1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2017 Intel Corporation 3 */ 4 5 #include <stdarg.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <signal.h> 9 #include <string.h> 10 #include <time.h> 11 #include <fcntl.h> 12 #include <sys/mman.h> 13 #include <sys/types.h> 14 #include <errno.h> 15 #include <stdbool.h> 16 17 #include <sys/queue.h> 18 #include <sys/stat.h> 19 20 #include <stdint.h> 21 #include <unistd.h> 22 #include <inttypes.h> 23 24 #include <rte_common.h> 25 #include <rte_errno.h> 26 #include <rte_byteorder.h> 27 #include <rte_log.h> 28 #include <rte_debug.h> 29 #include <rte_cycles.h> 30 #include <rte_memory.h> 31 #include <rte_memcpy.h> 32 #include <rte_launch.h> 33 #include <rte_eal.h> 34 #include <rte_alarm.h> 35 #include <rte_per_lcore.h> 36 #include <rte_lcore.h> 37 #include <rte_atomic.h> 38 #include <rte_branch_prediction.h> 39 #include <rte_mempool.h> 40 #include <rte_malloc.h> 41 #include <rte_mbuf.h> 42 #include <rte_mbuf_pool_ops.h> 43 #include <rte_interrupts.h> 44 #include <rte_pci.h> 45 #include <rte_ether.h> 46 #include <rte_ethdev.h> 47 #include <rte_dev.h> 48 #include <rte_string_fns.h> 49 #ifdef RTE_LIBRTE_IXGBE_PMD 50 #include <rte_pmd_ixgbe.h> 51 #endif 52 #ifdef RTE_LIBRTE_PDUMP 53 #include <rte_pdump.h> 54 #endif 55 #include <rte_flow.h> 56 #include <rte_metrics.h> 57 #ifdef RTE_LIBRTE_BITRATESTATS 58 #include <rte_bitrate.h> 59 #endif 60 #ifdef RTE_LIBRTE_LATENCY_STATS 61 #include <rte_latencystats.h> 62 #endif 63 64 #include "testpmd.h" 65 66 #ifndef MAP_HUGETLB 67 /* FreeBSD may not have MAP_HUGETLB (in fact, it probably doesn't) */ 68 #define HUGE_FLAG (0x40000) 69 #else 70 #define HUGE_FLAG MAP_HUGETLB 71 #endif 72 73 #ifndef MAP_HUGE_SHIFT 74 /* older kernels (or FreeBSD) will not have this define */ 75 #define HUGE_SHIFT (26) 76 #else 77 #define HUGE_SHIFT MAP_HUGE_SHIFT 78 #endif 79 80 #define EXTMEM_HEAP_NAME "extmem" 81 #define EXTBUF_ZONE_SIZE RTE_PGSIZE_2M 82 83 uint16_t verbose_level = 0; /**< Silent by default. */ 84 int testpmd_logtype; /**< Log type for testpmd logs */ 85 86 /* use master core for command line ? */ 87 uint8_t interactive = 0; 88 uint8_t auto_start = 0; 89 uint8_t tx_first; 90 char cmdline_filename[PATH_MAX] = {0}; 91 92 /* 93 * NUMA support configuration. 94 * When set, the NUMA support attempts to dispatch the allocation of the 95 * RX and TX memory rings, and of the DMA memory buffers (mbufs) for the 96 * probed ports among the CPU sockets 0 and 1. 97 * Otherwise, all memory is allocated from CPU socket 0. 98 */ 99 uint8_t numa_support = 1; /**< numa enabled by default */ 100 101 /* 102 * In UMA mode,all memory is allocated from socket 0 if --socket-num is 103 * not configured. 104 */ 105 uint8_t socket_num = UMA_NO_CONFIG; 106 107 /* 108 * Select mempool allocation type: 109 * - native: use regular DPDK memory 110 * - anon: use regular DPDK memory to create mempool, but populate using 111 * anonymous memory (may not be IOVA-contiguous) 112 * - xmem: use externally allocated hugepage memory 113 */ 114 uint8_t mp_alloc_type = MP_ALLOC_NATIVE; 115 116 /* 117 * Store specified sockets on which memory pool to be used by ports 118 * is allocated. 119 */ 120 uint8_t port_numa[RTE_MAX_ETHPORTS]; 121 122 /* 123 * Store specified sockets on which RX ring to be used by ports 124 * is allocated. 125 */ 126 uint8_t rxring_numa[RTE_MAX_ETHPORTS]; 127 128 /* 129 * Store specified sockets on which TX ring to be used by ports 130 * is allocated. 131 */ 132 uint8_t txring_numa[RTE_MAX_ETHPORTS]; 133 134 /* 135 * Record the Ethernet address of peer target ports to which packets are 136 * forwarded. 137 * Must be instantiated with the ethernet addresses of peer traffic generator 138 * ports. 139 */ 140 struct rte_ether_addr peer_eth_addrs[RTE_MAX_ETHPORTS]; 141 portid_t nb_peer_eth_addrs = 0; 142 143 /* 144 * Probed Target Environment. 145 */ 146 struct rte_port *ports; /**< For all probed ethernet ports. */ 147 portid_t nb_ports; /**< Number of probed ethernet ports. */ 148 struct fwd_lcore **fwd_lcores; /**< For all probed logical cores. */ 149 lcoreid_t nb_lcores; /**< Number of probed logical cores. */ 150 151 portid_t ports_ids[RTE_MAX_ETHPORTS]; /**< Store all port ids. */ 152 153 /* 154 * Test Forwarding Configuration. 155 * nb_fwd_lcores <= nb_cfg_lcores <= nb_lcores 156 * nb_fwd_ports <= nb_cfg_ports <= nb_ports 157 */ 158 lcoreid_t nb_cfg_lcores; /**< Number of configured logical cores. */ 159 lcoreid_t nb_fwd_lcores; /**< Number of forwarding logical cores. */ 160 portid_t nb_cfg_ports; /**< Number of configured ports. */ 161 portid_t nb_fwd_ports; /**< Number of forwarding ports. */ 162 163 unsigned int fwd_lcores_cpuids[RTE_MAX_LCORE]; /**< CPU ids configuration. */ 164 portid_t fwd_ports_ids[RTE_MAX_ETHPORTS]; /**< Port ids configuration. */ 165 166 struct fwd_stream **fwd_streams; /**< For each RX queue of each port. */ 167 streamid_t nb_fwd_streams; /**< Is equal to (nb_ports * nb_rxq). */ 168 169 /* 170 * Forwarding engines. 171 */ 172 struct fwd_engine * fwd_engines[] = { 173 &io_fwd_engine, 174 &mac_fwd_engine, 175 &mac_swap_engine, 176 &flow_gen_engine, 177 &rx_only_engine, 178 &tx_only_engine, 179 &csum_fwd_engine, 180 &icmp_echo_engine, 181 &noisy_vnf_engine, 182 &five_tuple_swap_fwd_engine, 183 #ifdef RTE_LIBRTE_IEEE1588 184 &ieee1588_fwd_engine, 185 #endif 186 NULL, 187 }; 188 189 struct rte_mempool *mempools[RTE_MAX_NUMA_NODES * MAX_SEGS_BUFFER_SPLIT]; 190 uint16_t mempool_flags; 191 192 struct fwd_config cur_fwd_config; 193 struct fwd_engine *cur_fwd_eng = &io_fwd_engine; /**< IO mode by default. */ 194 uint32_t retry_enabled; 195 uint32_t burst_tx_delay_time = BURST_TX_WAIT_US; 196 uint32_t burst_tx_retry_num = BURST_TX_RETRIES; 197 198 uint32_t mbuf_data_size_n = 1; /* Number of specified mbuf sizes. */ 199 uint16_t mbuf_data_size[MAX_SEGS_BUFFER_SPLIT] = { 200 DEFAULT_MBUF_DATA_SIZE 201 }; /**< Mbuf data space size. */ 202 uint32_t param_total_num_mbufs = 0; /**< number of mbufs in all pools - if 203 * specified on command-line. */ 204 uint16_t stats_period; /**< Period to show statistics (disabled by default) */ 205 206 /* 207 * In container, it cannot terminate the process which running with 'stats-period' 208 * option. Set flag to exit stats period loop after received SIGINT/SIGTERM. 209 */ 210 uint8_t f_quit; 211 212 /* 213 * Configuration of packet segments used to scatter received packets 214 * if some of split features is configured. 215 */ 216 uint16_t rx_pkt_seg_lengths[MAX_SEGS_BUFFER_SPLIT]; 217 uint8_t rx_pkt_nb_segs; /**< Number of segments to split */ 218 uint16_t rx_pkt_seg_offsets[MAX_SEGS_BUFFER_SPLIT]; 219 uint8_t rx_pkt_nb_offs; /**< Number of specified offsets */ 220 221 /* 222 * Configuration of packet segments used by the "txonly" processing engine. 223 */ 224 uint16_t tx_pkt_length = TXONLY_DEF_PACKET_LEN; /**< TXONLY packet length. */ 225 uint16_t tx_pkt_seg_lengths[RTE_MAX_SEGS_PER_PKT] = { 226 TXONLY_DEF_PACKET_LEN, 227 }; 228 uint8_t tx_pkt_nb_segs = 1; /**< Number of segments in TXONLY packets */ 229 230 enum tx_pkt_split tx_pkt_split = TX_PKT_SPLIT_OFF; 231 /**< Split policy for packets to TX. */ 232 233 uint8_t txonly_multi_flow; 234 /**< Whether multiple flows are generated in TXONLY mode. */ 235 236 uint32_t tx_pkt_times_inter; 237 /**< Timings for send scheduling in TXONLY mode, time between bursts. */ 238 239 uint32_t tx_pkt_times_intra; 240 /**< Timings for send scheduling in TXONLY mode, time between packets. */ 241 242 uint16_t nb_pkt_per_burst = DEF_PKT_BURST; /**< Number of packets per burst. */ 243 uint16_t mb_mempool_cache = DEF_MBUF_CACHE; /**< Size of mbuf mempool cache. */ 244 245 /* current configuration is in DCB or not,0 means it is not in DCB mode */ 246 uint8_t dcb_config = 0; 247 248 /* Whether the dcb is in testing status */ 249 uint8_t dcb_test = 0; 250 251 /* 252 * Configurable number of RX/TX queues. 253 */ 254 queueid_t nb_hairpinq; /**< Number of hairpin queues per port. */ 255 queueid_t nb_rxq = 1; /**< Number of RX queues per port. */ 256 queueid_t nb_txq = 1; /**< Number of TX queues per port. */ 257 258 /* 259 * Configurable number of RX/TX ring descriptors. 260 * Defaults are supplied by drivers via ethdev. 261 */ 262 #define RTE_TEST_RX_DESC_DEFAULT 0 263 #define RTE_TEST_TX_DESC_DEFAULT 0 264 uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT; /**< Number of RX descriptors. */ 265 uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT; /**< Number of TX descriptors. */ 266 267 #define RTE_PMD_PARAM_UNSET -1 268 /* 269 * Configurable values of RX and TX ring threshold registers. 270 */ 271 272 int8_t rx_pthresh = RTE_PMD_PARAM_UNSET; 273 int8_t rx_hthresh = RTE_PMD_PARAM_UNSET; 274 int8_t rx_wthresh = RTE_PMD_PARAM_UNSET; 275 276 int8_t tx_pthresh = RTE_PMD_PARAM_UNSET; 277 int8_t tx_hthresh = RTE_PMD_PARAM_UNSET; 278 int8_t tx_wthresh = RTE_PMD_PARAM_UNSET; 279 280 /* 281 * Configurable value of RX free threshold. 282 */ 283 int16_t rx_free_thresh = RTE_PMD_PARAM_UNSET; 284 285 /* 286 * Configurable value of RX drop enable. 287 */ 288 int8_t rx_drop_en = RTE_PMD_PARAM_UNSET; 289 290 /* 291 * Configurable value of TX free threshold. 292 */ 293 int16_t tx_free_thresh = RTE_PMD_PARAM_UNSET; 294 295 /* 296 * Configurable value of TX RS bit threshold. 297 */ 298 int16_t tx_rs_thresh = RTE_PMD_PARAM_UNSET; 299 300 /* 301 * Configurable value of buffered packets before sending. 302 */ 303 uint16_t noisy_tx_sw_bufsz; 304 305 /* 306 * Configurable value of packet buffer timeout. 307 */ 308 uint16_t noisy_tx_sw_buf_flush_time; 309 310 /* 311 * Configurable value for size of VNF internal memory area 312 * used for simulating noisy neighbour behaviour 313 */ 314 uint64_t noisy_lkup_mem_sz; 315 316 /* 317 * Configurable value of number of random writes done in 318 * VNF simulation memory area. 319 */ 320 uint64_t noisy_lkup_num_writes; 321 322 /* 323 * Configurable value of number of random reads done in 324 * VNF simulation memory area. 325 */ 326 uint64_t noisy_lkup_num_reads; 327 328 /* 329 * Configurable value of number of random reads/writes done in 330 * VNF simulation memory area. 331 */ 332 uint64_t noisy_lkup_num_reads_writes; 333 334 /* 335 * Receive Side Scaling (RSS) configuration. 336 */ 337 uint64_t rss_hf = ETH_RSS_IP; /* RSS IP by default. */ 338 339 /* 340 * Port topology configuration 341 */ 342 uint16_t port_topology = PORT_TOPOLOGY_PAIRED; /* Ports are paired by default */ 343 344 /* 345 * Avoids to flush all the RX streams before starts forwarding. 346 */ 347 uint8_t no_flush_rx = 0; /* flush by default */ 348 349 /* 350 * Flow API isolated mode. 351 */ 352 uint8_t flow_isolate_all; 353 354 /* 355 * Avoids to check link status when starting/stopping a port. 356 */ 357 uint8_t no_link_check = 0; /* check by default */ 358 359 /* 360 * Don't automatically start all ports in interactive mode. 361 */ 362 uint8_t no_device_start = 0; 363 364 /* 365 * Enable link status change notification 366 */ 367 uint8_t lsc_interrupt = 1; /* enabled by default */ 368 369 /* 370 * Enable device removal notification. 371 */ 372 uint8_t rmv_interrupt = 1; /* enabled by default */ 373 374 uint8_t hot_plug = 0; /**< hotplug disabled by default. */ 375 376 /* After attach, port setup is called on event or by iterator */ 377 bool setup_on_probe_event = true; 378 379 /* Clear ptypes on port initialization. */ 380 uint8_t clear_ptypes = true; 381 382 /* Hairpin ports configuration mode. */ 383 uint16_t hairpin_mode; 384 385 /* Pretty printing of ethdev events */ 386 static const char * const eth_event_desc[] = { 387 [RTE_ETH_EVENT_UNKNOWN] = "unknown", 388 [RTE_ETH_EVENT_INTR_LSC] = "link state change", 389 [RTE_ETH_EVENT_QUEUE_STATE] = "queue state", 390 [RTE_ETH_EVENT_INTR_RESET] = "reset", 391 [RTE_ETH_EVENT_VF_MBOX] = "VF mbox", 392 [RTE_ETH_EVENT_IPSEC] = "IPsec", 393 [RTE_ETH_EVENT_MACSEC] = "MACsec", 394 [RTE_ETH_EVENT_INTR_RMV] = "device removal", 395 [RTE_ETH_EVENT_NEW] = "device probed", 396 [RTE_ETH_EVENT_DESTROY] = "device released", 397 [RTE_ETH_EVENT_FLOW_AGED] = "flow aged", 398 [RTE_ETH_EVENT_MAX] = NULL, 399 }; 400 401 /* 402 * Display or mask ether events 403 * Default to all events except VF_MBOX 404 */ 405 uint32_t event_print_mask = (UINT32_C(1) << RTE_ETH_EVENT_UNKNOWN) | 406 (UINT32_C(1) << RTE_ETH_EVENT_INTR_LSC) | 407 (UINT32_C(1) << RTE_ETH_EVENT_QUEUE_STATE) | 408 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RESET) | 409 (UINT32_C(1) << RTE_ETH_EVENT_IPSEC) | 410 (UINT32_C(1) << RTE_ETH_EVENT_MACSEC) | 411 (UINT32_C(1) << RTE_ETH_EVENT_INTR_RMV) | 412 (UINT32_C(1) << RTE_ETH_EVENT_FLOW_AGED); 413 /* 414 * Decide if all memory are locked for performance. 415 */ 416 int do_mlockall = 0; 417 418 /* 419 * NIC bypass mode configuration options. 420 */ 421 422 #if defined RTE_LIBRTE_IXGBE_PMD && defined RTE_LIBRTE_IXGBE_BYPASS 423 /* The NIC bypass watchdog timeout. */ 424 uint32_t bypass_timeout = RTE_PMD_IXGBE_BYPASS_TMT_OFF; 425 #endif 426 427 428 #ifdef RTE_LIBRTE_LATENCY_STATS 429 430 /* 431 * Set when latency stats is enabled in the commandline 432 */ 433 uint8_t latencystats_enabled; 434 435 /* 436 * Lcore ID to serive latency statistics. 437 */ 438 lcoreid_t latencystats_lcore_id = -1; 439 440 #endif 441 442 /* 443 * Ethernet device configuration. 444 */ 445 struct rte_eth_rxmode rx_mode = { 446 .max_rx_pkt_len = RTE_ETHER_MAX_LEN, 447 /**< Default maximum frame length. */ 448 }; 449 450 struct rte_eth_txmode tx_mode = { 451 .offloads = DEV_TX_OFFLOAD_MBUF_FAST_FREE, 452 }; 453 454 struct rte_fdir_conf fdir_conf = { 455 .mode = RTE_FDIR_MODE_NONE, 456 .pballoc = RTE_FDIR_PBALLOC_64K, 457 .status = RTE_FDIR_REPORT_STATUS, 458 .mask = { 459 .vlan_tci_mask = 0xFFEF, 460 .ipv4_mask = { 461 .src_ip = 0xFFFFFFFF, 462 .dst_ip = 0xFFFFFFFF, 463 }, 464 .ipv6_mask = { 465 .src_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 466 .dst_ip = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}, 467 }, 468 .src_port_mask = 0xFFFF, 469 .dst_port_mask = 0xFFFF, 470 .mac_addr_byte_mask = 0xFF, 471 .tunnel_type_mask = 1, 472 .tunnel_id_mask = 0xFFFFFFFF, 473 }, 474 .drop_queue = 127, 475 }; 476 477 volatile int test_done = 1; /* stop packet forwarding when set to 1. */ 478 479 struct queue_stats_mappings tx_queue_stats_mappings_array[MAX_TX_QUEUE_STATS_MAPPINGS]; 480 struct queue_stats_mappings rx_queue_stats_mappings_array[MAX_RX_QUEUE_STATS_MAPPINGS]; 481 482 struct queue_stats_mappings *tx_queue_stats_mappings = tx_queue_stats_mappings_array; 483 struct queue_stats_mappings *rx_queue_stats_mappings = rx_queue_stats_mappings_array; 484 485 uint16_t nb_tx_queue_stats_mappings = 0; 486 uint16_t nb_rx_queue_stats_mappings = 0; 487 488 /* 489 * Display zero values by default for xstats 490 */ 491 uint8_t xstats_hide_zero; 492 493 /* 494 * Measure of CPU cycles disabled by default 495 */ 496 uint8_t record_core_cycles; 497 498 /* 499 * Display of RX and TX bursts disabled by default 500 */ 501 uint8_t record_burst_stats; 502 503 unsigned int num_sockets = 0; 504 unsigned int socket_ids[RTE_MAX_NUMA_NODES]; 505 506 #ifdef RTE_LIBRTE_BITRATESTATS 507 /* Bitrate statistics */ 508 struct rte_stats_bitrates *bitrate_data; 509 lcoreid_t bitrate_lcore_id; 510 uint8_t bitrate_enabled; 511 #endif 512 513 struct gro_status gro_ports[RTE_MAX_ETHPORTS]; 514 uint8_t gro_flush_cycles = GRO_DEFAULT_FLUSH_CYCLES; 515 516 /* 517 * hexadecimal bitmask of RX mq mode can be enabled. 518 */ 519 enum rte_eth_rx_mq_mode rx_mq_mode = ETH_MQ_RX_VMDQ_DCB_RSS; 520 521 /* Forward function declarations */ 522 static void setup_attached_port(portid_t pi); 523 static void map_port_queue_stats_mapping_registers(portid_t pi, 524 struct rte_port *port); 525 static void check_all_ports_link_status(uint32_t port_mask); 526 static int eth_event_callback(portid_t port_id, 527 enum rte_eth_event_type type, 528 void *param, void *ret_param); 529 static void dev_event_callback(const char *device_name, 530 enum rte_dev_event_type type, 531 void *param); 532 533 /* 534 * Check if all the ports are started. 535 * If yes, return positive value. If not, return zero. 536 */ 537 static int all_ports_started(void); 538 539 struct gso_status gso_ports[RTE_MAX_ETHPORTS]; 540 uint16_t gso_max_segment_size = RTE_ETHER_MAX_LEN - RTE_ETHER_CRC_LEN; 541 542 /* Holds the registered mbuf dynamic flags names. */ 543 char dynf_names[64][RTE_MBUF_DYN_NAMESIZE]; 544 545 /* 546 * Helper function to check if socket is already discovered. 547 * If yes, return positive value. If not, return zero. 548 */ 549 int 550 new_socket_id(unsigned int socket_id) 551 { 552 unsigned int i; 553 554 for (i = 0; i < num_sockets; i++) { 555 if (socket_ids[i] == socket_id) 556 return 0; 557 } 558 return 1; 559 } 560 561 /* 562 * Setup default configuration. 563 */ 564 static void 565 set_default_fwd_lcores_config(void) 566 { 567 unsigned int i; 568 unsigned int nb_lc; 569 unsigned int sock_num; 570 571 nb_lc = 0; 572 for (i = 0; i < RTE_MAX_LCORE; i++) { 573 if (!rte_lcore_is_enabled(i)) 574 continue; 575 sock_num = rte_lcore_to_socket_id(i); 576 if (new_socket_id(sock_num)) { 577 if (num_sockets >= RTE_MAX_NUMA_NODES) { 578 rte_exit(EXIT_FAILURE, 579 "Total sockets greater than %u\n", 580 RTE_MAX_NUMA_NODES); 581 } 582 socket_ids[num_sockets++] = sock_num; 583 } 584 if (i == rte_get_master_lcore()) 585 continue; 586 fwd_lcores_cpuids[nb_lc++] = i; 587 } 588 nb_lcores = (lcoreid_t) nb_lc; 589 nb_cfg_lcores = nb_lcores; 590 nb_fwd_lcores = 1; 591 } 592 593 static void 594 set_def_peer_eth_addrs(void) 595 { 596 portid_t i; 597 598 for (i = 0; i < RTE_MAX_ETHPORTS; i++) { 599 peer_eth_addrs[i].addr_bytes[0] = RTE_ETHER_LOCAL_ADMIN_ADDR; 600 peer_eth_addrs[i].addr_bytes[5] = i; 601 } 602 } 603 604 static void 605 set_default_fwd_ports_config(void) 606 { 607 portid_t pt_id; 608 int i = 0; 609 610 RTE_ETH_FOREACH_DEV(pt_id) { 611 fwd_ports_ids[i++] = pt_id; 612 613 /* Update sockets info according to the attached device */ 614 int socket_id = rte_eth_dev_socket_id(pt_id); 615 if (socket_id >= 0 && new_socket_id(socket_id)) { 616 if (num_sockets >= RTE_MAX_NUMA_NODES) { 617 rte_exit(EXIT_FAILURE, 618 "Total sockets greater than %u\n", 619 RTE_MAX_NUMA_NODES); 620 } 621 socket_ids[num_sockets++] = socket_id; 622 } 623 } 624 625 nb_cfg_ports = nb_ports; 626 nb_fwd_ports = nb_ports; 627 } 628 629 void 630 set_def_fwd_config(void) 631 { 632 set_default_fwd_lcores_config(); 633 set_def_peer_eth_addrs(); 634 set_default_fwd_ports_config(); 635 } 636 637 /* extremely pessimistic estimation of memory required to create a mempool */ 638 static int 639 calc_mem_size(uint32_t nb_mbufs, uint32_t mbuf_sz, size_t pgsz, size_t *out) 640 { 641 unsigned int n_pages, mbuf_per_pg, leftover; 642 uint64_t total_mem, mbuf_mem, obj_sz; 643 644 /* there is no good way to predict how much space the mempool will 645 * occupy because it will allocate chunks on the fly, and some of those 646 * will come from default DPDK memory while some will come from our 647 * external memory, so just assume 128MB will be enough for everyone. 648 */ 649 uint64_t hdr_mem = 128 << 20; 650 651 /* account for possible non-contiguousness */ 652 obj_sz = rte_mempool_calc_obj_size(mbuf_sz, 0, NULL); 653 if (obj_sz > pgsz) { 654 TESTPMD_LOG(ERR, "Object size is bigger than page size\n"); 655 return -1; 656 } 657 658 mbuf_per_pg = pgsz / obj_sz; 659 leftover = (nb_mbufs % mbuf_per_pg) > 0; 660 n_pages = (nb_mbufs / mbuf_per_pg) + leftover; 661 662 mbuf_mem = n_pages * pgsz; 663 664 total_mem = RTE_ALIGN(hdr_mem + mbuf_mem, pgsz); 665 666 if (total_mem > SIZE_MAX) { 667 TESTPMD_LOG(ERR, "Memory size too big\n"); 668 return -1; 669 } 670 *out = (size_t)total_mem; 671 672 return 0; 673 } 674 675 static int 676 pagesz_flags(uint64_t page_sz) 677 { 678 /* as per mmap() manpage, all page sizes are log2 of page size 679 * shifted by MAP_HUGE_SHIFT 680 */ 681 int log2 = rte_log2_u64(page_sz); 682 683 return (log2 << HUGE_SHIFT); 684 } 685 686 static void * 687 alloc_mem(size_t memsz, size_t pgsz, bool huge) 688 { 689 void *addr; 690 int flags; 691 692 /* allocate anonymous hugepages */ 693 flags = MAP_ANONYMOUS | MAP_PRIVATE; 694 if (huge) 695 flags |= HUGE_FLAG | pagesz_flags(pgsz); 696 697 addr = mmap(NULL, memsz, PROT_READ | PROT_WRITE, flags, -1, 0); 698 if (addr == MAP_FAILED) 699 return NULL; 700 701 return addr; 702 } 703 704 struct extmem_param { 705 void *addr; 706 size_t len; 707 size_t pgsz; 708 rte_iova_t *iova_table; 709 unsigned int iova_table_len; 710 }; 711 712 static int 713 create_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, struct extmem_param *param, 714 bool huge) 715 { 716 uint64_t pgsizes[] = {RTE_PGSIZE_2M, RTE_PGSIZE_1G, /* x86_64, ARM */ 717 RTE_PGSIZE_16M, RTE_PGSIZE_16G}; /* POWER */ 718 unsigned int cur_page, n_pages, pgsz_idx; 719 size_t mem_sz, cur_pgsz; 720 rte_iova_t *iovas = NULL; 721 void *addr; 722 int ret; 723 724 for (pgsz_idx = 0; pgsz_idx < RTE_DIM(pgsizes); pgsz_idx++) { 725 /* skip anything that is too big */ 726 if (pgsizes[pgsz_idx] > SIZE_MAX) 727 continue; 728 729 cur_pgsz = pgsizes[pgsz_idx]; 730 731 /* if we were told not to allocate hugepages, override */ 732 if (!huge) 733 cur_pgsz = sysconf(_SC_PAGESIZE); 734 735 ret = calc_mem_size(nb_mbufs, mbuf_sz, cur_pgsz, &mem_sz); 736 if (ret < 0) { 737 TESTPMD_LOG(ERR, "Cannot calculate memory size\n"); 738 return -1; 739 } 740 741 /* allocate our memory */ 742 addr = alloc_mem(mem_sz, cur_pgsz, huge); 743 744 /* if we couldn't allocate memory with a specified page size, 745 * that doesn't mean we can't do it with other page sizes, so 746 * try another one. 747 */ 748 if (addr == NULL) 749 continue; 750 751 /* store IOVA addresses for every page in this memory area */ 752 n_pages = mem_sz / cur_pgsz; 753 754 iovas = malloc(sizeof(*iovas) * n_pages); 755 756 if (iovas == NULL) { 757 TESTPMD_LOG(ERR, "Cannot allocate memory for iova addresses\n"); 758 goto fail; 759 } 760 /* lock memory if it's not huge pages */ 761 if (!huge) 762 mlock(addr, mem_sz); 763 764 /* populate IOVA addresses */ 765 for (cur_page = 0; cur_page < n_pages; cur_page++) { 766 rte_iova_t iova; 767 size_t offset; 768 void *cur; 769 770 offset = cur_pgsz * cur_page; 771 cur = RTE_PTR_ADD(addr, offset); 772 773 /* touch the page before getting its IOVA */ 774 *(volatile char *)cur = 0; 775 776 iova = rte_mem_virt2iova(cur); 777 778 iovas[cur_page] = iova; 779 } 780 781 break; 782 } 783 /* if we couldn't allocate anything */ 784 if (iovas == NULL) 785 return -1; 786 787 param->addr = addr; 788 param->len = mem_sz; 789 param->pgsz = cur_pgsz; 790 param->iova_table = iovas; 791 param->iova_table_len = n_pages; 792 793 return 0; 794 fail: 795 if (iovas) 796 free(iovas); 797 if (addr) 798 munmap(addr, mem_sz); 799 800 return -1; 801 } 802 803 static int 804 setup_extmem(uint32_t nb_mbufs, uint32_t mbuf_sz, bool huge) 805 { 806 struct extmem_param param; 807 int socket_id, ret; 808 809 memset(¶m, 0, sizeof(param)); 810 811 /* check if our heap exists */ 812 socket_id = rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 813 if (socket_id < 0) { 814 /* create our heap */ 815 ret = rte_malloc_heap_create(EXTMEM_HEAP_NAME); 816 if (ret < 0) { 817 TESTPMD_LOG(ERR, "Cannot create heap\n"); 818 return -1; 819 } 820 } 821 822 ret = create_extmem(nb_mbufs, mbuf_sz, ¶m, huge); 823 if (ret < 0) { 824 TESTPMD_LOG(ERR, "Cannot create memory area\n"); 825 return -1; 826 } 827 828 /* we now have a valid memory area, so add it to heap */ 829 ret = rte_malloc_heap_memory_add(EXTMEM_HEAP_NAME, 830 param.addr, param.len, param.iova_table, 831 param.iova_table_len, param.pgsz); 832 833 /* when using VFIO, memory is automatically mapped for DMA by EAL */ 834 835 /* not needed any more */ 836 free(param.iova_table); 837 838 if (ret < 0) { 839 TESTPMD_LOG(ERR, "Cannot add memory to heap\n"); 840 munmap(param.addr, param.len); 841 return -1; 842 } 843 844 /* success */ 845 846 TESTPMD_LOG(DEBUG, "Allocated %zuMB of external memory\n", 847 param.len >> 20); 848 849 return 0; 850 } 851 static void 852 dma_unmap_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 853 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 854 { 855 uint16_t pid = 0; 856 int ret; 857 858 RTE_ETH_FOREACH_DEV(pid) { 859 struct rte_eth_dev *dev = 860 &rte_eth_devices[pid]; 861 862 ret = rte_dev_dma_unmap(dev->device, memhdr->addr, 0, 863 memhdr->len); 864 if (ret) { 865 TESTPMD_LOG(DEBUG, 866 "unable to DMA unmap addr 0x%p " 867 "for device %s\n", 868 memhdr->addr, dev->data->name); 869 } 870 } 871 ret = rte_extmem_unregister(memhdr->addr, memhdr->len); 872 if (ret) { 873 TESTPMD_LOG(DEBUG, 874 "unable to un-register addr 0x%p\n", memhdr->addr); 875 } 876 } 877 878 static void 879 dma_map_cb(struct rte_mempool *mp __rte_unused, void *opaque __rte_unused, 880 struct rte_mempool_memhdr *memhdr, unsigned mem_idx __rte_unused) 881 { 882 uint16_t pid = 0; 883 size_t page_size = sysconf(_SC_PAGESIZE); 884 int ret; 885 886 ret = rte_extmem_register(memhdr->addr, memhdr->len, NULL, 0, 887 page_size); 888 if (ret) { 889 TESTPMD_LOG(DEBUG, 890 "unable to register addr 0x%p\n", memhdr->addr); 891 return; 892 } 893 RTE_ETH_FOREACH_DEV(pid) { 894 struct rte_eth_dev *dev = 895 &rte_eth_devices[pid]; 896 897 ret = rte_dev_dma_map(dev->device, memhdr->addr, 0, 898 memhdr->len); 899 if (ret) { 900 TESTPMD_LOG(DEBUG, 901 "unable to DMA map addr 0x%p " 902 "for device %s\n", 903 memhdr->addr, dev->data->name); 904 } 905 } 906 } 907 908 static unsigned int 909 setup_extbuf(uint32_t nb_mbufs, uint16_t mbuf_sz, unsigned int socket_id, 910 char *pool_name, struct rte_pktmbuf_extmem **ext_mem) 911 { 912 struct rte_pktmbuf_extmem *xmem; 913 unsigned int ext_num, zone_num, elt_num; 914 uint16_t elt_size; 915 916 elt_size = RTE_ALIGN_CEIL(mbuf_sz, RTE_CACHE_LINE_SIZE); 917 elt_num = EXTBUF_ZONE_SIZE / elt_size; 918 zone_num = (nb_mbufs + elt_num - 1) / elt_num; 919 920 xmem = malloc(sizeof(struct rte_pktmbuf_extmem) * zone_num); 921 if (xmem == NULL) { 922 TESTPMD_LOG(ERR, "Cannot allocate memory for " 923 "external buffer descriptors\n"); 924 *ext_mem = NULL; 925 return 0; 926 } 927 for (ext_num = 0; ext_num < zone_num; ext_num++) { 928 struct rte_pktmbuf_extmem *xseg = xmem + ext_num; 929 const struct rte_memzone *mz; 930 char mz_name[RTE_MEMZONE_NAMESIZE]; 931 int ret; 932 933 ret = snprintf(mz_name, sizeof(mz_name), 934 RTE_MEMPOOL_MZ_FORMAT "_xb_%u", pool_name, ext_num); 935 if (ret < 0 || ret >= (int)sizeof(mz_name)) { 936 errno = ENAMETOOLONG; 937 ext_num = 0; 938 break; 939 } 940 mz = rte_memzone_reserve_aligned(mz_name, EXTBUF_ZONE_SIZE, 941 socket_id, 942 RTE_MEMZONE_IOVA_CONTIG | 943 RTE_MEMZONE_1GB | 944 RTE_MEMZONE_SIZE_HINT_ONLY, 945 EXTBUF_ZONE_SIZE); 946 if (mz == NULL) { 947 /* 948 * The caller exits on external buffer creation 949 * error, so there is no need to free memzones. 950 */ 951 errno = ENOMEM; 952 ext_num = 0; 953 break; 954 } 955 xseg->buf_ptr = mz->addr; 956 xseg->buf_iova = mz->iova; 957 xseg->buf_len = EXTBUF_ZONE_SIZE; 958 xseg->elt_size = elt_size; 959 } 960 if (ext_num == 0 && xmem != NULL) { 961 free(xmem); 962 xmem = NULL; 963 } 964 *ext_mem = xmem; 965 return ext_num; 966 } 967 968 /* 969 * Configuration initialisation done once at init time. 970 */ 971 static struct rte_mempool * 972 mbuf_pool_create(uint16_t mbuf_seg_size, unsigned nb_mbuf, 973 unsigned int socket_id, uint16_t size_idx) 974 { 975 char pool_name[RTE_MEMPOOL_NAMESIZE]; 976 struct rte_mempool *rte_mp = NULL; 977 uint32_t mb_size; 978 979 mb_size = sizeof(struct rte_mbuf) + mbuf_seg_size; 980 mbuf_poolname_build(socket_id, pool_name, sizeof(pool_name), size_idx); 981 982 TESTPMD_LOG(INFO, 983 "create a new mbuf pool <%s>: n=%u, size=%u, socket=%u\n", 984 pool_name, nb_mbuf, mbuf_seg_size, socket_id); 985 986 switch (mp_alloc_type) { 987 case MP_ALLOC_NATIVE: 988 { 989 /* wrapper to rte_mempool_create() */ 990 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 991 rte_mbuf_best_mempool_ops()); 992 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 993 mb_mempool_cache, 0, mbuf_seg_size, socket_id); 994 break; 995 } 996 case MP_ALLOC_ANON: 997 { 998 rte_mp = rte_mempool_create_empty(pool_name, nb_mbuf, 999 mb_size, (unsigned int) mb_mempool_cache, 1000 sizeof(struct rte_pktmbuf_pool_private), 1001 socket_id, mempool_flags); 1002 if (rte_mp == NULL) 1003 goto err; 1004 1005 if (rte_mempool_populate_anon(rte_mp) == 0) { 1006 rte_mempool_free(rte_mp); 1007 rte_mp = NULL; 1008 goto err; 1009 } 1010 rte_pktmbuf_pool_init(rte_mp, NULL); 1011 rte_mempool_obj_iter(rte_mp, rte_pktmbuf_init, NULL); 1012 rte_mempool_mem_iter(rte_mp, dma_map_cb, NULL); 1013 break; 1014 } 1015 case MP_ALLOC_XMEM: 1016 case MP_ALLOC_XMEM_HUGE: 1017 { 1018 int heap_socket; 1019 bool huge = mp_alloc_type == MP_ALLOC_XMEM_HUGE; 1020 1021 if (setup_extmem(nb_mbuf, mbuf_seg_size, huge) < 0) 1022 rte_exit(EXIT_FAILURE, "Could not create external memory\n"); 1023 1024 heap_socket = 1025 rte_malloc_heap_get_socket(EXTMEM_HEAP_NAME); 1026 if (heap_socket < 0) 1027 rte_exit(EXIT_FAILURE, "Could not get external memory socket ID\n"); 1028 1029 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1030 rte_mbuf_best_mempool_ops()); 1031 rte_mp = rte_pktmbuf_pool_create(pool_name, nb_mbuf, 1032 mb_mempool_cache, 0, mbuf_seg_size, 1033 heap_socket); 1034 break; 1035 } 1036 case MP_ALLOC_XBUF: 1037 { 1038 struct rte_pktmbuf_extmem *ext_mem; 1039 unsigned int ext_num; 1040 1041 ext_num = setup_extbuf(nb_mbuf, mbuf_seg_size, 1042 socket_id, pool_name, &ext_mem); 1043 if (ext_num == 0) 1044 rte_exit(EXIT_FAILURE, 1045 "Can't create pinned data buffers\n"); 1046 1047 TESTPMD_LOG(INFO, "preferred mempool ops selected: %s\n", 1048 rte_mbuf_best_mempool_ops()); 1049 rte_mp = rte_pktmbuf_pool_create_extbuf 1050 (pool_name, nb_mbuf, mb_mempool_cache, 1051 0, mbuf_seg_size, socket_id, 1052 ext_mem, ext_num); 1053 free(ext_mem); 1054 break; 1055 } 1056 default: 1057 { 1058 rte_exit(EXIT_FAILURE, "Invalid mempool creation mode\n"); 1059 } 1060 } 1061 1062 err: 1063 if (rte_mp == NULL) { 1064 rte_exit(EXIT_FAILURE, 1065 "Creation of mbuf pool for socket %u failed: %s\n", 1066 socket_id, rte_strerror(rte_errno)); 1067 } else if (verbose_level > 0) { 1068 rte_mempool_dump(stdout, rte_mp); 1069 } 1070 return rte_mp; 1071 } 1072 1073 /* 1074 * Check given socket id is valid or not with NUMA mode, 1075 * if valid, return 0, else return -1 1076 */ 1077 static int 1078 check_socket_id(const unsigned int socket_id) 1079 { 1080 static int warning_once = 0; 1081 1082 if (new_socket_id(socket_id)) { 1083 if (!warning_once && numa_support) 1084 printf("Warning: NUMA should be configured manually by" 1085 " using --port-numa-config and" 1086 " --ring-numa-config parameters along with" 1087 " --numa.\n"); 1088 warning_once = 1; 1089 return -1; 1090 } 1091 return 0; 1092 } 1093 1094 /* 1095 * Get the allowed maximum number of RX queues. 1096 * *pid return the port id which has minimal value of 1097 * max_rx_queues in all ports. 1098 */ 1099 queueid_t 1100 get_allowed_max_nb_rxq(portid_t *pid) 1101 { 1102 queueid_t allowed_max_rxq = RTE_MAX_QUEUES_PER_PORT; 1103 bool max_rxq_valid = false; 1104 portid_t pi; 1105 struct rte_eth_dev_info dev_info; 1106 1107 RTE_ETH_FOREACH_DEV(pi) { 1108 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1109 continue; 1110 1111 max_rxq_valid = true; 1112 if (dev_info.max_rx_queues < allowed_max_rxq) { 1113 allowed_max_rxq = dev_info.max_rx_queues; 1114 *pid = pi; 1115 } 1116 } 1117 return max_rxq_valid ? allowed_max_rxq : 0; 1118 } 1119 1120 /* 1121 * Check input rxq is valid or not. 1122 * If input rxq is not greater than any of maximum number 1123 * of RX queues of all ports, it is valid. 1124 * if valid, return 0, else return -1 1125 */ 1126 int 1127 check_nb_rxq(queueid_t rxq) 1128 { 1129 queueid_t allowed_max_rxq; 1130 portid_t pid = 0; 1131 1132 allowed_max_rxq = get_allowed_max_nb_rxq(&pid); 1133 if (rxq > allowed_max_rxq) { 1134 printf("Fail: input rxq (%u) can't be greater " 1135 "than max_rx_queues (%u) of port %u\n", 1136 rxq, 1137 allowed_max_rxq, 1138 pid); 1139 return -1; 1140 } 1141 return 0; 1142 } 1143 1144 /* 1145 * Get the allowed maximum number of TX queues. 1146 * *pid return the port id which has minimal value of 1147 * max_tx_queues in all ports. 1148 */ 1149 queueid_t 1150 get_allowed_max_nb_txq(portid_t *pid) 1151 { 1152 queueid_t allowed_max_txq = RTE_MAX_QUEUES_PER_PORT; 1153 bool max_txq_valid = false; 1154 portid_t pi; 1155 struct rte_eth_dev_info dev_info; 1156 1157 RTE_ETH_FOREACH_DEV(pi) { 1158 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1159 continue; 1160 1161 max_txq_valid = true; 1162 if (dev_info.max_tx_queues < allowed_max_txq) { 1163 allowed_max_txq = dev_info.max_tx_queues; 1164 *pid = pi; 1165 } 1166 } 1167 return max_txq_valid ? allowed_max_txq : 0; 1168 } 1169 1170 /* 1171 * Check input txq is valid or not. 1172 * If input txq is not greater than any of maximum number 1173 * of TX queues of all ports, it is valid. 1174 * if valid, return 0, else return -1 1175 */ 1176 int 1177 check_nb_txq(queueid_t txq) 1178 { 1179 queueid_t allowed_max_txq; 1180 portid_t pid = 0; 1181 1182 allowed_max_txq = get_allowed_max_nb_txq(&pid); 1183 if (txq > allowed_max_txq) { 1184 printf("Fail: input txq (%u) can't be greater " 1185 "than max_tx_queues (%u) of port %u\n", 1186 txq, 1187 allowed_max_txq, 1188 pid); 1189 return -1; 1190 } 1191 return 0; 1192 } 1193 1194 /* 1195 * Get the allowed maximum number of RXDs of every rx queue. 1196 * *pid return the port id which has minimal value of 1197 * max_rxd in all queues of all ports. 1198 */ 1199 static uint16_t 1200 get_allowed_max_nb_rxd(portid_t *pid) 1201 { 1202 uint16_t allowed_max_rxd = UINT16_MAX; 1203 portid_t pi; 1204 struct rte_eth_dev_info dev_info; 1205 1206 RTE_ETH_FOREACH_DEV(pi) { 1207 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1208 continue; 1209 1210 if (dev_info.rx_desc_lim.nb_max < allowed_max_rxd) { 1211 allowed_max_rxd = dev_info.rx_desc_lim.nb_max; 1212 *pid = pi; 1213 } 1214 } 1215 return allowed_max_rxd; 1216 } 1217 1218 /* 1219 * Get the allowed minimal number of RXDs of every rx queue. 1220 * *pid return the port id which has minimal value of 1221 * min_rxd in all queues of all ports. 1222 */ 1223 static uint16_t 1224 get_allowed_min_nb_rxd(portid_t *pid) 1225 { 1226 uint16_t allowed_min_rxd = 0; 1227 portid_t pi; 1228 struct rte_eth_dev_info dev_info; 1229 1230 RTE_ETH_FOREACH_DEV(pi) { 1231 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1232 continue; 1233 1234 if (dev_info.rx_desc_lim.nb_min > allowed_min_rxd) { 1235 allowed_min_rxd = dev_info.rx_desc_lim.nb_min; 1236 *pid = pi; 1237 } 1238 } 1239 1240 return allowed_min_rxd; 1241 } 1242 1243 /* 1244 * Check input rxd is valid or not. 1245 * If input rxd is not greater than any of maximum number 1246 * of RXDs of every Rx queues and is not less than any of 1247 * minimal number of RXDs of every Rx queues, it is valid. 1248 * if valid, return 0, else return -1 1249 */ 1250 int 1251 check_nb_rxd(queueid_t rxd) 1252 { 1253 uint16_t allowed_max_rxd; 1254 uint16_t allowed_min_rxd; 1255 portid_t pid = 0; 1256 1257 allowed_max_rxd = get_allowed_max_nb_rxd(&pid); 1258 if (rxd > allowed_max_rxd) { 1259 printf("Fail: input rxd (%u) can't be greater " 1260 "than max_rxds (%u) of port %u\n", 1261 rxd, 1262 allowed_max_rxd, 1263 pid); 1264 return -1; 1265 } 1266 1267 allowed_min_rxd = get_allowed_min_nb_rxd(&pid); 1268 if (rxd < allowed_min_rxd) { 1269 printf("Fail: input rxd (%u) can't be less " 1270 "than min_rxds (%u) of port %u\n", 1271 rxd, 1272 allowed_min_rxd, 1273 pid); 1274 return -1; 1275 } 1276 1277 return 0; 1278 } 1279 1280 /* 1281 * Get the allowed maximum number of TXDs of every rx queues. 1282 * *pid return the port id which has minimal value of 1283 * max_txd in every tx queue. 1284 */ 1285 static uint16_t 1286 get_allowed_max_nb_txd(portid_t *pid) 1287 { 1288 uint16_t allowed_max_txd = UINT16_MAX; 1289 portid_t pi; 1290 struct rte_eth_dev_info dev_info; 1291 1292 RTE_ETH_FOREACH_DEV(pi) { 1293 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1294 continue; 1295 1296 if (dev_info.tx_desc_lim.nb_max < allowed_max_txd) { 1297 allowed_max_txd = dev_info.tx_desc_lim.nb_max; 1298 *pid = pi; 1299 } 1300 } 1301 return allowed_max_txd; 1302 } 1303 1304 /* 1305 * Get the allowed maximum number of TXDs of every tx queues. 1306 * *pid return the port id which has minimal value of 1307 * min_txd in every tx queue. 1308 */ 1309 static uint16_t 1310 get_allowed_min_nb_txd(portid_t *pid) 1311 { 1312 uint16_t allowed_min_txd = 0; 1313 portid_t pi; 1314 struct rte_eth_dev_info dev_info; 1315 1316 RTE_ETH_FOREACH_DEV(pi) { 1317 if (eth_dev_info_get_print_err(pi, &dev_info) != 0) 1318 continue; 1319 1320 if (dev_info.tx_desc_lim.nb_min > allowed_min_txd) { 1321 allowed_min_txd = dev_info.tx_desc_lim.nb_min; 1322 *pid = pi; 1323 } 1324 } 1325 1326 return allowed_min_txd; 1327 } 1328 1329 /* 1330 * Check input txd is valid or not. 1331 * If input txd is not greater than any of maximum number 1332 * of TXDs of every Rx queues, it is valid. 1333 * if valid, return 0, else return -1 1334 */ 1335 int 1336 check_nb_txd(queueid_t txd) 1337 { 1338 uint16_t allowed_max_txd; 1339 uint16_t allowed_min_txd; 1340 portid_t pid = 0; 1341 1342 allowed_max_txd = get_allowed_max_nb_txd(&pid); 1343 if (txd > allowed_max_txd) { 1344 printf("Fail: input txd (%u) can't be greater " 1345 "than max_txds (%u) of port %u\n", 1346 txd, 1347 allowed_max_txd, 1348 pid); 1349 return -1; 1350 } 1351 1352 allowed_min_txd = get_allowed_min_nb_txd(&pid); 1353 if (txd < allowed_min_txd) { 1354 printf("Fail: input txd (%u) can't be less " 1355 "than min_txds (%u) of port %u\n", 1356 txd, 1357 allowed_min_txd, 1358 pid); 1359 return -1; 1360 } 1361 return 0; 1362 } 1363 1364 1365 /* 1366 * Get the allowed maximum number of hairpin queues. 1367 * *pid return the port id which has minimal value of 1368 * max_hairpin_queues in all ports. 1369 */ 1370 queueid_t 1371 get_allowed_max_nb_hairpinq(portid_t *pid) 1372 { 1373 queueid_t allowed_max_hairpinq = RTE_MAX_QUEUES_PER_PORT; 1374 portid_t pi; 1375 struct rte_eth_hairpin_cap cap; 1376 1377 RTE_ETH_FOREACH_DEV(pi) { 1378 if (rte_eth_dev_hairpin_capability_get(pi, &cap) != 0) { 1379 *pid = pi; 1380 return 0; 1381 } 1382 if (cap.max_nb_queues < allowed_max_hairpinq) { 1383 allowed_max_hairpinq = cap.max_nb_queues; 1384 *pid = pi; 1385 } 1386 } 1387 return allowed_max_hairpinq; 1388 } 1389 1390 /* 1391 * Check input hairpin is valid or not. 1392 * If input hairpin is not greater than any of maximum number 1393 * of hairpin queues of all ports, it is valid. 1394 * if valid, return 0, else return -1 1395 */ 1396 int 1397 check_nb_hairpinq(queueid_t hairpinq) 1398 { 1399 queueid_t allowed_max_hairpinq; 1400 portid_t pid = 0; 1401 1402 allowed_max_hairpinq = get_allowed_max_nb_hairpinq(&pid); 1403 if (hairpinq > allowed_max_hairpinq) { 1404 printf("Fail: input hairpin (%u) can't be greater " 1405 "than max_hairpin_queues (%u) of port %u\n", 1406 hairpinq, allowed_max_hairpinq, pid); 1407 return -1; 1408 } 1409 return 0; 1410 } 1411 1412 static void 1413 init_config(void) 1414 { 1415 portid_t pid; 1416 struct rte_port *port; 1417 struct rte_mempool *mbp; 1418 unsigned int nb_mbuf_per_pool; 1419 lcoreid_t lc_id; 1420 uint8_t port_per_socket[RTE_MAX_NUMA_NODES]; 1421 struct rte_gro_param gro_param; 1422 uint32_t gso_types; 1423 uint16_t data_size; 1424 bool warning = 0; 1425 int k; 1426 int ret; 1427 1428 memset(port_per_socket,0,RTE_MAX_NUMA_NODES); 1429 1430 /* Configuration of logical cores. */ 1431 fwd_lcores = rte_zmalloc("testpmd: fwd_lcores", 1432 sizeof(struct fwd_lcore *) * nb_lcores, 1433 RTE_CACHE_LINE_SIZE); 1434 if (fwd_lcores == NULL) { 1435 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d (struct fwd_lcore *)) " 1436 "failed\n", nb_lcores); 1437 } 1438 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1439 fwd_lcores[lc_id] = rte_zmalloc("testpmd: struct fwd_lcore", 1440 sizeof(struct fwd_lcore), 1441 RTE_CACHE_LINE_SIZE); 1442 if (fwd_lcores[lc_id] == NULL) { 1443 rte_exit(EXIT_FAILURE, "rte_zmalloc(struct fwd_lcore) " 1444 "failed\n"); 1445 } 1446 fwd_lcores[lc_id]->cpuid_idx = lc_id; 1447 } 1448 1449 RTE_ETH_FOREACH_DEV(pid) { 1450 port = &ports[pid]; 1451 /* Apply default TxRx configuration for all ports */ 1452 port->dev_conf.txmode = tx_mode; 1453 port->dev_conf.rxmode = rx_mode; 1454 1455 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 1456 if (ret != 0) 1457 rte_exit(EXIT_FAILURE, 1458 "rte_eth_dev_info_get() failed\n"); 1459 1460 if (!(port->dev_info.tx_offload_capa & 1461 DEV_TX_OFFLOAD_MBUF_FAST_FREE)) 1462 port->dev_conf.txmode.offloads &= 1463 ~DEV_TX_OFFLOAD_MBUF_FAST_FREE; 1464 if (numa_support) { 1465 if (port_numa[pid] != NUMA_NO_CONFIG) 1466 port_per_socket[port_numa[pid]]++; 1467 else { 1468 uint32_t socket_id = rte_eth_dev_socket_id(pid); 1469 1470 /* 1471 * if socket_id is invalid, 1472 * set to the first available socket. 1473 */ 1474 if (check_socket_id(socket_id) < 0) 1475 socket_id = socket_ids[0]; 1476 port_per_socket[socket_id]++; 1477 } 1478 } 1479 1480 /* Apply Rx offloads configuration */ 1481 for (k = 0; k < port->dev_info.max_rx_queues; k++) 1482 port->rx_conf[k].offloads = 1483 port->dev_conf.rxmode.offloads; 1484 /* Apply Tx offloads configuration */ 1485 for (k = 0; k < port->dev_info.max_tx_queues; k++) 1486 port->tx_conf[k].offloads = 1487 port->dev_conf.txmode.offloads; 1488 1489 /* set flag to initialize port/queue */ 1490 port->need_reconfig = 1; 1491 port->need_reconfig_queues = 1; 1492 port->tx_metadata = 0; 1493 1494 /* Check for maximum number of segments per MTU. Accordingly 1495 * update the mbuf data size. 1496 */ 1497 if (port->dev_info.rx_desc_lim.nb_mtu_seg_max != UINT16_MAX && 1498 port->dev_info.rx_desc_lim.nb_mtu_seg_max != 0) { 1499 data_size = rx_mode.max_rx_pkt_len / 1500 port->dev_info.rx_desc_lim.nb_mtu_seg_max; 1501 1502 if ((data_size + RTE_PKTMBUF_HEADROOM) > 1503 mbuf_data_size[0]) { 1504 mbuf_data_size[0] = data_size + 1505 RTE_PKTMBUF_HEADROOM; 1506 warning = 1; 1507 } 1508 } 1509 } 1510 1511 if (warning) 1512 TESTPMD_LOG(WARNING, 1513 "Configured mbuf size of the first segment %hu\n", 1514 mbuf_data_size[0]); 1515 /* 1516 * Create pools of mbuf. 1517 * If NUMA support is disabled, create a single pool of mbuf in 1518 * socket 0 memory by default. 1519 * Otherwise, create a pool of mbuf in the memory of sockets 0 and 1. 1520 * 1521 * Use the maximum value of nb_rxd and nb_txd here, then nb_rxd and 1522 * nb_txd can be configured at run time. 1523 */ 1524 if (param_total_num_mbufs) 1525 nb_mbuf_per_pool = param_total_num_mbufs; 1526 else { 1527 nb_mbuf_per_pool = RTE_TEST_RX_DESC_MAX + 1528 (nb_lcores * mb_mempool_cache) + 1529 RTE_TEST_TX_DESC_MAX + MAX_PKT_BURST; 1530 nb_mbuf_per_pool *= RTE_MAX_ETHPORTS; 1531 } 1532 1533 if (numa_support) { 1534 uint8_t i, j; 1535 1536 for (i = 0; i < num_sockets; i++) 1537 for (j = 0; j < mbuf_data_size_n; j++) 1538 mempools[i * MAX_SEGS_BUFFER_SPLIT + j] = 1539 mbuf_pool_create(mbuf_data_size[j], 1540 nb_mbuf_per_pool, 1541 socket_ids[i], j); 1542 } else { 1543 uint8_t i; 1544 1545 for (i = 0; i < mbuf_data_size_n; i++) 1546 mempools[i] = mbuf_pool_create 1547 (mbuf_data_size[i], 1548 nb_mbuf_per_pool, 1549 socket_num == UMA_NO_CONFIG ? 1550 0 : socket_num, i); 1551 } 1552 1553 init_port_config(); 1554 1555 gso_types = DEV_TX_OFFLOAD_TCP_TSO | DEV_TX_OFFLOAD_VXLAN_TNL_TSO | 1556 DEV_TX_OFFLOAD_GRE_TNL_TSO | DEV_TX_OFFLOAD_UDP_TSO; 1557 /* 1558 * Records which Mbuf pool to use by each logical core, if needed. 1559 */ 1560 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1561 mbp = mbuf_pool_find( 1562 rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]), 0); 1563 1564 if (mbp == NULL) 1565 mbp = mbuf_pool_find(0, 0); 1566 fwd_lcores[lc_id]->mbp = mbp; 1567 /* initialize GSO context */ 1568 fwd_lcores[lc_id]->gso_ctx.direct_pool = mbp; 1569 fwd_lcores[lc_id]->gso_ctx.indirect_pool = mbp; 1570 fwd_lcores[lc_id]->gso_ctx.gso_types = gso_types; 1571 fwd_lcores[lc_id]->gso_ctx.gso_size = RTE_ETHER_MAX_LEN - 1572 RTE_ETHER_CRC_LEN; 1573 fwd_lcores[lc_id]->gso_ctx.flag = 0; 1574 } 1575 1576 /* Configuration of packet forwarding streams. */ 1577 if (init_fwd_streams() < 0) 1578 rte_exit(EXIT_FAILURE, "FAIL from init_fwd_streams()\n"); 1579 1580 fwd_config_setup(); 1581 1582 /* create a gro context for each lcore */ 1583 gro_param.gro_types = RTE_GRO_TCP_IPV4; 1584 gro_param.max_flow_num = GRO_MAX_FLUSH_CYCLES; 1585 gro_param.max_item_per_flow = MAX_PKT_BURST; 1586 for (lc_id = 0; lc_id < nb_lcores; lc_id++) { 1587 gro_param.socket_id = rte_lcore_to_socket_id( 1588 fwd_lcores_cpuids[lc_id]); 1589 fwd_lcores[lc_id]->gro_ctx = rte_gro_ctx_create(&gro_param); 1590 if (fwd_lcores[lc_id]->gro_ctx == NULL) { 1591 rte_exit(EXIT_FAILURE, 1592 "rte_gro_ctx_create() failed\n"); 1593 } 1594 } 1595 } 1596 1597 1598 void 1599 reconfig(portid_t new_port_id, unsigned socket_id) 1600 { 1601 struct rte_port *port; 1602 int ret; 1603 1604 /* Reconfiguration of Ethernet ports. */ 1605 port = &ports[new_port_id]; 1606 1607 ret = eth_dev_info_get_print_err(new_port_id, &port->dev_info); 1608 if (ret != 0) 1609 return; 1610 1611 /* set flag to initialize port/queue */ 1612 port->need_reconfig = 1; 1613 port->need_reconfig_queues = 1; 1614 port->socket_id = socket_id; 1615 1616 init_port_config(); 1617 } 1618 1619 1620 int 1621 init_fwd_streams(void) 1622 { 1623 portid_t pid; 1624 struct rte_port *port; 1625 streamid_t sm_id, nb_fwd_streams_new; 1626 queueid_t q; 1627 1628 /* set socket id according to numa or not */ 1629 RTE_ETH_FOREACH_DEV(pid) { 1630 port = &ports[pid]; 1631 if (nb_rxq > port->dev_info.max_rx_queues) { 1632 printf("Fail: nb_rxq(%d) is greater than " 1633 "max_rx_queues(%d)\n", nb_rxq, 1634 port->dev_info.max_rx_queues); 1635 return -1; 1636 } 1637 if (nb_txq > port->dev_info.max_tx_queues) { 1638 printf("Fail: nb_txq(%d) is greater than " 1639 "max_tx_queues(%d)\n", nb_txq, 1640 port->dev_info.max_tx_queues); 1641 return -1; 1642 } 1643 if (numa_support) { 1644 if (port_numa[pid] != NUMA_NO_CONFIG) 1645 port->socket_id = port_numa[pid]; 1646 else { 1647 port->socket_id = rte_eth_dev_socket_id(pid); 1648 1649 /* 1650 * if socket_id is invalid, 1651 * set to the first available socket. 1652 */ 1653 if (check_socket_id(port->socket_id) < 0) 1654 port->socket_id = socket_ids[0]; 1655 } 1656 } 1657 else { 1658 if (socket_num == UMA_NO_CONFIG) 1659 port->socket_id = 0; 1660 else 1661 port->socket_id = socket_num; 1662 } 1663 } 1664 1665 q = RTE_MAX(nb_rxq, nb_txq); 1666 if (q == 0) { 1667 printf("Fail: Cannot allocate fwd streams as number of queues is 0\n"); 1668 return -1; 1669 } 1670 nb_fwd_streams_new = (streamid_t)(nb_ports * q); 1671 if (nb_fwd_streams_new == nb_fwd_streams) 1672 return 0; 1673 /* clear the old */ 1674 if (fwd_streams != NULL) { 1675 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1676 if (fwd_streams[sm_id] == NULL) 1677 continue; 1678 rte_free(fwd_streams[sm_id]); 1679 fwd_streams[sm_id] = NULL; 1680 } 1681 rte_free(fwd_streams); 1682 fwd_streams = NULL; 1683 } 1684 1685 /* init new */ 1686 nb_fwd_streams = nb_fwd_streams_new; 1687 if (nb_fwd_streams) { 1688 fwd_streams = rte_zmalloc("testpmd: fwd_streams", 1689 sizeof(struct fwd_stream *) * nb_fwd_streams, 1690 RTE_CACHE_LINE_SIZE); 1691 if (fwd_streams == NULL) 1692 rte_exit(EXIT_FAILURE, "rte_zmalloc(%d" 1693 " (struct fwd_stream *)) failed\n", 1694 nb_fwd_streams); 1695 1696 for (sm_id = 0; sm_id < nb_fwd_streams; sm_id++) { 1697 fwd_streams[sm_id] = rte_zmalloc("testpmd:" 1698 " struct fwd_stream", sizeof(struct fwd_stream), 1699 RTE_CACHE_LINE_SIZE); 1700 if (fwd_streams[sm_id] == NULL) 1701 rte_exit(EXIT_FAILURE, "rte_zmalloc" 1702 "(struct fwd_stream) failed\n"); 1703 } 1704 } 1705 1706 return 0; 1707 } 1708 1709 static void 1710 pkt_burst_stats_display(const char *rx_tx, struct pkt_burst_stats *pbs) 1711 { 1712 uint64_t total_burst, sburst; 1713 uint64_t nb_burst; 1714 uint64_t burst_stats[4]; 1715 uint16_t pktnb_stats[4]; 1716 uint16_t nb_pkt; 1717 int burst_percent[4], sburstp; 1718 int i; 1719 1720 /* 1721 * First compute the total number of packet bursts and the 1722 * two highest numbers of bursts of the same number of packets. 1723 */ 1724 memset(&burst_stats, 0x0, sizeof(burst_stats)); 1725 memset(&pktnb_stats, 0x0, sizeof(pktnb_stats)); 1726 1727 /* Show stats for 0 burst size always */ 1728 total_burst = pbs->pkt_burst_spread[0]; 1729 burst_stats[0] = pbs->pkt_burst_spread[0]; 1730 pktnb_stats[0] = 0; 1731 1732 /* Find the next 2 burst sizes with highest occurrences. */ 1733 for (nb_pkt = 1; nb_pkt < MAX_PKT_BURST; nb_pkt++) { 1734 nb_burst = pbs->pkt_burst_spread[nb_pkt]; 1735 1736 if (nb_burst == 0) 1737 continue; 1738 1739 total_burst += nb_burst; 1740 1741 if (nb_burst > burst_stats[1]) { 1742 burst_stats[2] = burst_stats[1]; 1743 pktnb_stats[2] = pktnb_stats[1]; 1744 burst_stats[1] = nb_burst; 1745 pktnb_stats[1] = nb_pkt; 1746 } else if (nb_burst > burst_stats[2]) { 1747 burst_stats[2] = nb_burst; 1748 pktnb_stats[2] = nb_pkt; 1749 } 1750 } 1751 if (total_burst == 0) 1752 return; 1753 1754 printf(" %s-bursts : %"PRIu64" [", rx_tx, total_burst); 1755 for (i = 0, sburst = 0, sburstp = 0; i < 4; i++) { 1756 if (i == 3) { 1757 printf("%d%% of other]\n", 100 - sburstp); 1758 return; 1759 } 1760 1761 sburst += burst_stats[i]; 1762 if (sburst == total_burst) { 1763 printf("%d%% of %d pkts]\n", 1764 100 - sburstp, (int) pktnb_stats[i]); 1765 return; 1766 } 1767 1768 burst_percent[i] = 1769 (double)burst_stats[i] / total_burst * 100; 1770 printf("%d%% of %d pkts + ", 1771 burst_percent[i], (int) pktnb_stats[i]); 1772 sburstp += burst_percent[i]; 1773 } 1774 } 1775 1776 static void 1777 fwd_stream_stats_display(streamid_t stream_id) 1778 { 1779 struct fwd_stream *fs; 1780 static const char *fwd_top_stats_border = "-------"; 1781 1782 fs = fwd_streams[stream_id]; 1783 if ((fs->rx_packets == 0) && (fs->tx_packets == 0) && 1784 (fs->fwd_dropped == 0)) 1785 return; 1786 printf("\n %s Forward Stats for RX Port=%2d/Queue=%2d -> " 1787 "TX Port=%2d/Queue=%2d %s\n", 1788 fwd_top_stats_border, fs->rx_port, fs->rx_queue, 1789 fs->tx_port, fs->tx_queue, fwd_top_stats_border); 1790 printf(" RX-packets: %-14"PRIu64" TX-packets: %-14"PRIu64 1791 " TX-dropped: %-14"PRIu64, 1792 fs->rx_packets, fs->tx_packets, fs->fwd_dropped); 1793 1794 /* if checksum mode */ 1795 if (cur_fwd_eng == &csum_fwd_engine) { 1796 printf(" RX- bad IP checksum: %-14"PRIu64 1797 " Rx- bad L4 checksum: %-14"PRIu64 1798 " Rx- bad outer L4 checksum: %-14"PRIu64"\n", 1799 fs->rx_bad_ip_csum, fs->rx_bad_l4_csum, 1800 fs->rx_bad_outer_l4_csum); 1801 } else { 1802 printf("\n"); 1803 } 1804 1805 if (record_burst_stats) { 1806 pkt_burst_stats_display("RX", &fs->rx_burst_stats); 1807 pkt_burst_stats_display("TX", &fs->tx_burst_stats); 1808 } 1809 } 1810 1811 void 1812 fwd_stats_display(void) 1813 { 1814 static const char *fwd_stats_border = "----------------------"; 1815 static const char *acc_stats_border = "+++++++++++++++"; 1816 struct { 1817 struct fwd_stream *rx_stream; 1818 struct fwd_stream *tx_stream; 1819 uint64_t tx_dropped; 1820 uint64_t rx_bad_ip_csum; 1821 uint64_t rx_bad_l4_csum; 1822 uint64_t rx_bad_outer_l4_csum; 1823 } ports_stats[RTE_MAX_ETHPORTS]; 1824 uint64_t total_rx_dropped = 0; 1825 uint64_t total_tx_dropped = 0; 1826 uint64_t total_rx_nombuf = 0; 1827 struct rte_eth_stats stats; 1828 uint64_t fwd_cycles = 0; 1829 uint64_t total_recv = 0; 1830 uint64_t total_xmit = 0; 1831 struct rte_port *port; 1832 streamid_t sm_id; 1833 portid_t pt_id; 1834 int i; 1835 1836 memset(ports_stats, 0, sizeof(ports_stats)); 1837 1838 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 1839 struct fwd_stream *fs = fwd_streams[sm_id]; 1840 1841 if (cur_fwd_config.nb_fwd_streams > 1842 cur_fwd_config.nb_fwd_ports) { 1843 fwd_stream_stats_display(sm_id); 1844 } else { 1845 ports_stats[fs->tx_port].tx_stream = fs; 1846 ports_stats[fs->rx_port].rx_stream = fs; 1847 } 1848 1849 ports_stats[fs->tx_port].tx_dropped += fs->fwd_dropped; 1850 1851 ports_stats[fs->rx_port].rx_bad_ip_csum += fs->rx_bad_ip_csum; 1852 ports_stats[fs->rx_port].rx_bad_l4_csum += fs->rx_bad_l4_csum; 1853 ports_stats[fs->rx_port].rx_bad_outer_l4_csum += 1854 fs->rx_bad_outer_l4_csum; 1855 1856 if (record_core_cycles) 1857 fwd_cycles += fs->core_cycles; 1858 } 1859 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 1860 uint8_t j; 1861 1862 pt_id = fwd_ports_ids[i]; 1863 port = &ports[pt_id]; 1864 1865 rte_eth_stats_get(pt_id, &stats); 1866 stats.ipackets -= port->stats.ipackets; 1867 stats.opackets -= port->stats.opackets; 1868 stats.ibytes -= port->stats.ibytes; 1869 stats.obytes -= port->stats.obytes; 1870 stats.imissed -= port->stats.imissed; 1871 stats.oerrors -= port->stats.oerrors; 1872 stats.rx_nombuf -= port->stats.rx_nombuf; 1873 1874 total_recv += stats.ipackets; 1875 total_xmit += stats.opackets; 1876 total_rx_dropped += stats.imissed; 1877 total_tx_dropped += ports_stats[pt_id].tx_dropped; 1878 total_tx_dropped += stats.oerrors; 1879 total_rx_nombuf += stats.rx_nombuf; 1880 1881 printf("\n %s Forward statistics for port %-2d %s\n", 1882 fwd_stats_border, pt_id, fwd_stats_border); 1883 1884 if (!port->rx_queue_stats_mapping_enabled && 1885 !port->tx_queue_stats_mapping_enabled) { 1886 printf(" RX-packets: %-14"PRIu64 1887 " RX-dropped: %-14"PRIu64 1888 "RX-total: %-"PRIu64"\n", 1889 stats.ipackets, stats.imissed, 1890 stats.ipackets + stats.imissed); 1891 1892 if (cur_fwd_eng == &csum_fwd_engine) 1893 printf(" Bad-ipcsum: %-14"PRIu64 1894 " Bad-l4csum: %-14"PRIu64 1895 "Bad-outer-l4csum: %-14"PRIu64"\n", 1896 ports_stats[pt_id].rx_bad_ip_csum, 1897 ports_stats[pt_id].rx_bad_l4_csum, 1898 ports_stats[pt_id].rx_bad_outer_l4_csum); 1899 if (stats.ierrors + stats.rx_nombuf > 0) { 1900 printf(" RX-error: %-"PRIu64"\n", 1901 stats.ierrors); 1902 printf(" RX-nombufs: %-14"PRIu64"\n", 1903 stats.rx_nombuf); 1904 } 1905 1906 printf(" TX-packets: %-14"PRIu64 1907 " TX-dropped: %-14"PRIu64 1908 "TX-total: %-"PRIu64"\n", 1909 stats.opackets, ports_stats[pt_id].tx_dropped, 1910 stats.opackets + ports_stats[pt_id].tx_dropped); 1911 } else { 1912 printf(" RX-packets: %14"PRIu64 1913 " RX-dropped:%14"PRIu64 1914 " RX-total:%14"PRIu64"\n", 1915 stats.ipackets, stats.imissed, 1916 stats.ipackets + stats.imissed); 1917 1918 if (cur_fwd_eng == &csum_fwd_engine) 1919 printf(" Bad-ipcsum:%14"PRIu64 1920 " Bad-l4csum:%14"PRIu64 1921 " Bad-outer-l4csum: %-14"PRIu64"\n", 1922 ports_stats[pt_id].rx_bad_ip_csum, 1923 ports_stats[pt_id].rx_bad_l4_csum, 1924 ports_stats[pt_id].rx_bad_outer_l4_csum); 1925 if ((stats.ierrors + stats.rx_nombuf) > 0) { 1926 printf(" RX-error:%"PRIu64"\n", stats.ierrors); 1927 printf(" RX-nombufs: %14"PRIu64"\n", 1928 stats.rx_nombuf); 1929 } 1930 1931 printf(" TX-packets: %14"PRIu64 1932 " TX-dropped:%14"PRIu64 1933 " TX-total:%14"PRIu64"\n", 1934 stats.opackets, ports_stats[pt_id].tx_dropped, 1935 stats.opackets + ports_stats[pt_id].tx_dropped); 1936 } 1937 1938 if (record_burst_stats) { 1939 if (ports_stats[pt_id].rx_stream) 1940 pkt_burst_stats_display("RX", 1941 &ports_stats[pt_id].rx_stream->rx_burst_stats); 1942 if (ports_stats[pt_id].tx_stream) 1943 pkt_burst_stats_display("TX", 1944 &ports_stats[pt_id].tx_stream->tx_burst_stats); 1945 } 1946 1947 if (port->rx_queue_stats_mapping_enabled) { 1948 printf("\n"); 1949 for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) { 1950 printf(" Stats reg %2d RX-packets:%14"PRIu64 1951 " RX-errors:%14"PRIu64 1952 " RX-bytes:%14"PRIu64"\n", 1953 j, stats.q_ipackets[j], 1954 stats.q_errors[j], stats.q_ibytes[j]); 1955 } 1956 printf("\n"); 1957 } 1958 if (port->tx_queue_stats_mapping_enabled) { 1959 for (j = 0; j < RTE_ETHDEV_QUEUE_STAT_CNTRS; j++) { 1960 printf(" Stats reg %2d TX-packets:%14"PRIu64 1961 " TX-bytes:%14" 1962 PRIu64"\n", 1963 j, stats.q_opackets[j], 1964 stats.q_obytes[j]); 1965 } 1966 } 1967 1968 printf(" %s--------------------------------%s\n", 1969 fwd_stats_border, fwd_stats_border); 1970 } 1971 1972 printf("\n %s Accumulated forward statistics for all ports" 1973 "%s\n", 1974 acc_stats_border, acc_stats_border); 1975 printf(" RX-packets: %-14"PRIu64" RX-dropped: %-14"PRIu64"RX-total: " 1976 "%-"PRIu64"\n" 1977 " TX-packets: %-14"PRIu64" TX-dropped: %-14"PRIu64"TX-total: " 1978 "%-"PRIu64"\n", 1979 total_recv, total_rx_dropped, total_recv + total_rx_dropped, 1980 total_xmit, total_tx_dropped, total_xmit + total_tx_dropped); 1981 if (total_rx_nombuf > 0) 1982 printf(" RX-nombufs: %-14"PRIu64"\n", total_rx_nombuf); 1983 printf(" %s++++++++++++++++++++++++++++++++++++++++++++++" 1984 "%s\n", 1985 acc_stats_border, acc_stats_border); 1986 if (record_core_cycles) { 1987 #define CYC_PER_MHZ 1E6 1988 if (total_recv > 0 || total_xmit > 0) { 1989 uint64_t total_pkts = 0; 1990 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 || 1991 strcmp(cur_fwd_eng->fwd_mode_name, "flowgen") == 0) 1992 total_pkts = total_xmit; 1993 else 1994 total_pkts = total_recv; 1995 1996 printf("\n CPU cycles/packet=%.2F (total cycles=" 1997 "%"PRIu64" / total %s packets=%"PRIu64") at %"PRIu64 1998 " MHz Clock\n", 1999 (double) fwd_cycles / total_pkts, 2000 fwd_cycles, cur_fwd_eng->fwd_mode_name, total_pkts, 2001 (uint64_t)(rte_get_tsc_hz() / CYC_PER_MHZ)); 2002 } 2003 } 2004 } 2005 2006 void 2007 fwd_stats_reset(void) 2008 { 2009 streamid_t sm_id; 2010 portid_t pt_id; 2011 int i; 2012 2013 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2014 pt_id = fwd_ports_ids[i]; 2015 rte_eth_stats_get(pt_id, &ports[pt_id].stats); 2016 } 2017 for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) { 2018 struct fwd_stream *fs = fwd_streams[sm_id]; 2019 2020 fs->rx_packets = 0; 2021 fs->tx_packets = 0; 2022 fs->fwd_dropped = 0; 2023 fs->rx_bad_ip_csum = 0; 2024 fs->rx_bad_l4_csum = 0; 2025 fs->rx_bad_outer_l4_csum = 0; 2026 2027 memset(&fs->rx_burst_stats, 0, sizeof(fs->rx_burst_stats)); 2028 memset(&fs->tx_burst_stats, 0, sizeof(fs->tx_burst_stats)); 2029 fs->core_cycles = 0; 2030 } 2031 } 2032 2033 static void 2034 flush_fwd_rx_queues(void) 2035 { 2036 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 2037 portid_t rxp; 2038 portid_t port_id; 2039 queueid_t rxq; 2040 uint16_t nb_rx; 2041 uint16_t i; 2042 uint8_t j; 2043 uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0; 2044 uint64_t timer_period; 2045 2046 /* convert to number of cycles */ 2047 timer_period = rte_get_timer_hz(); /* 1 second timeout */ 2048 2049 for (j = 0; j < 2; j++) { 2050 for (rxp = 0; rxp < cur_fwd_config.nb_fwd_ports; rxp++) { 2051 for (rxq = 0; rxq < nb_rxq; rxq++) { 2052 port_id = fwd_ports_ids[rxp]; 2053 /** 2054 * testpmd can stuck in the below do while loop 2055 * if rte_eth_rx_burst() always returns nonzero 2056 * packets. So timer is added to exit this loop 2057 * after 1sec timer expiry. 2058 */ 2059 prev_tsc = rte_rdtsc(); 2060 do { 2061 nb_rx = rte_eth_rx_burst(port_id, rxq, 2062 pkts_burst, MAX_PKT_BURST); 2063 for (i = 0; i < nb_rx; i++) 2064 rte_pktmbuf_free(pkts_burst[i]); 2065 2066 cur_tsc = rte_rdtsc(); 2067 diff_tsc = cur_tsc - prev_tsc; 2068 timer_tsc += diff_tsc; 2069 } while ((nb_rx > 0) && 2070 (timer_tsc < timer_period)); 2071 timer_tsc = 0; 2072 } 2073 } 2074 rte_delay_ms(10); /* wait 10 milli-seconds before retrying */ 2075 } 2076 } 2077 2078 static void 2079 run_pkt_fwd_on_lcore(struct fwd_lcore *fc, packet_fwd_t pkt_fwd) 2080 { 2081 struct fwd_stream **fsm; 2082 streamid_t nb_fs; 2083 streamid_t sm_id; 2084 #ifdef RTE_LIBRTE_BITRATESTATS 2085 uint64_t tics_per_1sec; 2086 uint64_t tics_datum; 2087 uint64_t tics_current; 2088 uint16_t i, cnt_ports; 2089 2090 cnt_ports = nb_ports; 2091 tics_datum = rte_rdtsc(); 2092 tics_per_1sec = rte_get_timer_hz(); 2093 #endif 2094 fsm = &fwd_streams[fc->stream_idx]; 2095 nb_fs = fc->stream_nb; 2096 do { 2097 for (sm_id = 0; sm_id < nb_fs; sm_id++) 2098 (*pkt_fwd)(fsm[sm_id]); 2099 #ifdef RTE_LIBRTE_BITRATESTATS 2100 if (bitrate_enabled != 0 && 2101 bitrate_lcore_id == rte_lcore_id()) { 2102 tics_current = rte_rdtsc(); 2103 if (tics_current - tics_datum >= tics_per_1sec) { 2104 /* Periodic bitrate calculation */ 2105 for (i = 0; i < cnt_ports; i++) 2106 rte_stats_bitrate_calc(bitrate_data, 2107 ports_ids[i]); 2108 tics_datum = tics_current; 2109 } 2110 } 2111 #endif 2112 #ifdef RTE_LIBRTE_LATENCY_STATS 2113 if (latencystats_enabled != 0 && 2114 latencystats_lcore_id == rte_lcore_id()) 2115 rte_latencystats_update(); 2116 #endif 2117 2118 } while (! fc->stopped); 2119 } 2120 2121 static int 2122 start_pkt_forward_on_core(void *fwd_arg) 2123 { 2124 run_pkt_fwd_on_lcore((struct fwd_lcore *) fwd_arg, 2125 cur_fwd_config.fwd_eng->packet_fwd); 2126 return 0; 2127 } 2128 2129 /* 2130 * Run the TXONLY packet forwarding engine to send a single burst of packets. 2131 * Used to start communication flows in network loopback test configurations. 2132 */ 2133 static int 2134 run_one_txonly_burst_on_core(void *fwd_arg) 2135 { 2136 struct fwd_lcore *fwd_lc; 2137 struct fwd_lcore tmp_lcore; 2138 2139 fwd_lc = (struct fwd_lcore *) fwd_arg; 2140 tmp_lcore = *fwd_lc; 2141 tmp_lcore.stopped = 1; 2142 run_pkt_fwd_on_lcore(&tmp_lcore, tx_only_engine.packet_fwd); 2143 return 0; 2144 } 2145 2146 /* 2147 * Launch packet forwarding: 2148 * - Setup per-port forwarding context. 2149 * - launch logical cores with their forwarding configuration. 2150 */ 2151 static void 2152 launch_packet_forwarding(lcore_function_t *pkt_fwd_on_lcore) 2153 { 2154 port_fwd_begin_t port_fwd_begin; 2155 unsigned int i; 2156 unsigned int lc_id; 2157 int diag; 2158 2159 port_fwd_begin = cur_fwd_config.fwd_eng->port_fwd_begin; 2160 if (port_fwd_begin != NULL) { 2161 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2162 (*port_fwd_begin)(fwd_ports_ids[i]); 2163 } 2164 for (i = 0; i < cur_fwd_config.nb_fwd_lcores; i++) { 2165 lc_id = fwd_lcores_cpuids[i]; 2166 if ((interactive == 0) || (lc_id != rte_lcore_id())) { 2167 fwd_lcores[i]->stopped = 0; 2168 diag = rte_eal_remote_launch(pkt_fwd_on_lcore, 2169 fwd_lcores[i], lc_id); 2170 if (diag != 0) 2171 printf("launch lcore %u failed - diag=%d\n", 2172 lc_id, diag); 2173 } 2174 } 2175 } 2176 2177 /* 2178 * Launch packet forwarding configuration. 2179 */ 2180 void 2181 start_packet_forwarding(int with_tx_first) 2182 { 2183 port_fwd_begin_t port_fwd_begin; 2184 port_fwd_end_t port_fwd_end; 2185 struct rte_port *port; 2186 unsigned int i; 2187 portid_t pt_id; 2188 2189 if (strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") == 0 && !nb_rxq) 2190 rte_exit(EXIT_FAILURE, "rxq are 0, cannot use rxonly fwd mode\n"); 2191 2192 if (strcmp(cur_fwd_eng->fwd_mode_name, "txonly") == 0 && !nb_txq) 2193 rte_exit(EXIT_FAILURE, "txq are 0, cannot use txonly fwd mode\n"); 2194 2195 if ((strcmp(cur_fwd_eng->fwd_mode_name, "rxonly") != 0 && 2196 strcmp(cur_fwd_eng->fwd_mode_name, "txonly") != 0) && 2197 (!nb_rxq || !nb_txq)) 2198 rte_exit(EXIT_FAILURE, 2199 "Either rxq or txq are 0, cannot use %s fwd mode\n", 2200 cur_fwd_eng->fwd_mode_name); 2201 2202 if (all_ports_started() == 0) { 2203 printf("Not all ports were started\n"); 2204 return; 2205 } 2206 if (test_done == 0) { 2207 printf("Packet forwarding already started\n"); 2208 return; 2209 } 2210 2211 2212 if(dcb_test) { 2213 for (i = 0; i < nb_fwd_ports; i++) { 2214 pt_id = fwd_ports_ids[i]; 2215 port = &ports[pt_id]; 2216 if (!port->dcb_flag) { 2217 printf("In DCB mode, all forwarding ports must " 2218 "be configured in this mode.\n"); 2219 return; 2220 } 2221 } 2222 if (nb_fwd_lcores == 1) { 2223 printf("In DCB mode,the nb forwarding cores " 2224 "should be larger than 1.\n"); 2225 return; 2226 } 2227 } 2228 test_done = 0; 2229 2230 fwd_config_setup(); 2231 2232 if(!no_flush_rx) 2233 flush_fwd_rx_queues(); 2234 2235 pkt_fwd_config_display(&cur_fwd_config); 2236 rxtx_config_display(); 2237 2238 fwd_stats_reset(); 2239 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2240 pt_id = fwd_ports_ids[i]; 2241 port = &ports[pt_id]; 2242 map_port_queue_stats_mapping_registers(pt_id, port); 2243 } 2244 if (with_tx_first) { 2245 port_fwd_begin = tx_only_engine.port_fwd_begin; 2246 if (port_fwd_begin != NULL) { 2247 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2248 (*port_fwd_begin)(fwd_ports_ids[i]); 2249 } 2250 while (with_tx_first--) { 2251 launch_packet_forwarding( 2252 run_one_txonly_burst_on_core); 2253 rte_eal_mp_wait_lcore(); 2254 } 2255 port_fwd_end = tx_only_engine.port_fwd_end; 2256 if (port_fwd_end != NULL) { 2257 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 2258 (*port_fwd_end)(fwd_ports_ids[i]); 2259 } 2260 } 2261 launch_packet_forwarding(start_pkt_forward_on_core); 2262 } 2263 2264 void 2265 stop_packet_forwarding(void) 2266 { 2267 port_fwd_end_t port_fwd_end; 2268 lcoreid_t lc_id; 2269 portid_t pt_id; 2270 int i; 2271 2272 if (test_done) { 2273 printf("Packet forwarding not started\n"); 2274 return; 2275 } 2276 printf("Telling cores to stop..."); 2277 for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) 2278 fwd_lcores[lc_id]->stopped = 1; 2279 printf("\nWaiting for lcores to finish...\n"); 2280 rte_eal_mp_wait_lcore(); 2281 port_fwd_end = cur_fwd_config.fwd_eng->port_fwd_end; 2282 if (port_fwd_end != NULL) { 2283 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) { 2284 pt_id = fwd_ports_ids[i]; 2285 (*port_fwd_end)(pt_id); 2286 } 2287 } 2288 2289 fwd_stats_display(); 2290 2291 printf("\nDone.\n"); 2292 test_done = 1; 2293 } 2294 2295 void 2296 dev_set_link_up(portid_t pid) 2297 { 2298 if (rte_eth_dev_set_link_up(pid) < 0) 2299 printf("\nSet link up fail.\n"); 2300 } 2301 2302 void 2303 dev_set_link_down(portid_t pid) 2304 { 2305 if (rte_eth_dev_set_link_down(pid) < 0) 2306 printf("\nSet link down fail.\n"); 2307 } 2308 2309 static int 2310 all_ports_started(void) 2311 { 2312 portid_t pi; 2313 struct rte_port *port; 2314 2315 RTE_ETH_FOREACH_DEV(pi) { 2316 port = &ports[pi]; 2317 /* Check if there is a port which is not started */ 2318 if ((port->port_status != RTE_PORT_STARTED) && 2319 (port->slave_flag == 0)) 2320 return 0; 2321 } 2322 2323 /* No port is not started */ 2324 return 1; 2325 } 2326 2327 int 2328 port_is_stopped(portid_t port_id) 2329 { 2330 struct rte_port *port = &ports[port_id]; 2331 2332 if ((port->port_status != RTE_PORT_STOPPED) && 2333 (port->slave_flag == 0)) 2334 return 0; 2335 return 1; 2336 } 2337 2338 int 2339 all_ports_stopped(void) 2340 { 2341 portid_t pi; 2342 2343 RTE_ETH_FOREACH_DEV(pi) { 2344 if (!port_is_stopped(pi)) 2345 return 0; 2346 } 2347 2348 return 1; 2349 } 2350 2351 int 2352 port_is_started(portid_t port_id) 2353 { 2354 if (port_id_is_invalid(port_id, ENABLED_WARN)) 2355 return 0; 2356 2357 if (ports[port_id].port_status != RTE_PORT_STARTED) 2358 return 0; 2359 2360 return 1; 2361 } 2362 2363 /* Configure the Rx and Tx hairpin queues for the selected port. */ 2364 static int 2365 setup_hairpin_queues(portid_t pi, portid_t p_pi, uint16_t cnt_pi) 2366 { 2367 queueid_t qi; 2368 struct rte_eth_hairpin_conf hairpin_conf = { 2369 .peer_count = 1, 2370 }; 2371 int i; 2372 int diag; 2373 struct rte_port *port = &ports[pi]; 2374 uint16_t peer_rx_port = pi; 2375 uint16_t peer_tx_port = pi; 2376 uint32_t manual = 1; 2377 uint32_t tx_exp = hairpin_mode & 0x10; 2378 2379 if (!(hairpin_mode & 0xf)) { 2380 peer_rx_port = pi; 2381 peer_tx_port = pi; 2382 manual = 0; 2383 } else if (hairpin_mode & 0x1) { 2384 peer_tx_port = rte_eth_find_next_owned_by(pi + 1, 2385 RTE_ETH_DEV_NO_OWNER); 2386 if (peer_tx_port >= RTE_MAX_ETHPORTS) 2387 peer_tx_port = rte_eth_find_next_owned_by(0, 2388 RTE_ETH_DEV_NO_OWNER); 2389 if (p_pi != RTE_MAX_ETHPORTS) { 2390 peer_rx_port = p_pi; 2391 } else { 2392 uint16_t next_pi; 2393 2394 /* Last port will be the peer RX port of the first. */ 2395 RTE_ETH_FOREACH_DEV(next_pi) 2396 peer_rx_port = next_pi; 2397 } 2398 manual = 1; 2399 } else if (hairpin_mode & 0x2) { 2400 if (cnt_pi & 0x1) { 2401 peer_rx_port = p_pi; 2402 } else { 2403 peer_rx_port = rte_eth_find_next_owned_by(pi + 1, 2404 RTE_ETH_DEV_NO_OWNER); 2405 if (peer_rx_port >= RTE_MAX_ETHPORTS) 2406 peer_rx_port = pi; 2407 } 2408 peer_tx_port = peer_rx_port; 2409 manual = 1; 2410 } 2411 2412 for (qi = nb_txq, i = 0; qi < nb_hairpinq + nb_txq; qi++) { 2413 hairpin_conf.peers[0].port = peer_rx_port; 2414 hairpin_conf.peers[0].queue = i + nb_rxq; 2415 hairpin_conf.manual_bind = !!manual; 2416 hairpin_conf.tx_explicit = !!tx_exp; 2417 diag = rte_eth_tx_hairpin_queue_setup 2418 (pi, qi, nb_txd, &hairpin_conf); 2419 i++; 2420 if (diag == 0) 2421 continue; 2422 2423 /* Fail to setup rx queue, return */ 2424 if (rte_atomic16_cmpset(&(port->port_status), 2425 RTE_PORT_HANDLING, 2426 RTE_PORT_STOPPED) == 0) 2427 printf("Port %d can not be set back " 2428 "to stopped\n", pi); 2429 printf("Fail to configure port %d hairpin " 2430 "queues\n", pi); 2431 /* try to reconfigure queues next time */ 2432 port->need_reconfig_queues = 1; 2433 return -1; 2434 } 2435 for (qi = nb_rxq, i = 0; qi < nb_hairpinq + nb_rxq; qi++) { 2436 hairpin_conf.peers[0].port = peer_tx_port; 2437 hairpin_conf.peers[0].queue = i + nb_txq; 2438 hairpin_conf.manual_bind = !!manual; 2439 hairpin_conf.tx_explicit = !!tx_exp; 2440 diag = rte_eth_rx_hairpin_queue_setup 2441 (pi, qi, nb_rxd, &hairpin_conf); 2442 i++; 2443 if (diag == 0) 2444 continue; 2445 2446 /* Fail to setup rx queue, return */ 2447 if (rte_atomic16_cmpset(&(port->port_status), 2448 RTE_PORT_HANDLING, 2449 RTE_PORT_STOPPED) == 0) 2450 printf("Port %d can not be set back " 2451 "to stopped\n", pi); 2452 printf("Fail to configure port %d hairpin " 2453 "queues\n", pi); 2454 /* try to reconfigure queues next time */ 2455 port->need_reconfig_queues = 1; 2456 return -1; 2457 } 2458 return 0; 2459 } 2460 2461 /* Configure the Rx with optional split. */ 2462 int 2463 rx_queue_setup(uint16_t port_id, uint16_t rx_queue_id, 2464 uint16_t nb_rx_desc, unsigned int socket_id, 2465 struct rte_eth_rxconf *rx_conf, struct rte_mempool *mp) 2466 { 2467 union rte_eth_rxseg rx_useg[MAX_SEGS_BUFFER_SPLIT] = {}; 2468 unsigned int i, mp_n; 2469 int ret; 2470 2471 if (rx_pkt_nb_segs <= 1 || 2472 (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_BUFFER_SPLIT) == 0) { 2473 rx_conf->rx_seg = NULL; 2474 rx_conf->rx_nseg = 0; 2475 ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, 2476 nb_rx_desc, socket_id, 2477 rx_conf, mp); 2478 return ret; 2479 } 2480 for (i = 0; i < rx_pkt_nb_segs; i++) { 2481 struct rte_eth_rxseg_split *rx_seg = &rx_useg[i].split; 2482 struct rte_mempool *mpx; 2483 /* 2484 * Use last valid pool for the segments with number 2485 * exceeding the pool index. 2486 */ 2487 mp_n = (i > mbuf_data_size_n) ? mbuf_data_size_n - 1 : i; 2488 mpx = mbuf_pool_find(socket_id, mp_n); 2489 /* Handle zero as mbuf data buffer size. */ 2490 rx_seg->length = rx_pkt_seg_lengths[i] ? 2491 rx_pkt_seg_lengths[i] : 2492 mbuf_data_size[mp_n]; 2493 rx_seg->offset = i < rx_pkt_nb_offs ? 2494 rx_pkt_seg_offsets[i] : 0; 2495 rx_seg->mp = mpx ? mpx : mp; 2496 } 2497 rx_conf->rx_nseg = rx_pkt_nb_segs; 2498 rx_conf->rx_seg = rx_useg; 2499 ret = rte_eth_rx_queue_setup(port_id, rx_queue_id, nb_rx_desc, 2500 socket_id, rx_conf, NULL); 2501 rx_conf->rx_seg = NULL; 2502 rx_conf->rx_nseg = 0; 2503 return ret; 2504 } 2505 2506 int 2507 start_port(portid_t pid) 2508 { 2509 int diag, need_check_link_status = -1; 2510 portid_t pi; 2511 portid_t p_pi = RTE_MAX_ETHPORTS; 2512 portid_t pl[RTE_MAX_ETHPORTS]; 2513 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2514 uint16_t cnt_pi = 0; 2515 uint16_t cfg_pi = 0; 2516 int peer_pi; 2517 queueid_t qi; 2518 struct rte_port *port; 2519 struct rte_ether_addr mac_addr; 2520 struct rte_eth_hairpin_cap cap; 2521 2522 if (port_id_is_invalid(pid, ENABLED_WARN)) 2523 return 0; 2524 2525 if(dcb_config) 2526 dcb_test = 1; 2527 RTE_ETH_FOREACH_DEV(pi) { 2528 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2529 continue; 2530 2531 need_check_link_status = 0; 2532 port = &ports[pi]; 2533 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STOPPED, 2534 RTE_PORT_HANDLING) == 0) { 2535 printf("Port %d is now not stopped\n", pi); 2536 continue; 2537 } 2538 2539 if (port->need_reconfig > 0) { 2540 port->need_reconfig = 0; 2541 2542 if (flow_isolate_all) { 2543 int ret = port_flow_isolate(pi, 1); 2544 if (ret) { 2545 printf("Failed to apply isolated" 2546 " mode on port %d\n", pi); 2547 return -1; 2548 } 2549 } 2550 configure_rxtx_dump_callbacks(0); 2551 printf("Configuring Port %d (socket %u)\n", pi, 2552 port->socket_id); 2553 if (nb_hairpinq > 0 && 2554 rte_eth_dev_hairpin_capability_get(pi, &cap)) { 2555 printf("Port %d doesn't support hairpin " 2556 "queues\n", pi); 2557 return -1; 2558 } 2559 /* configure port */ 2560 diag = rte_eth_dev_configure(pi, nb_rxq + nb_hairpinq, 2561 nb_txq + nb_hairpinq, 2562 &(port->dev_conf)); 2563 if (diag != 0) { 2564 if (rte_atomic16_cmpset(&(port->port_status), 2565 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2566 printf("Port %d can not be set back " 2567 "to stopped\n", pi); 2568 printf("Fail to configure port %d\n", pi); 2569 /* try to reconfigure port next time */ 2570 port->need_reconfig = 1; 2571 return -1; 2572 } 2573 } 2574 if (port->need_reconfig_queues > 0) { 2575 port->need_reconfig_queues = 0; 2576 /* setup tx queues */ 2577 for (qi = 0; qi < nb_txq; qi++) { 2578 if ((numa_support) && 2579 (txring_numa[pi] != NUMA_NO_CONFIG)) 2580 diag = rte_eth_tx_queue_setup(pi, qi, 2581 port->nb_tx_desc[qi], 2582 txring_numa[pi], 2583 &(port->tx_conf[qi])); 2584 else 2585 diag = rte_eth_tx_queue_setup(pi, qi, 2586 port->nb_tx_desc[qi], 2587 port->socket_id, 2588 &(port->tx_conf[qi])); 2589 2590 if (diag == 0) 2591 continue; 2592 2593 /* Fail to setup tx queue, return */ 2594 if (rte_atomic16_cmpset(&(port->port_status), 2595 RTE_PORT_HANDLING, 2596 RTE_PORT_STOPPED) == 0) 2597 printf("Port %d can not be set back " 2598 "to stopped\n", pi); 2599 printf("Fail to configure port %d tx queues\n", 2600 pi); 2601 /* try to reconfigure queues next time */ 2602 port->need_reconfig_queues = 1; 2603 return -1; 2604 } 2605 for (qi = 0; qi < nb_rxq; qi++) { 2606 /* setup rx queues */ 2607 if ((numa_support) && 2608 (rxring_numa[pi] != NUMA_NO_CONFIG)) { 2609 struct rte_mempool * mp = 2610 mbuf_pool_find 2611 (rxring_numa[pi], 0); 2612 if (mp == NULL) { 2613 printf("Failed to setup RX queue:" 2614 "No mempool allocation" 2615 " on the socket %d\n", 2616 rxring_numa[pi]); 2617 return -1; 2618 } 2619 2620 diag = rx_queue_setup(pi, qi, 2621 port->nb_rx_desc[qi], 2622 rxring_numa[pi], 2623 &(port->rx_conf[qi]), 2624 mp); 2625 } else { 2626 struct rte_mempool *mp = 2627 mbuf_pool_find 2628 (port->socket_id, 0); 2629 if (mp == NULL) { 2630 printf("Failed to setup RX queue:" 2631 "No mempool allocation" 2632 " on the socket %d\n", 2633 port->socket_id); 2634 return -1; 2635 } 2636 diag = rx_queue_setup(pi, qi, 2637 port->nb_rx_desc[qi], 2638 port->socket_id, 2639 &(port->rx_conf[qi]), 2640 mp); 2641 } 2642 if (diag == 0) 2643 continue; 2644 2645 /* Fail to setup rx queue, return */ 2646 if (rte_atomic16_cmpset(&(port->port_status), 2647 RTE_PORT_HANDLING, 2648 RTE_PORT_STOPPED) == 0) 2649 printf("Port %d can not be set back " 2650 "to stopped\n", pi); 2651 printf("Fail to configure port %d rx queues\n", 2652 pi); 2653 /* try to reconfigure queues next time */ 2654 port->need_reconfig_queues = 1; 2655 return -1; 2656 } 2657 /* setup hairpin queues */ 2658 if (setup_hairpin_queues(pi, p_pi, cnt_pi) != 0) 2659 return -1; 2660 } 2661 configure_rxtx_dump_callbacks(verbose_level); 2662 if (clear_ptypes) { 2663 diag = rte_eth_dev_set_ptypes(pi, RTE_PTYPE_UNKNOWN, 2664 NULL, 0); 2665 if (diag < 0) 2666 printf( 2667 "Port %d: Failed to disable Ptype parsing\n", 2668 pi); 2669 } 2670 2671 p_pi = pi; 2672 cnt_pi++; 2673 2674 /* start port */ 2675 if (rte_eth_dev_start(pi) < 0) { 2676 printf("Fail to start port %d\n", pi); 2677 2678 /* Fail to setup rx queue, return */ 2679 if (rte_atomic16_cmpset(&(port->port_status), 2680 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2681 printf("Port %d can not be set back to " 2682 "stopped\n", pi); 2683 continue; 2684 } 2685 2686 if (rte_atomic16_cmpset(&(port->port_status), 2687 RTE_PORT_HANDLING, RTE_PORT_STARTED) == 0) 2688 printf("Port %d can not be set into started\n", pi); 2689 2690 if (eth_macaddr_get_print_err(pi, &mac_addr) == 0) 2691 printf("Port %d: %02X:%02X:%02X:%02X:%02X:%02X\n", pi, 2692 mac_addr.addr_bytes[0], mac_addr.addr_bytes[1], 2693 mac_addr.addr_bytes[2], mac_addr.addr_bytes[3], 2694 mac_addr.addr_bytes[4], mac_addr.addr_bytes[5]); 2695 2696 /* at least one port started, need checking link status */ 2697 need_check_link_status = 1; 2698 2699 pl[cfg_pi++] = pi; 2700 } 2701 2702 if (need_check_link_status == 1 && !no_link_check) 2703 check_all_ports_link_status(RTE_PORT_ALL); 2704 else if (need_check_link_status == 0) 2705 printf("Please stop the ports first\n"); 2706 2707 if (hairpin_mode & 0xf) { 2708 uint16_t i; 2709 int j; 2710 2711 /* bind all started hairpin ports */ 2712 for (i = 0; i < cfg_pi; i++) { 2713 pi = pl[i]; 2714 /* bind current Tx to all peer Rx */ 2715 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2716 RTE_MAX_ETHPORTS, 1); 2717 if (peer_pi < 0) 2718 return peer_pi; 2719 for (j = 0; j < peer_pi; j++) { 2720 if (!port_is_started(peer_pl[j])) 2721 continue; 2722 diag = rte_eth_hairpin_bind(pi, peer_pl[j]); 2723 if (diag < 0) { 2724 printf("Error during binding hairpin" 2725 " Tx port %u to %u: %s\n", 2726 pi, peer_pl[j], 2727 rte_strerror(-diag)); 2728 return -1; 2729 } 2730 } 2731 /* bind all peer Tx to current Rx */ 2732 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2733 RTE_MAX_ETHPORTS, 0); 2734 if (peer_pi < 0) 2735 return peer_pi; 2736 for (j = 0; j < peer_pi; j++) { 2737 if (!port_is_started(peer_pl[j])) 2738 continue; 2739 diag = rte_eth_hairpin_bind(peer_pl[j], pi); 2740 if (diag < 0) { 2741 printf("Error during binding hairpin" 2742 " Tx port %u to %u: %s\n", 2743 peer_pl[j], pi, 2744 rte_strerror(-diag)); 2745 return -1; 2746 } 2747 } 2748 } 2749 } 2750 2751 printf("Done\n"); 2752 return 0; 2753 } 2754 2755 void 2756 stop_port(portid_t pid) 2757 { 2758 portid_t pi; 2759 struct rte_port *port; 2760 int need_check_link_status = 0; 2761 portid_t peer_pl[RTE_MAX_ETHPORTS]; 2762 int peer_pi; 2763 2764 if (dcb_test) { 2765 dcb_test = 0; 2766 dcb_config = 0; 2767 } 2768 2769 if (port_id_is_invalid(pid, ENABLED_WARN)) 2770 return; 2771 2772 printf("Stopping ports...\n"); 2773 2774 RTE_ETH_FOREACH_DEV(pi) { 2775 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2776 continue; 2777 2778 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2779 printf("Please remove port %d from forwarding configuration.\n", pi); 2780 continue; 2781 } 2782 2783 if (port_is_bonding_slave(pi)) { 2784 printf("Please remove port %d from bonded device.\n", pi); 2785 continue; 2786 } 2787 2788 port = &ports[pi]; 2789 if (rte_atomic16_cmpset(&(port->port_status), RTE_PORT_STARTED, 2790 RTE_PORT_HANDLING) == 0) 2791 continue; 2792 2793 if (hairpin_mode & 0xf) { 2794 int j; 2795 2796 rte_eth_hairpin_unbind(pi, RTE_MAX_ETHPORTS); 2797 /* unbind all peer Tx from current Rx */ 2798 peer_pi = rte_eth_hairpin_get_peer_ports(pi, peer_pl, 2799 RTE_MAX_ETHPORTS, 0); 2800 if (peer_pi < 0) 2801 continue; 2802 for (j = 0; j < peer_pi; j++) { 2803 if (!port_is_started(peer_pl[j])) 2804 continue; 2805 rte_eth_hairpin_unbind(peer_pl[j], pi); 2806 } 2807 } 2808 2809 rte_eth_dev_stop(pi); 2810 2811 if (rte_atomic16_cmpset(&(port->port_status), 2812 RTE_PORT_HANDLING, RTE_PORT_STOPPED) == 0) 2813 printf("Port %d can not be set into stopped\n", pi); 2814 need_check_link_status = 1; 2815 } 2816 if (need_check_link_status && !no_link_check) 2817 check_all_ports_link_status(RTE_PORT_ALL); 2818 2819 printf("Done\n"); 2820 } 2821 2822 static void 2823 remove_invalid_ports_in(portid_t *array, portid_t *total) 2824 { 2825 portid_t i; 2826 portid_t new_total = 0; 2827 2828 for (i = 0; i < *total; i++) 2829 if (!port_id_is_invalid(array[i], DISABLED_WARN)) { 2830 array[new_total] = array[i]; 2831 new_total++; 2832 } 2833 *total = new_total; 2834 } 2835 2836 static void 2837 remove_invalid_ports(void) 2838 { 2839 remove_invalid_ports_in(ports_ids, &nb_ports); 2840 remove_invalid_ports_in(fwd_ports_ids, &nb_fwd_ports); 2841 nb_cfg_ports = nb_fwd_ports; 2842 } 2843 2844 void 2845 close_port(portid_t pid) 2846 { 2847 portid_t pi; 2848 struct rte_port *port; 2849 2850 if (port_id_is_invalid(pid, ENABLED_WARN)) 2851 return; 2852 2853 printf("Closing ports...\n"); 2854 2855 RTE_ETH_FOREACH_DEV(pi) { 2856 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2857 continue; 2858 2859 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2860 printf("Please remove port %d from forwarding configuration.\n", pi); 2861 continue; 2862 } 2863 2864 if (port_is_bonding_slave(pi)) { 2865 printf("Please remove port %d from bonded device.\n", pi); 2866 continue; 2867 } 2868 2869 port = &ports[pi]; 2870 if (rte_atomic16_cmpset(&(port->port_status), 2871 RTE_PORT_CLOSED, RTE_PORT_CLOSED) == 1) { 2872 printf("Port %d is already closed\n", pi); 2873 continue; 2874 } 2875 2876 port_flow_flush(pi); 2877 rte_eth_dev_close(pi); 2878 } 2879 2880 remove_invalid_ports(); 2881 printf("Done\n"); 2882 } 2883 2884 void 2885 reset_port(portid_t pid) 2886 { 2887 int diag; 2888 portid_t pi; 2889 struct rte_port *port; 2890 2891 if (port_id_is_invalid(pid, ENABLED_WARN)) 2892 return; 2893 2894 if ((pid == (portid_t)RTE_PORT_ALL && !all_ports_stopped()) || 2895 (pid != (portid_t)RTE_PORT_ALL && !port_is_stopped(pid))) { 2896 printf("Can not reset port(s), please stop port(s) first.\n"); 2897 return; 2898 } 2899 2900 printf("Resetting ports...\n"); 2901 2902 RTE_ETH_FOREACH_DEV(pi) { 2903 if (pid != pi && pid != (portid_t)RTE_PORT_ALL) 2904 continue; 2905 2906 if (port_is_forwarding(pi) != 0 && test_done == 0) { 2907 printf("Please remove port %d from forwarding " 2908 "configuration.\n", pi); 2909 continue; 2910 } 2911 2912 if (port_is_bonding_slave(pi)) { 2913 printf("Please remove port %d from bonded device.\n", 2914 pi); 2915 continue; 2916 } 2917 2918 diag = rte_eth_dev_reset(pi); 2919 if (diag == 0) { 2920 port = &ports[pi]; 2921 port->need_reconfig = 1; 2922 port->need_reconfig_queues = 1; 2923 } else { 2924 printf("Failed to reset port %d. diag=%d\n", pi, diag); 2925 } 2926 } 2927 2928 printf("Done\n"); 2929 } 2930 2931 void 2932 attach_port(char *identifier) 2933 { 2934 portid_t pi; 2935 struct rte_dev_iterator iterator; 2936 2937 printf("Attaching a new port...\n"); 2938 2939 if (identifier == NULL) { 2940 printf("Invalid parameters are specified\n"); 2941 return; 2942 } 2943 2944 if (rte_dev_probe(identifier) < 0) { 2945 TESTPMD_LOG(ERR, "Failed to attach port %s\n", identifier); 2946 return; 2947 } 2948 2949 /* first attach mode: event */ 2950 if (setup_on_probe_event) { 2951 /* new ports are detected on RTE_ETH_EVENT_NEW event */ 2952 for (pi = 0; pi < RTE_MAX_ETHPORTS; pi++) 2953 if (ports[pi].port_status == RTE_PORT_HANDLING && 2954 ports[pi].need_setup != 0) 2955 setup_attached_port(pi); 2956 return; 2957 } 2958 2959 /* second attach mode: iterator */ 2960 RTE_ETH_FOREACH_MATCHING_DEV(pi, identifier, &iterator) { 2961 /* setup ports matching the devargs used for probing */ 2962 if (port_is_forwarding(pi)) 2963 continue; /* port was already attached before */ 2964 setup_attached_port(pi); 2965 } 2966 } 2967 2968 static void 2969 setup_attached_port(portid_t pi) 2970 { 2971 unsigned int socket_id; 2972 int ret; 2973 2974 socket_id = (unsigned)rte_eth_dev_socket_id(pi); 2975 /* if socket_id is invalid, set to the first available socket. */ 2976 if (check_socket_id(socket_id) < 0) 2977 socket_id = socket_ids[0]; 2978 reconfig(pi, socket_id); 2979 ret = rte_eth_promiscuous_enable(pi); 2980 if (ret != 0) 2981 printf("Error during enabling promiscuous mode for port %u: %s - ignore\n", 2982 pi, rte_strerror(-ret)); 2983 2984 ports_ids[nb_ports++] = pi; 2985 fwd_ports_ids[nb_fwd_ports++] = pi; 2986 nb_cfg_ports = nb_fwd_ports; 2987 ports[pi].need_setup = 0; 2988 ports[pi].port_status = RTE_PORT_STOPPED; 2989 2990 printf("Port %d is attached. Now total ports is %d\n", pi, nb_ports); 2991 printf("Done\n"); 2992 } 2993 2994 static void 2995 detach_device(struct rte_device *dev) 2996 { 2997 portid_t sibling; 2998 2999 if (dev == NULL) { 3000 printf("Device already removed\n"); 3001 return; 3002 } 3003 3004 printf("Removing a device...\n"); 3005 3006 RTE_ETH_FOREACH_DEV_OF(sibling, dev) { 3007 if (ports[sibling].port_status != RTE_PORT_CLOSED) { 3008 if (ports[sibling].port_status != RTE_PORT_STOPPED) { 3009 printf("Port %u not stopped\n", sibling); 3010 return; 3011 } 3012 port_flow_flush(sibling); 3013 } 3014 } 3015 3016 if (rte_dev_remove(dev) < 0) { 3017 TESTPMD_LOG(ERR, "Failed to detach device %s\n", dev->name); 3018 return; 3019 } 3020 remove_invalid_ports(); 3021 3022 printf("Device is detached\n"); 3023 printf("Now total ports is %d\n", nb_ports); 3024 printf("Done\n"); 3025 return; 3026 } 3027 3028 void 3029 detach_port_device(portid_t port_id) 3030 { 3031 if (port_id_is_invalid(port_id, ENABLED_WARN)) 3032 return; 3033 3034 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3035 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3036 printf("Port not stopped\n"); 3037 return; 3038 } 3039 printf("Port was not closed\n"); 3040 } 3041 3042 detach_device(rte_eth_devices[port_id].device); 3043 } 3044 3045 void 3046 detach_devargs(char *identifier) 3047 { 3048 struct rte_dev_iterator iterator; 3049 struct rte_devargs da; 3050 portid_t port_id; 3051 3052 printf("Removing a device...\n"); 3053 3054 memset(&da, 0, sizeof(da)); 3055 if (rte_devargs_parsef(&da, "%s", identifier)) { 3056 printf("cannot parse identifier\n"); 3057 if (da.args) 3058 free(da.args); 3059 return; 3060 } 3061 3062 RTE_ETH_FOREACH_MATCHING_DEV(port_id, identifier, &iterator) { 3063 if (ports[port_id].port_status != RTE_PORT_CLOSED) { 3064 if (ports[port_id].port_status != RTE_PORT_STOPPED) { 3065 printf("Port %u not stopped\n", port_id); 3066 rte_eth_iterator_cleanup(&iterator); 3067 return; 3068 } 3069 port_flow_flush(port_id); 3070 } 3071 } 3072 3073 if (rte_eal_hotplug_remove(da.bus->name, da.name) != 0) { 3074 TESTPMD_LOG(ERR, "Failed to detach device %s(%s)\n", 3075 da.name, da.bus->name); 3076 return; 3077 } 3078 3079 remove_invalid_ports(); 3080 3081 printf("Device %s is detached\n", identifier); 3082 printf("Now total ports is %d\n", nb_ports); 3083 printf("Done\n"); 3084 } 3085 3086 void 3087 pmd_test_exit(void) 3088 { 3089 portid_t pt_id; 3090 unsigned int i; 3091 int ret; 3092 3093 if (test_done == 0) 3094 stop_packet_forwarding(); 3095 3096 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3097 if (mempools[i]) { 3098 if (mp_alloc_type == MP_ALLOC_ANON) 3099 rte_mempool_mem_iter(mempools[i], dma_unmap_cb, 3100 NULL); 3101 } 3102 } 3103 if (ports != NULL) { 3104 no_link_check = 1; 3105 RTE_ETH_FOREACH_DEV(pt_id) { 3106 printf("\nStopping port %d...\n", pt_id); 3107 fflush(stdout); 3108 stop_port(pt_id); 3109 } 3110 RTE_ETH_FOREACH_DEV(pt_id) { 3111 printf("\nShutting down port %d...\n", pt_id); 3112 fflush(stdout); 3113 close_port(pt_id); 3114 } 3115 } 3116 3117 if (hot_plug) { 3118 ret = rte_dev_event_monitor_stop(); 3119 if (ret) { 3120 RTE_LOG(ERR, EAL, 3121 "fail to stop device event monitor."); 3122 return; 3123 } 3124 3125 ret = rte_dev_event_callback_unregister(NULL, 3126 dev_event_callback, NULL); 3127 if (ret < 0) { 3128 RTE_LOG(ERR, EAL, 3129 "fail to unregister device event callback.\n"); 3130 return; 3131 } 3132 3133 ret = rte_dev_hotplug_handle_disable(); 3134 if (ret) { 3135 RTE_LOG(ERR, EAL, 3136 "fail to disable hotplug handling.\n"); 3137 return; 3138 } 3139 } 3140 for (i = 0 ; i < RTE_DIM(mempools) ; i++) { 3141 if (mempools[i]) 3142 rte_mempool_free(mempools[i]); 3143 } 3144 3145 printf("\nBye...\n"); 3146 } 3147 3148 typedef void (*cmd_func_t)(void); 3149 struct pmd_test_command { 3150 const char *cmd_name; 3151 cmd_func_t cmd_func; 3152 }; 3153 3154 /* Check the link status of all ports in up to 9s, and print them finally */ 3155 static void 3156 check_all_ports_link_status(uint32_t port_mask) 3157 { 3158 #define CHECK_INTERVAL 100 /* 100ms */ 3159 #define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */ 3160 portid_t portid; 3161 uint8_t count, all_ports_up, print_flag = 0; 3162 struct rte_eth_link link; 3163 int ret; 3164 char link_status[RTE_ETH_LINK_MAX_STR_LEN]; 3165 3166 printf("Checking link statuses...\n"); 3167 fflush(stdout); 3168 for (count = 0; count <= MAX_CHECK_TIME; count++) { 3169 all_ports_up = 1; 3170 RTE_ETH_FOREACH_DEV(portid) { 3171 if ((port_mask & (1 << portid)) == 0) 3172 continue; 3173 memset(&link, 0, sizeof(link)); 3174 ret = rte_eth_link_get_nowait(portid, &link); 3175 if (ret < 0) { 3176 all_ports_up = 0; 3177 if (print_flag == 1) 3178 printf("Port %u link get failed: %s\n", 3179 portid, rte_strerror(-ret)); 3180 continue; 3181 } 3182 /* print link status if flag set */ 3183 if (print_flag == 1) { 3184 rte_eth_link_to_str(link_status, 3185 sizeof(link_status), &link); 3186 printf("Port %d %s\n", portid, link_status); 3187 continue; 3188 } 3189 /* clear all_ports_up flag if any link down */ 3190 if (link.link_status == ETH_LINK_DOWN) { 3191 all_ports_up = 0; 3192 break; 3193 } 3194 } 3195 /* after finally printing all link status, get out */ 3196 if (print_flag == 1) 3197 break; 3198 3199 if (all_ports_up == 0) { 3200 fflush(stdout); 3201 rte_delay_ms(CHECK_INTERVAL); 3202 } 3203 3204 /* set the print_flag if all ports up or timeout */ 3205 if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) { 3206 print_flag = 1; 3207 } 3208 3209 if (lsc_interrupt) 3210 break; 3211 } 3212 } 3213 3214 static void 3215 rmv_port_callback(void *arg) 3216 { 3217 int need_to_start = 0; 3218 int org_no_link_check = no_link_check; 3219 portid_t port_id = (intptr_t)arg; 3220 struct rte_device *dev; 3221 3222 RTE_ETH_VALID_PORTID_OR_RET(port_id); 3223 3224 if (!test_done && port_is_forwarding(port_id)) { 3225 need_to_start = 1; 3226 stop_packet_forwarding(); 3227 } 3228 no_link_check = 1; 3229 stop_port(port_id); 3230 no_link_check = org_no_link_check; 3231 3232 /* Save rte_device pointer before closing ethdev port */ 3233 dev = rte_eth_devices[port_id].device; 3234 close_port(port_id); 3235 detach_device(dev); /* might be already removed or have more ports */ 3236 3237 if (need_to_start) 3238 start_packet_forwarding(0); 3239 } 3240 3241 /* This function is used by the interrupt thread */ 3242 static int 3243 eth_event_callback(portid_t port_id, enum rte_eth_event_type type, void *param, 3244 void *ret_param) 3245 { 3246 RTE_SET_USED(param); 3247 RTE_SET_USED(ret_param); 3248 3249 if (type >= RTE_ETH_EVENT_MAX) { 3250 fprintf(stderr, "\nPort %" PRIu16 ": %s called upon invalid event %d\n", 3251 port_id, __func__, type); 3252 fflush(stderr); 3253 } else if (event_print_mask & (UINT32_C(1) << type)) { 3254 printf("\nPort %" PRIu16 ": %s event\n", port_id, 3255 eth_event_desc[type]); 3256 fflush(stdout); 3257 } 3258 3259 switch (type) { 3260 case RTE_ETH_EVENT_NEW: 3261 ports[port_id].need_setup = 1; 3262 ports[port_id].port_status = RTE_PORT_HANDLING; 3263 break; 3264 case RTE_ETH_EVENT_INTR_RMV: 3265 if (port_id_is_invalid(port_id, DISABLED_WARN)) 3266 break; 3267 if (rte_eal_alarm_set(100000, 3268 rmv_port_callback, (void *)(intptr_t)port_id)) 3269 fprintf(stderr, "Could not set up deferred device removal\n"); 3270 break; 3271 case RTE_ETH_EVENT_DESTROY: 3272 ports[port_id].port_status = RTE_PORT_CLOSED; 3273 printf("Port %u is closed\n", port_id); 3274 break; 3275 default: 3276 break; 3277 } 3278 return 0; 3279 } 3280 3281 static int 3282 register_eth_event_callback(void) 3283 { 3284 int ret; 3285 enum rte_eth_event_type event; 3286 3287 for (event = RTE_ETH_EVENT_UNKNOWN; 3288 event < RTE_ETH_EVENT_MAX; event++) { 3289 ret = rte_eth_dev_callback_register(RTE_ETH_ALL, 3290 event, 3291 eth_event_callback, 3292 NULL); 3293 if (ret != 0) { 3294 TESTPMD_LOG(ERR, "Failed to register callback for " 3295 "%s event\n", eth_event_desc[event]); 3296 return -1; 3297 } 3298 } 3299 3300 return 0; 3301 } 3302 3303 /* This function is used by the interrupt thread */ 3304 static void 3305 dev_event_callback(const char *device_name, enum rte_dev_event_type type, 3306 __rte_unused void *arg) 3307 { 3308 uint16_t port_id; 3309 int ret; 3310 3311 if (type >= RTE_DEV_EVENT_MAX) { 3312 fprintf(stderr, "%s called upon invalid event %d\n", 3313 __func__, type); 3314 fflush(stderr); 3315 } 3316 3317 switch (type) { 3318 case RTE_DEV_EVENT_REMOVE: 3319 RTE_LOG(DEBUG, EAL, "The device: %s has been removed!\n", 3320 device_name); 3321 ret = rte_eth_dev_get_port_by_name(device_name, &port_id); 3322 if (ret) { 3323 RTE_LOG(ERR, EAL, "can not get port by device %s!\n", 3324 device_name); 3325 return; 3326 } 3327 /* 3328 * Because the user's callback is invoked in eal interrupt 3329 * callback, the interrupt callback need to be finished before 3330 * it can be unregistered when detaching device. So finish 3331 * callback soon and use a deferred removal to detach device 3332 * is need. It is a workaround, once the device detaching be 3333 * moved into the eal in the future, the deferred removal could 3334 * be deleted. 3335 */ 3336 if (rte_eal_alarm_set(100000, 3337 rmv_port_callback, (void *)(intptr_t)port_id)) 3338 RTE_LOG(ERR, EAL, 3339 "Could not set up deferred device removal\n"); 3340 break; 3341 case RTE_DEV_EVENT_ADD: 3342 RTE_LOG(ERR, EAL, "The device: %s has been added!\n", 3343 device_name); 3344 /* TODO: After finish kernel driver binding, 3345 * begin to attach port. 3346 */ 3347 break; 3348 default: 3349 break; 3350 } 3351 } 3352 3353 static int 3354 set_tx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port) 3355 { 3356 uint16_t i; 3357 int diag; 3358 uint8_t mapping_found = 0; 3359 3360 for (i = 0; i < nb_tx_queue_stats_mappings; i++) { 3361 if ((tx_queue_stats_mappings[i].port_id == port_id) && 3362 (tx_queue_stats_mappings[i].queue_id < nb_txq )) { 3363 diag = rte_eth_dev_set_tx_queue_stats_mapping(port_id, 3364 tx_queue_stats_mappings[i].queue_id, 3365 tx_queue_stats_mappings[i].stats_counter_id); 3366 if (diag != 0) 3367 return diag; 3368 mapping_found = 1; 3369 } 3370 } 3371 if (mapping_found) 3372 port->tx_queue_stats_mapping_enabled = 1; 3373 return 0; 3374 } 3375 3376 static int 3377 set_rx_queue_stats_mapping_registers(portid_t port_id, struct rte_port *port) 3378 { 3379 uint16_t i; 3380 int diag; 3381 uint8_t mapping_found = 0; 3382 3383 for (i = 0; i < nb_rx_queue_stats_mappings; i++) { 3384 if ((rx_queue_stats_mappings[i].port_id == port_id) && 3385 (rx_queue_stats_mappings[i].queue_id < nb_rxq )) { 3386 diag = rte_eth_dev_set_rx_queue_stats_mapping(port_id, 3387 rx_queue_stats_mappings[i].queue_id, 3388 rx_queue_stats_mappings[i].stats_counter_id); 3389 if (diag != 0) 3390 return diag; 3391 mapping_found = 1; 3392 } 3393 } 3394 if (mapping_found) 3395 port->rx_queue_stats_mapping_enabled = 1; 3396 return 0; 3397 } 3398 3399 static void 3400 map_port_queue_stats_mapping_registers(portid_t pi, struct rte_port *port) 3401 { 3402 int diag = 0; 3403 3404 diag = set_tx_queue_stats_mapping_registers(pi, port); 3405 if (diag != 0) { 3406 if (diag == -ENOTSUP) { 3407 port->tx_queue_stats_mapping_enabled = 0; 3408 printf("TX queue stats mapping not supported port id=%d\n", pi); 3409 } 3410 else 3411 rte_exit(EXIT_FAILURE, 3412 "set_tx_queue_stats_mapping_registers " 3413 "failed for port id=%d diag=%d\n", 3414 pi, diag); 3415 } 3416 3417 diag = set_rx_queue_stats_mapping_registers(pi, port); 3418 if (diag != 0) { 3419 if (diag == -ENOTSUP) { 3420 port->rx_queue_stats_mapping_enabled = 0; 3421 printf("RX queue stats mapping not supported port id=%d\n", pi); 3422 } 3423 else 3424 rte_exit(EXIT_FAILURE, 3425 "set_rx_queue_stats_mapping_registers " 3426 "failed for port id=%d diag=%d\n", 3427 pi, diag); 3428 } 3429 } 3430 3431 static void 3432 rxtx_port_config(struct rte_port *port) 3433 { 3434 uint16_t qid; 3435 uint64_t offloads; 3436 3437 for (qid = 0; qid < nb_rxq; qid++) { 3438 offloads = port->rx_conf[qid].offloads; 3439 port->rx_conf[qid] = port->dev_info.default_rxconf; 3440 if (offloads != 0) 3441 port->rx_conf[qid].offloads = offloads; 3442 3443 /* Check if any Rx parameters have been passed */ 3444 if (rx_pthresh != RTE_PMD_PARAM_UNSET) 3445 port->rx_conf[qid].rx_thresh.pthresh = rx_pthresh; 3446 3447 if (rx_hthresh != RTE_PMD_PARAM_UNSET) 3448 port->rx_conf[qid].rx_thresh.hthresh = rx_hthresh; 3449 3450 if (rx_wthresh != RTE_PMD_PARAM_UNSET) 3451 port->rx_conf[qid].rx_thresh.wthresh = rx_wthresh; 3452 3453 if (rx_free_thresh != RTE_PMD_PARAM_UNSET) 3454 port->rx_conf[qid].rx_free_thresh = rx_free_thresh; 3455 3456 if (rx_drop_en != RTE_PMD_PARAM_UNSET) 3457 port->rx_conf[qid].rx_drop_en = rx_drop_en; 3458 3459 port->nb_rx_desc[qid] = nb_rxd; 3460 } 3461 3462 for (qid = 0; qid < nb_txq; qid++) { 3463 offloads = port->tx_conf[qid].offloads; 3464 port->tx_conf[qid] = port->dev_info.default_txconf; 3465 if (offloads != 0) 3466 port->tx_conf[qid].offloads = offloads; 3467 3468 /* Check if any Tx parameters have been passed */ 3469 if (tx_pthresh != RTE_PMD_PARAM_UNSET) 3470 port->tx_conf[qid].tx_thresh.pthresh = tx_pthresh; 3471 3472 if (tx_hthresh != RTE_PMD_PARAM_UNSET) 3473 port->tx_conf[qid].tx_thresh.hthresh = tx_hthresh; 3474 3475 if (tx_wthresh != RTE_PMD_PARAM_UNSET) 3476 port->tx_conf[qid].tx_thresh.wthresh = tx_wthresh; 3477 3478 if (tx_rs_thresh != RTE_PMD_PARAM_UNSET) 3479 port->tx_conf[qid].tx_rs_thresh = tx_rs_thresh; 3480 3481 if (tx_free_thresh != RTE_PMD_PARAM_UNSET) 3482 port->tx_conf[qid].tx_free_thresh = tx_free_thresh; 3483 3484 port->nb_tx_desc[qid] = nb_txd; 3485 } 3486 } 3487 3488 void 3489 init_port_config(void) 3490 { 3491 portid_t pid; 3492 struct rte_port *port; 3493 int ret; 3494 3495 RTE_ETH_FOREACH_DEV(pid) { 3496 port = &ports[pid]; 3497 port->dev_conf.fdir_conf = fdir_conf; 3498 3499 ret = eth_dev_info_get_print_err(pid, &port->dev_info); 3500 if (ret != 0) 3501 return; 3502 3503 if (nb_rxq > 1) { 3504 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3505 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 3506 rss_hf & port->dev_info.flow_type_rss_offloads; 3507 } else { 3508 port->dev_conf.rx_adv_conf.rss_conf.rss_key = NULL; 3509 port->dev_conf.rx_adv_conf.rss_conf.rss_hf = 0; 3510 } 3511 3512 if (port->dcb_flag == 0) { 3513 if( port->dev_conf.rx_adv_conf.rss_conf.rss_hf != 0) 3514 port->dev_conf.rxmode.mq_mode = 3515 (enum rte_eth_rx_mq_mode) 3516 (rx_mq_mode & ETH_MQ_RX_RSS); 3517 else 3518 port->dev_conf.rxmode.mq_mode = ETH_MQ_RX_NONE; 3519 } 3520 3521 rxtx_port_config(port); 3522 3523 ret = eth_macaddr_get_print_err(pid, &port->eth_addr); 3524 if (ret != 0) 3525 return; 3526 3527 map_port_queue_stats_mapping_registers(pid, port); 3528 #if defined RTE_LIBRTE_IXGBE_PMD && defined RTE_LIBRTE_IXGBE_BYPASS 3529 rte_pmd_ixgbe_bypass_init(pid); 3530 #endif 3531 3532 if (lsc_interrupt && 3533 (rte_eth_devices[pid].data->dev_flags & 3534 RTE_ETH_DEV_INTR_LSC)) 3535 port->dev_conf.intr_conf.lsc = 1; 3536 if (rmv_interrupt && 3537 (rte_eth_devices[pid].data->dev_flags & 3538 RTE_ETH_DEV_INTR_RMV)) 3539 port->dev_conf.intr_conf.rmv = 1; 3540 } 3541 } 3542 3543 void set_port_slave_flag(portid_t slave_pid) 3544 { 3545 struct rte_port *port; 3546 3547 port = &ports[slave_pid]; 3548 port->slave_flag = 1; 3549 } 3550 3551 void clear_port_slave_flag(portid_t slave_pid) 3552 { 3553 struct rte_port *port; 3554 3555 port = &ports[slave_pid]; 3556 port->slave_flag = 0; 3557 } 3558 3559 uint8_t port_is_bonding_slave(portid_t slave_pid) 3560 { 3561 struct rte_port *port; 3562 3563 port = &ports[slave_pid]; 3564 if ((rte_eth_devices[slave_pid].data->dev_flags & 3565 RTE_ETH_DEV_BONDED_SLAVE) || (port->slave_flag == 1)) 3566 return 1; 3567 return 0; 3568 } 3569 3570 const uint16_t vlan_tags[] = { 3571 0, 1, 2, 3, 4, 5, 6, 7, 3572 8, 9, 10, 11, 12, 13, 14, 15, 3573 16, 17, 18, 19, 20, 21, 22, 23, 3574 24, 25, 26, 27, 28, 29, 30, 31 3575 }; 3576 3577 static int 3578 get_eth_dcb_conf(portid_t pid, struct rte_eth_conf *eth_conf, 3579 enum dcb_mode_enable dcb_mode, 3580 enum rte_eth_nb_tcs num_tcs, 3581 uint8_t pfc_en) 3582 { 3583 uint8_t i; 3584 int32_t rc; 3585 struct rte_eth_rss_conf rss_conf; 3586 3587 /* 3588 * Builds up the correct configuration for dcb+vt based on the vlan tags array 3589 * given above, and the number of traffic classes available for use. 3590 */ 3591 if (dcb_mode == DCB_VT_ENABLED) { 3592 struct rte_eth_vmdq_dcb_conf *vmdq_rx_conf = 3593 ð_conf->rx_adv_conf.vmdq_dcb_conf; 3594 struct rte_eth_vmdq_dcb_tx_conf *vmdq_tx_conf = 3595 ð_conf->tx_adv_conf.vmdq_dcb_tx_conf; 3596 3597 /* VMDQ+DCB RX and TX configurations */ 3598 vmdq_rx_conf->enable_default_pool = 0; 3599 vmdq_rx_conf->default_pool = 0; 3600 vmdq_rx_conf->nb_queue_pools = 3601 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3602 vmdq_tx_conf->nb_queue_pools = 3603 (num_tcs == ETH_4_TCS ? ETH_32_POOLS : ETH_16_POOLS); 3604 3605 vmdq_rx_conf->nb_pool_maps = vmdq_rx_conf->nb_queue_pools; 3606 for (i = 0; i < vmdq_rx_conf->nb_pool_maps; i++) { 3607 vmdq_rx_conf->pool_map[i].vlan_id = vlan_tags[i]; 3608 vmdq_rx_conf->pool_map[i].pools = 3609 1 << (i % vmdq_rx_conf->nb_queue_pools); 3610 } 3611 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3612 vmdq_rx_conf->dcb_tc[i] = i % num_tcs; 3613 vmdq_tx_conf->dcb_tc[i] = i % num_tcs; 3614 } 3615 3616 /* set DCB mode of RX and TX of multiple queues */ 3617 eth_conf->rxmode.mq_mode = 3618 (enum rte_eth_rx_mq_mode) 3619 (rx_mq_mode & ETH_MQ_RX_VMDQ_DCB); 3620 eth_conf->txmode.mq_mode = ETH_MQ_TX_VMDQ_DCB; 3621 } else { 3622 struct rte_eth_dcb_rx_conf *rx_conf = 3623 ð_conf->rx_adv_conf.dcb_rx_conf; 3624 struct rte_eth_dcb_tx_conf *tx_conf = 3625 ð_conf->tx_adv_conf.dcb_tx_conf; 3626 3627 memset(&rss_conf, 0, sizeof(struct rte_eth_rss_conf)); 3628 3629 rc = rte_eth_dev_rss_hash_conf_get(pid, &rss_conf); 3630 if (rc != 0) 3631 return rc; 3632 3633 rx_conf->nb_tcs = num_tcs; 3634 tx_conf->nb_tcs = num_tcs; 3635 3636 for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++) { 3637 rx_conf->dcb_tc[i] = i % num_tcs; 3638 tx_conf->dcb_tc[i] = i % num_tcs; 3639 } 3640 3641 eth_conf->rxmode.mq_mode = 3642 (enum rte_eth_rx_mq_mode) 3643 (rx_mq_mode & ETH_MQ_RX_DCB_RSS); 3644 eth_conf->rx_adv_conf.rss_conf = rss_conf; 3645 eth_conf->txmode.mq_mode = ETH_MQ_TX_DCB; 3646 } 3647 3648 if (pfc_en) 3649 eth_conf->dcb_capability_en = 3650 ETH_DCB_PG_SUPPORT | ETH_DCB_PFC_SUPPORT; 3651 else 3652 eth_conf->dcb_capability_en = ETH_DCB_PG_SUPPORT; 3653 3654 return 0; 3655 } 3656 3657 int 3658 init_port_dcb_config(portid_t pid, 3659 enum dcb_mode_enable dcb_mode, 3660 enum rte_eth_nb_tcs num_tcs, 3661 uint8_t pfc_en) 3662 { 3663 struct rte_eth_conf port_conf; 3664 struct rte_port *rte_port; 3665 int retval; 3666 uint16_t i; 3667 3668 rte_port = &ports[pid]; 3669 3670 memset(&port_conf, 0, sizeof(struct rte_eth_conf)); 3671 /* Enter DCB configuration status */ 3672 dcb_config = 1; 3673 3674 port_conf.rxmode = rte_port->dev_conf.rxmode; 3675 port_conf.txmode = rte_port->dev_conf.txmode; 3676 3677 /*set configuration of DCB in vt mode and DCB in non-vt mode*/ 3678 retval = get_eth_dcb_conf(pid, &port_conf, dcb_mode, num_tcs, pfc_en); 3679 if (retval < 0) 3680 return retval; 3681 port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3682 3683 /* re-configure the device . */ 3684 retval = rte_eth_dev_configure(pid, nb_rxq, nb_rxq, &port_conf); 3685 if (retval < 0) 3686 return retval; 3687 3688 retval = eth_dev_info_get_print_err(pid, &rte_port->dev_info); 3689 if (retval != 0) 3690 return retval; 3691 3692 /* If dev_info.vmdq_pool_base is greater than 0, 3693 * the queue id of vmdq pools is started after pf queues. 3694 */ 3695 if (dcb_mode == DCB_VT_ENABLED && 3696 rte_port->dev_info.vmdq_pool_base > 0) { 3697 printf("VMDQ_DCB multi-queue mode is nonsensical" 3698 " for port %d.", pid); 3699 return -1; 3700 } 3701 3702 /* Assume the ports in testpmd have the same dcb capability 3703 * and has the same number of rxq and txq in dcb mode 3704 */ 3705 if (dcb_mode == DCB_VT_ENABLED) { 3706 if (rte_port->dev_info.max_vfs > 0) { 3707 nb_rxq = rte_port->dev_info.nb_rx_queues; 3708 nb_txq = rte_port->dev_info.nb_tx_queues; 3709 } else { 3710 nb_rxq = rte_port->dev_info.max_rx_queues; 3711 nb_txq = rte_port->dev_info.max_tx_queues; 3712 } 3713 } else { 3714 /*if vt is disabled, use all pf queues */ 3715 if (rte_port->dev_info.vmdq_pool_base == 0) { 3716 nb_rxq = rte_port->dev_info.max_rx_queues; 3717 nb_txq = rte_port->dev_info.max_tx_queues; 3718 } else { 3719 nb_rxq = (queueid_t)num_tcs; 3720 nb_txq = (queueid_t)num_tcs; 3721 3722 } 3723 } 3724 rx_free_thresh = 64; 3725 3726 memcpy(&rte_port->dev_conf, &port_conf, sizeof(struct rte_eth_conf)); 3727 3728 rxtx_port_config(rte_port); 3729 /* VLAN filter */ 3730 rte_port->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_VLAN_FILTER; 3731 for (i = 0; i < RTE_DIM(vlan_tags); i++) 3732 rx_vft_set(pid, vlan_tags[i], 1); 3733 3734 retval = eth_macaddr_get_print_err(pid, &rte_port->eth_addr); 3735 if (retval != 0) 3736 return retval; 3737 3738 map_port_queue_stats_mapping_registers(pid, rte_port); 3739 3740 rte_port->dcb_flag = 1; 3741 3742 return 0; 3743 } 3744 3745 static void 3746 init_port(void) 3747 { 3748 int i; 3749 3750 /* Configuration of Ethernet ports. */ 3751 ports = rte_zmalloc("testpmd: ports", 3752 sizeof(struct rte_port) * RTE_MAX_ETHPORTS, 3753 RTE_CACHE_LINE_SIZE); 3754 if (ports == NULL) { 3755 rte_exit(EXIT_FAILURE, 3756 "rte_zmalloc(%d struct rte_port) failed\n", 3757 RTE_MAX_ETHPORTS); 3758 } 3759 for (i = 0; i < RTE_MAX_ETHPORTS; i++) 3760 LIST_INIT(&ports[i].flow_tunnel_list); 3761 /* Initialize ports NUMA structures */ 3762 memset(port_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3763 memset(rxring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3764 memset(txring_numa, NUMA_NO_CONFIG, RTE_MAX_ETHPORTS); 3765 } 3766 3767 static void 3768 force_quit(void) 3769 { 3770 pmd_test_exit(); 3771 prompt_exit(); 3772 } 3773 3774 static void 3775 print_stats(void) 3776 { 3777 uint8_t i; 3778 const char clr[] = { 27, '[', '2', 'J', '\0' }; 3779 const char top_left[] = { 27, '[', '1', ';', '1', 'H', '\0' }; 3780 3781 /* Clear screen and move to top left */ 3782 printf("%s%s", clr, top_left); 3783 3784 printf("\nPort statistics ===================================="); 3785 for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) 3786 nic_stats_display(fwd_ports_ids[i]); 3787 3788 fflush(stdout); 3789 } 3790 3791 static void 3792 signal_handler(int signum) 3793 { 3794 if (signum == SIGINT || signum == SIGTERM) { 3795 printf("\nSignal %d received, preparing to exit...\n", 3796 signum); 3797 #ifdef RTE_LIBRTE_PDUMP 3798 /* uninitialize packet capture framework */ 3799 rte_pdump_uninit(); 3800 #endif 3801 #ifdef RTE_LIBRTE_LATENCY_STATS 3802 if (latencystats_enabled != 0) 3803 rte_latencystats_uninit(); 3804 #endif 3805 force_quit(); 3806 /* Set flag to indicate the force termination. */ 3807 f_quit = 1; 3808 /* exit with the expected status */ 3809 signal(signum, SIG_DFL); 3810 kill(getpid(), signum); 3811 } 3812 } 3813 3814 int 3815 main(int argc, char** argv) 3816 { 3817 int diag; 3818 portid_t port_id; 3819 uint16_t count; 3820 int ret; 3821 3822 signal(SIGINT, signal_handler); 3823 signal(SIGTERM, signal_handler); 3824 3825 testpmd_logtype = rte_log_register("testpmd"); 3826 if (testpmd_logtype < 0) 3827 rte_exit(EXIT_FAILURE, "Cannot register log type"); 3828 rte_log_set_level(testpmd_logtype, RTE_LOG_DEBUG); 3829 3830 diag = rte_eal_init(argc, argv); 3831 if (diag < 0) 3832 rte_exit(EXIT_FAILURE, "Cannot init EAL: %s\n", 3833 rte_strerror(rte_errno)); 3834 3835 if (rte_eal_process_type() == RTE_PROC_SECONDARY) 3836 rte_exit(EXIT_FAILURE, 3837 "Secondary process type not supported.\n"); 3838 3839 ret = register_eth_event_callback(); 3840 if (ret != 0) 3841 rte_exit(EXIT_FAILURE, "Cannot register for ethdev events"); 3842 3843 #ifdef RTE_LIBRTE_PDUMP 3844 /* initialize packet capture framework */ 3845 rte_pdump_init(); 3846 #endif 3847 3848 count = 0; 3849 RTE_ETH_FOREACH_DEV(port_id) { 3850 ports_ids[count] = port_id; 3851 count++; 3852 } 3853 nb_ports = (portid_t) count; 3854 if (nb_ports == 0) 3855 TESTPMD_LOG(WARNING, "No probed ethernet devices\n"); 3856 3857 /* allocate port structures, and init them */ 3858 init_port(); 3859 3860 set_def_fwd_config(); 3861 if (nb_lcores == 0) 3862 rte_exit(EXIT_FAILURE, "No cores defined for forwarding\n" 3863 "Check the core mask argument\n"); 3864 3865 /* Bitrate/latency stats disabled by default */ 3866 #ifdef RTE_LIBRTE_BITRATESTATS 3867 bitrate_enabled = 0; 3868 #endif 3869 #ifdef RTE_LIBRTE_LATENCY_STATS 3870 latencystats_enabled = 0; 3871 #endif 3872 3873 /* on FreeBSD, mlockall() is disabled by default */ 3874 #ifdef RTE_EXEC_ENV_FREEBSD 3875 do_mlockall = 0; 3876 #else 3877 do_mlockall = 1; 3878 #endif 3879 3880 argc -= diag; 3881 argv += diag; 3882 if (argc > 1) 3883 launch_args_parse(argc, argv); 3884 3885 if (do_mlockall && mlockall(MCL_CURRENT | MCL_FUTURE)) { 3886 TESTPMD_LOG(NOTICE, "mlockall() failed with error \"%s\"\n", 3887 strerror(errno)); 3888 } 3889 3890 if (tx_first && interactive) 3891 rte_exit(EXIT_FAILURE, "--tx-first cannot be used on " 3892 "interactive mode.\n"); 3893 3894 if (tx_first && lsc_interrupt) { 3895 printf("Warning: lsc_interrupt needs to be off when " 3896 " using tx_first. Disabling.\n"); 3897 lsc_interrupt = 0; 3898 } 3899 3900 if (!nb_rxq && !nb_txq) 3901 printf("Warning: Either rx or tx queues should be non-zero\n"); 3902 3903 if (nb_rxq > 1 && nb_rxq > nb_txq) 3904 printf("Warning: nb_rxq=%d enables RSS configuration, " 3905 "but nb_txq=%d will prevent to fully test it.\n", 3906 nb_rxq, nb_txq); 3907 3908 init_config(); 3909 3910 if (hot_plug) { 3911 ret = rte_dev_hotplug_handle_enable(); 3912 if (ret) { 3913 RTE_LOG(ERR, EAL, 3914 "fail to enable hotplug handling."); 3915 return -1; 3916 } 3917 3918 ret = rte_dev_event_monitor_start(); 3919 if (ret) { 3920 RTE_LOG(ERR, EAL, 3921 "fail to start device event monitoring."); 3922 return -1; 3923 } 3924 3925 ret = rte_dev_event_callback_register(NULL, 3926 dev_event_callback, NULL); 3927 if (ret) { 3928 RTE_LOG(ERR, EAL, 3929 "fail to register device event callback\n"); 3930 return -1; 3931 } 3932 } 3933 3934 if (!no_device_start && start_port(RTE_PORT_ALL) != 0) 3935 rte_exit(EXIT_FAILURE, "Start ports failed\n"); 3936 3937 /* set all ports to promiscuous mode by default */ 3938 RTE_ETH_FOREACH_DEV(port_id) { 3939 ret = rte_eth_promiscuous_enable(port_id); 3940 if (ret != 0) 3941 printf("Error during enabling promiscuous mode for port %u: %s - ignore\n", 3942 port_id, rte_strerror(-ret)); 3943 } 3944 3945 /* Init metrics library */ 3946 rte_metrics_init(rte_socket_id()); 3947 3948 #ifdef RTE_LIBRTE_LATENCY_STATS 3949 if (latencystats_enabled != 0) { 3950 int ret = rte_latencystats_init(1, NULL); 3951 if (ret) 3952 printf("Warning: latencystats init()" 3953 " returned error %d\n", ret); 3954 printf("Latencystats running on lcore %d\n", 3955 latencystats_lcore_id); 3956 } 3957 #endif 3958 3959 /* Setup bitrate stats */ 3960 #ifdef RTE_LIBRTE_BITRATESTATS 3961 if (bitrate_enabled != 0) { 3962 bitrate_data = rte_stats_bitrate_create(); 3963 if (bitrate_data == NULL) 3964 rte_exit(EXIT_FAILURE, 3965 "Could not allocate bitrate data.\n"); 3966 rte_stats_bitrate_reg(bitrate_data); 3967 } 3968 #endif 3969 3970 #ifdef RTE_LIBRTE_CMDLINE 3971 if (strlen(cmdline_filename) != 0) 3972 cmdline_read_from_file(cmdline_filename); 3973 3974 if (interactive == 1) { 3975 if (auto_start) { 3976 printf("Start automatic packet forwarding\n"); 3977 start_packet_forwarding(0); 3978 } 3979 prompt(); 3980 pmd_test_exit(); 3981 } else 3982 #endif 3983 { 3984 char c; 3985 int rc; 3986 3987 f_quit = 0; 3988 3989 printf("No commandline core given, start packet forwarding\n"); 3990 start_packet_forwarding(tx_first); 3991 if (stats_period != 0) { 3992 uint64_t prev_time = 0, cur_time, diff_time = 0; 3993 uint64_t timer_period; 3994 3995 /* Convert to number of cycles */ 3996 timer_period = stats_period * rte_get_timer_hz(); 3997 3998 while (f_quit == 0) { 3999 cur_time = rte_get_timer_cycles(); 4000 diff_time += cur_time - prev_time; 4001 4002 if (diff_time >= timer_period) { 4003 print_stats(); 4004 /* Reset the timer */ 4005 diff_time = 0; 4006 } 4007 /* Sleep to avoid unnecessary checks */ 4008 prev_time = cur_time; 4009 sleep(1); 4010 } 4011 } 4012 4013 printf("Press enter to exit\n"); 4014 rc = read(0, &c, 1); 4015 pmd_test_exit(); 4016 if (rc < 0) 4017 return 1; 4018 } 4019 4020 ret = rte_eal_cleanup(); 4021 if (ret != 0) 4022 rte_exit(EXIT_FAILURE, 4023 "EAL cleanup failed: %s\n", strerror(-ret)); 4024 4025 return EXIT_SUCCESS; 4026 } 4027