
3335 		printf("VMDQ_DCB multi-queue mode is nonsensical"
3336 			" for port %d.", pid);
3337 		return -1;
3338 	}
3339 
3340 	/* Assume the ports in testpmd have the same dcb capability
3341 	 * and has the same number of rxq and txq in dcb mode
3342 	 */
3343 	if (dcb_mode == DCB_VT_ENABLED) {
3344 		if (rte_port->dev_info.max_vfs > 0) {
3345 			nb_rxq = rte_port->dev_info.nb_rx_queues;
3346 			nb_txq = rte_port->dev_info.nb_tx_queues;
3347 		} else {
3348 			nb_rxq = rte_port->dev_info.max_rx_queues;
3349 			nb_txq = rte_port->dev_info.max_tx_queues;
3350 		}
3351 	} else {
3352 		/*if vt is disabled, use all pf queues */
3353 		if (rte_port->dev_info.vmdq_pool_base == 0) {
3354 			nb_rxq = rte_port->dev_info.max_rx_queues;
3355 			nb_txq = rte_port->dev_info.max_tx_queues;
3356 		} else {
3357 			nb_rxq = (queueid_t)num_tcs;
3358 			nb_txq = (queueid_t)num_tcs;
3359 
3360 		}
3361 	}
3362 	rx_free_thresh = 64;
3363 
3364 	memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf));
3365 
3366 	rxtx_port_config(rte_port);
3367 	/* VLAN filter */
3368 	rte_port->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
3369 	for (i = 0; i < RTE_DIM(vlan_tags); i++)
3370 		rx_vft_set(pid, vlan_tags[i], 1);
3371 
3372 	retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr);
3373 	if (retval != 0)
3374 		return retval;
3375 
3376 	map_port_queue_stats_mapping_registers(pid, rte_port);
3377 
3378 	rte_port->dcb_flag = 1;
3379 
3380 	return 0;
3381 }
3382 
3383 static void
3384 init_port(void)
3385 {
3386 	/* Configuration of Ethernet ports. */
3387 	ports = rte_zmalloc("testpmd: ports",
3388 			    sizeof(struct rte_port) * RTE_MAX_ETHPORTS,
3389 			    RTE_CACHE_LINE_SIZE);
3390 	if (ports == NULL) {
3391 		rte_exit(EXIT_FAILURE,
3392 				"rte_zmalloc(%d struct rte_port) failed\n",
3393 				RTE_MAX_ETHPORTS);
3394 	}
3395 
3396 	/* Initialize ports NUMA structures */
3397 	memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
3398 	memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
3399 	memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS);
3400 }
3401 
3402 static void
3403 force_quit(void)
3404 {
3405 	pmd_test_exit();
3406 	prompt_exit();
3407 }
3408 
3409 static void
3410 print_stats(void)
3411 {
3412 	uint8_t i;
3413 	const char clr[] = { 27, '[', '2', 'J', '\0' };
3414 	const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' };
3415 
3416 	/* Clear screen and move to top left */
3417 	printf("%s%s", clr, top_left);
3418 
3419 	printf("\nPort statistics ====================================");
3420 	for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++)
3421 		nic_stats_display(fwd_ports_ids[i]);
3422 
3423 	fflush(stdout);
3424 }
3425 
3426 static void
3427 signal_handler(int signum)
3428 {
3429 	if (signum == SIGINT || signum == SIGTERM) {
3430 		printf("\nSignal %d received, preparing to exit...\n",
3431 				signum);
3432 #ifdef RTE_LIBRTE_PDUMP
3433 		/* uninitialize packet capture framework */
3434 		rte_pdump_uninit();
3435 #endif
3436 #ifdef RTE_LIBRTE_LATENCY_STATS
3437 		if (latencystats_enabled != 0)
3438 			rte_latencystats_uninit();
3439 #endif
3440 		force_quit();
3441 		/* Set flag to indicate the force termination. */
3442 		f_quit = 1;
3443 		/* exit with the expected status */
3444 		signal(signum, SIG_DFL);
3445 		kill(getpid(), signum);
3446 	}
3447 }
3448 
3449 int
3450 main(int argc, char** argv)
3451 {
3452 	int diag;
3453 	portid_t port_id;
3454 	uint16_t count;
3455 	int ret;
3456 
3457 	signal(SIGINT, signal_handler);
3458 	signal(SIGTERM, signal_handler);
3459 
3460 	testpmd_logtype = rte_log_register("testpmd");
3461 	if (testpmd_logtype < 0)
3462 		rte_exit(EXIT_FAILURE, "Cannot register log type");
3463 	rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG);
3464 
3465 	diag = rte_eal_init(argc, argv);
3466 	if (diag < 0)
3467 		rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n",
3468 			 rte_strerror(rte_errno));
3469 
3470 	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
3471 		rte_exit(EXIT_FAILURE,
3472 			 "Secondary process type not supported.\n");
3473 
3474 	ret = register_eth_event_callback();
3475 	if (ret != 0)
3476 		rte_exit(EXIT_FAILURE, "Cannot register for ethdev events");
3477 
3478 #ifdef RTE_LIBRTE_PDUMP
3479 	/* initialize packet capture framework */
3480 	rte_pdump_init();
3481 #endif
3482 
3483 	count = 0;
3484 	RTE_ETH_FOREACH_DEV(port_id) {
3485 		ports_ids[count] = port_id;
3486 		count++;
3487 	}
3488 	nb_ports = (portid_t) count;
3489 	if (nb_ports == 0)
3490 		TESTPMD_LOG(WARNING, "No probed ethernet devices\n");
3491 
3492 	/* allocate port structures, and init them */
3493 	init_port();
3494 
3495 	set_def_fwd_config();
3496 	if (nb_lcores == 0)
3497 		rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n"
3498 			 "Check the core mask argument\n");
3499 
3500 	/* Bitrate/latency stats disabled by default */
3501 #ifdef RTE_LIBRTE_BITRATE
3502 	bitrate_enabled = 0;
3503 #endif
3504 #ifdef RTE_LIBRTE_LATENCY_STATS
3505 	latencystats_enabled = 0;
3506 #endif
3507 
3508 	/* on FreeBSD, mlockall() is disabled by default */
3509 #ifdef RTE_EXEC_ENV_FREEBSD
3510 	do_mlockall = 0;
3511 #else
3512 	do_mlockall = 1;
3513 #endif
3514 
3515 	argc -= diag;
3516 	argv += diag;
3517 	if (argc > 1)
3518 		launch_args_parse(argc, argv);
3519 
3520 	if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) {
3521 		TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n",
3522 			strerror(errno));
3523 	}
3524 
3525 	if (tx_first && interactive)
3526 		rte_exit(EXIT_FAILURE, "--tx-first cannot be used on "
3527 				"interactive mode.\n");
3528 
3529 	if (tx_first && lsc_interrupt) {
3530 		printf("Warning: lsc_interrupt needs to be off when "
3531 				" using tx_first. Disabling.\n");
3532 		lsc_interrupt = 0;
3533 	}
3534 
3535 	if (!nb_rxq && !nb_txq)
3536 		printf("Warning: Either rx or tx queues should be non-zero\n");
3537 
3538 	if (nb_rxq > 1 && nb_rxq > nb_txq)
3539 		printf("Warning: nb_rxq=%d enables RSS configuration, "
3540 		       "but nb_txq=%d will prevent to fully test it.\n",
3541 		       nb_rxq, nb_txq);
3542 
3543 	init_config();
3544 
3545 	if (hot_plug) {
3546 		ret = rte_dev_hotplug_handle_enable();
3547 		if (ret) {
3548 			RTE_LOG(ERR, EAL,
3549 				"fail to enable hotplug handling.");
3550 			return -1;
3551 		}
3552 
3553 		ret = rte_dev_event_monitor_start();
3554 		if (ret) {
3555 			RTE_LOG(ERR, EAL,
3556 				"fail to start device event monitoring.");
3557 			return -1;
3558 		}
3559 
3560 		ret = rte_dev_event_callback_register(NULL,
3561 			dev_event_callback, NULL);
3562 		if (ret) {
3563 			RTE_LOG(ERR, EAL,
3564 				"fail  to register device event callback\n");
3565 			return -1;
3566 		}
3567 	}
3568 
3569 	if (!no_device_start && start_port(RTE_PORT_ALL) != 0)
3570 		rte_exit(EXIT_FAILURE, "Start ports failed\n");
3571 
3572 	/* set all ports to promiscuous mode by default */
3573 	RTE_ETH_FOREACH_DEV(port_id) {
3574 		ret = rte_eth_promiscuous_enable(port_id);
3575 		if (ret != 0)
3576 			printf("Error during enabling promiscuous mode for port %u: %s - ignore\n",
3577 				port_id, rte_strerror(-ret));
3578 	}
3579 
3580 	/* Init metrics library */
3581 	rte_metrics_init(rte_socket_id());
3582 
3583 #ifdef RTE_LIBRTE_LATENCY_STATS
3584 	if (latencystats_enabled != 0) {
3585 		int ret = rte_latencystats_init(1, NULL);
3586 		if (ret)
3587 			printf("Warning: latencystats init()"
3588 				" returned error %d\n",	ret);
3589 		printf("Latencystats running on lcore %d\n",
3590 			latencystats_lcore_id);
3591 	}
3592 #endif
3593 
3594 	/* Setup bitrate stats */
3595 #ifdef RTE_LIBRTE_BITRATE
3596 	if (bitrate_enabled != 0) {
3597 		bitrate_data = rte_stats_bitrate_create();
3598 		if (bitrate_data == NULL)
3599 			rte_exit(EXIT_FAILURE,
3600 				"Could not allocate bitrate data.\n");
3601 		rte_stats_bitrate_reg(bitrate_data);
3602 	}
3603 #endif
3604 
3605 #ifdef RTE_LIBRTE_CMDLINE
3606 	if (strlen(cmdline_filename) != 0)
3607 		cmdline_read_from_file(cmdline_filename);
3608 
3609 	if (interactive == 1) {
3610 		if (auto_start) {
3611 			printf("Start automatic packet forwarding\n");
3612 			start_packet_forwarding(0);
3613 		}
3614 		prompt();
3615 		pmd_test_exit();
3616 	} else
3617 #endif
3618 	{
3619 		char c;
3620 		int rc;
3621 
3622 		f_quit = 0;
3623 
3624 		printf("No commandline core given, start packet forwarding\n");
3625 		start_packet_forwarding(tx_first);
3626 		if (stats_period != 0) {
3627 			uint64_t prev_time = 0, cur_time, diff_time = 0;
3628 			uint64_t timer_period;
3629 
3630 			/* Convert to number of cycles */
3631 			timer_period = stats_period * rte_get_timer_hz();
3632 
3633 			while (f_quit == 0) {
3634 				cur_time = rte_get_timer_cycles();
3635 				diff_time += cur_time - prev_time;
3636 
3637 				if (diff_time >= timer_period) {
3638 					print_stats();
3639 					/* Reset the timer */
3640 					diff_time = 0;
3641 				}
3642 				/* Sleep to avoid unnecessary checks */
3643 				prev_time = cur_time;
3644 				sleep(1);
3645 			}
3646 		}
3647 
3648 		printf("Press enter to exit\n");
3649 		rc = read(0, &c, 1);
3650 		pmd_test_exit();
3651 		if (rc < 0)
3652 			return 1;
3653 	}
3654 
3655 	ret = rte_eal_cleanup();
3656 	if (ret != 0)
3657 		rte_exit(EXIT_FAILURE,
3658 			 "EAL cleanup failed: %s\n", strerror(-ret));
3659 
3660 	return EXIT_SUCCESS;
3661 }
3662