xref: /dpdk/app/test-pmd/csumonly.c (revision fd8c20aab4c2fe2c568455be4efab76db126791f)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   Copyright 2014 6WIND S.A.
6  *   All rights reserved.
7  *
8  *   Redistribution and use in source and binary forms, with or without
9  *   modification, are permitted provided that the following conditions
10  *   are met:
11  *
12  *     * Redistributions of source code must retain the above copyright
13  *       notice, this list of conditions and the following disclaimer.
14  *     * Redistributions in binary form must reproduce the above copyright
15  *       notice, this list of conditions and the following disclaimer in
16  *       the documentation and/or other materials provided with the
17  *       distribution.
18  *     * Neither the name of Intel Corporation nor the names of its
19  *       contributors may be used to endorse or promote products derived
20  *       from this software without specific prior written permission.
21  *
22  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 #include <stdarg.h>
36 #include <stdio.h>
37 #include <errno.h>
38 #include <stdint.h>
39 #include <unistd.h>
40 #include <inttypes.h>
41 
42 #include <sys/queue.h>
43 #include <sys/stat.h>
44 
45 #include <rte_common.h>
46 #include <rte_byteorder.h>
47 #include <rte_log.h>
48 #include <rte_debug.h>
49 #include <rte_cycles.h>
50 #include <rte_memory.h>
51 #include <rte_memcpy.h>
52 #include <rte_launch.h>
53 #include <rte_eal.h>
54 #include <rte_per_lcore.h>
55 #include <rte_lcore.h>
56 #include <rte_atomic.h>
57 #include <rte_branch_prediction.h>
58 #include <rte_mempool.h>
59 #include <rte_mbuf.h>
60 #include <rte_interrupts.h>
61 #include <rte_pci.h>
62 #include <rte_ether.h>
63 #include <rte_ethdev.h>
64 #include <rte_ip.h>
65 #include <rte_tcp.h>
66 #include <rte_udp.h>
67 #include <rte_sctp.h>
68 #include <rte_prefetch.h>
69 #include <rte_string_fns.h>
70 #include <rte_flow.h>
71 #include <rte_gro.h>
72 #include <rte_gso.h>
73 
74 #include "testpmd.h"
75 
76 #define IP_DEFTTL  64   /* from RFC 1340. */
77 #define IP_VERSION 0x40
78 #define IP_HDRLEN  0x05 /* default IP header length == five 32-bits words. */
79 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
80 
81 #define GRE_KEY_PRESENT 0x2000
82 #define GRE_KEY_LEN     4
83 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT
84 
85 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
86 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
87 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
88 #else
89 #define _htons(x) (x)
90 #endif
91 
92 /* structure that caches offload info for the current packet */
93 struct testpmd_offload_info {
94 	uint16_t ethertype;
95 	uint8_t gso_enable;
96 	uint16_t l2_len;
97 	uint16_t l3_len;
98 	uint16_t l4_len;
99 	uint8_t l4_proto;
100 	uint8_t is_tunnel;
101 	uint16_t outer_ethertype;
102 	uint16_t outer_l2_len;
103 	uint16_t outer_l3_len;
104 	uint8_t outer_l4_proto;
105 	uint16_t tso_segsz;
106 	uint16_t tunnel_tso_segsz;
107 	uint32_t pkt_len;
108 };
109 
110 /* simplified GRE header */
111 struct simple_gre_hdr {
112 	uint16_t flags;
113 	uint16_t proto;
114 } __attribute__((__packed__));
115 
116 static uint16_t
117 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
118 {
119 	if (ethertype == _htons(ETHER_TYPE_IPv4))
120 		return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
121 	else /* assume ethertype == ETHER_TYPE_IPv6 */
122 		return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
123 }
124 
125 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
126 static void
127 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
128 {
129 	struct tcp_hdr *tcp_hdr;
130 
131 	info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
132 	info->l4_proto = ipv4_hdr->next_proto_id;
133 
134 	/* only fill l4_len for TCP, it's useful for TSO */
135 	if (info->l4_proto == IPPROTO_TCP) {
136 		tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
137 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
138 	} else
139 		info->l4_len = 0;
140 }
141 
142 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
143 static void
144 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
145 {
146 	struct tcp_hdr *tcp_hdr;
147 
148 	info->l3_len = sizeof(struct ipv6_hdr);
149 	info->l4_proto = ipv6_hdr->proto;
150 
151 	/* only fill l4_len for TCP, it's useful for TSO */
152 	if (info->l4_proto == IPPROTO_TCP) {
153 		tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
154 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
155 	} else
156 		info->l4_len = 0;
157 }
158 
159 /*
160  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
161  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
162  * header. The l4_len argument is only set in case of TCP (useful for TSO).
163  */
164 static void
165 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
166 {
167 	struct ipv4_hdr *ipv4_hdr;
168 	struct ipv6_hdr *ipv6_hdr;
169 
170 	info->l2_len = sizeof(struct ether_hdr);
171 	info->ethertype = eth_hdr->ether_type;
172 
173 	if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
174 		struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
175 
176 		info->l2_len  += sizeof(struct vlan_hdr);
177 		info->ethertype = vlan_hdr->eth_proto;
178 	}
179 
180 	switch (info->ethertype) {
181 	case _htons(ETHER_TYPE_IPv4):
182 		ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
183 		parse_ipv4(ipv4_hdr, info);
184 		break;
185 	case _htons(ETHER_TYPE_IPv6):
186 		ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
187 		parse_ipv6(ipv6_hdr, info);
188 		break;
189 	default:
190 		info->l4_len = 0;
191 		info->l3_len = 0;
192 		info->l4_proto = 0;
193 		break;
194 	}
195 }
196 
197 /* Parse a vxlan header */
198 static void
199 parse_vxlan(struct udp_hdr *udp_hdr,
200 	    struct testpmd_offload_info *info,
201 	    uint32_t pkt_type)
202 {
203 	struct ether_hdr *eth_hdr;
204 
205 	/* check udp destination port, 4789 is the default vxlan port
206 	 * (rfc7348) or that the rx offload flag is set (i40e only
207 	 * currently) */
208 	if (udp_hdr->dst_port != _htons(4789) &&
209 		RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
210 		return;
211 
212 	info->is_tunnel = 1;
213 	info->outer_ethertype = info->ethertype;
214 	info->outer_l2_len = info->l2_len;
215 	info->outer_l3_len = info->l3_len;
216 	info->outer_l4_proto = info->l4_proto;
217 
218 	eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
219 		sizeof(struct udp_hdr) +
220 		sizeof(struct vxlan_hdr));
221 
222 	parse_ethernet(eth_hdr, info);
223 	info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
224 }
225 
226 /* Parse a gre header */
227 static void
228 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
229 {
230 	struct ether_hdr *eth_hdr;
231 	struct ipv4_hdr *ipv4_hdr;
232 	struct ipv6_hdr *ipv6_hdr;
233 	uint8_t gre_len = 0;
234 
235 	/* check which fields are supported */
236 	if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0)
237 		return;
238 
239 	gre_len += sizeof(struct simple_gre_hdr);
240 
241 	if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
242 		gre_len += GRE_KEY_LEN;
243 
244 	if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
245 		info->is_tunnel = 1;
246 		info->outer_ethertype = info->ethertype;
247 		info->outer_l2_len = info->l2_len;
248 		info->outer_l3_len = info->l3_len;
249 		info->outer_l4_proto = info->l4_proto;
250 
251 		ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
252 
253 		parse_ipv4(ipv4_hdr, info);
254 		info->ethertype = _htons(ETHER_TYPE_IPv4);
255 		info->l2_len = 0;
256 
257 	} else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
258 		info->is_tunnel = 1;
259 		info->outer_ethertype = info->ethertype;
260 		info->outer_l2_len = info->l2_len;
261 		info->outer_l3_len = info->l3_len;
262 		info->outer_l4_proto = info->l4_proto;
263 
264 		ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
265 
266 		info->ethertype = _htons(ETHER_TYPE_IPv6);
267 		parse_ipv6(ipv6_hdr, info);
268 		info->l2_len = 0;
269 
270 	} else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
271 		info->is_tunnel = 1;
272 		info->outer_ethertype = info->ethertype;
273 		info->outer_l2_len = info->l2_len;
274 		info->outer_l3_len = info->l3_len;
275 		info->outer_l4_proto = info->l4_proto;
276 
277 		eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
278 
279 		parse_ethernet(eth_hdr, info);
280 	} else
281 		return;
282 
283 	info->l2_len += gre_len;
284 }
285 
286 
287 /* Parse an encapsulated ip or ipv6 header */
288 static void
289 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
290 {
291 	struct ipv4_hdr *ipv4_hdr = encap_ip;
292 	struct ipv6_hdr *ipv6_hdr = encap_ip;
293 	uint8_t ip_version;
294 
295 	ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
296 
297 	if (ip_version != 4 && ip_version != 6)
298 		return;
299 
300 	info->is_tunnel = 1;
301 	info->outer_ethertype = info->ethertype;
302 	info->outer_l2_len = info->l2_len;
303 	info->outer_l3_len = info->l3_len;
304 
305 	if (ip_version == 4) {
306 		parse_ipv4(ipv4_hdr, info);
307 		info->ethertype = _htons(ETHER_TYPE_IPv4);
308 	} else {
309 		parse_ipv6(ipv6_hdr, info);
310 		info->ethertype = _htons(ETHER_TYPE_IPv6);
311 	}
312 	info->l2_len = 0;
313 }
314 
315 /* if possible, calculate the checksum of a packet in hw or sw,
316  * depending on the testpmd command line configuration */
317 static uint64_t
318 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
319 	uint64_t tx_offloads)
320 {
321 	struct ipv4_hdr *ipv4_hdr = l3_hdr;
322 	struct udp_hdr *udp_hdr;
323 	struct tcp_hdr *tcp_hdr;
324 	struct sctp_hdr *sctp_hdr;
325 	uint64_t ol_flags = 0;
326 	uint32_t max_pkt_len, tso_segsz = 0;
327 
328 	/* ensure packet is large enough to require tso */
329 	if (!info->is_tunnel) {
330 		max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
331 			info->tso_segsz;
332 		if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
333 			tso_segsz = info->tso_segsz;
334 	} else {
335 		max_pkt_len = info->outer_l2_len + info->outer_l3_len +
336 			info->l2_len + info->l3_len + info->l4_len +
337 			info->tunnel_tso_segsz;
338 		if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
339 			tso_segsz = info->tunnel_tso_segsz;
340 	}
341 
342 	if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
343 		ipv4_hdr = l3_hdr;
344 		ipv4_hdr->hdr_checksum = 0;
345 
346 		ol_flags |= PKT_TX_IPV4;
347 		if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
348 			ol_flags |= PKT_TX_IP_CKSUM;
349 		} else {
350 			if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
351 				ol_flags |= PKT_TX_IP_CKSUM;
352 			else
353 				ipv4_hdr->hdr_checksum =
354 					rte_ipv4_cksum(ipv4_hdr);
355 		}
356 	} else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
357 		ol_flags |= PKT_TX_IPV6;
358 	else
359 		return 0; /* packet type not supported, nothing to do */
360 
361 	if (info->l4_proto == IPPROTO_UDP) {
362 		udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
363 		/* do not recalculate udp cksum if it was 0 */
364 		if (udp_hdr->dgram_cksum != 0) {
365 			udp_hdr->dgram_cksum = 0;
366 			if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
367 				ol_flags |= PKT_TX_UDP_CKSUM;
368 			else {
369 				udp_hdr->dgram_cksum =
370 					get_udptcp_checksum(l3_hdr, udp_hdr,
371 						info->ethertype);
372 			}
373 		}
374 	} else if (info->l4_proto == IPPROTO_TCP) {
375 		tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
376 		tcp_hdr->cksum = 0;
377 		if (tso_segsz)
378 			ol_flags |= PKT_TX_TCP_SEG;
379 		else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
380 			ol_flags |= PKT_TX_TCP_CKSUM;
381 		else {
382 			tcp_hdr->cksum =
383 				get_udptcp_checksum(l3_hdr, tcp_hdr,
384 					info->ethertype);
385 		}
386 		if (info->gso_enable)
387 			ol_flags |= PKT_TX_TCP_SEG;
388 	} else if (info->l4_proto == IPPROTO_SCTP) {
389 		sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
390 		sctp_hdr->cksum = 0;
391 		/* sctp payload must be a multiple of 4 to be
392 		 * offloaded */
393 		if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
394 			((ipv4_hdr->total_length & 0x3) == 0)) {
395 			ol_flags |= PKT_TX_SCTP_CKSUM;
396 		} else {
397 			/* XXX implement CRC32c, example available in
398 			 * RFC3309 */
399 		}
400 	}
401 
402 	return ol_flags;
403 }
404 
405 /* Calculate the checksum of outer header */
406 static uint64_t
407 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
408 	uint64_t tx_offloads, int tso_enabled)
409 {
410 	struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
411 	struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
412 	struct udp_hdr *udp_hdr;
413 	uint64_t ol_flags = 0;
414 
415 	if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
416 		ipv4_hdr->hdr_checksum = 0;
417 		ol_flags |= PKT_TX_OUTER_IPV4;
418 
419 		if (tx_offloads	& DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
420 			ol_flags |= PKT_TX_OUTER_IP_CKSUM;
421 		else
422 			ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
423 	} else
424 		ol_flags |= PKT_TX_OUTER_IPV6;
425 
426 	if (info->outer_l4_proto != IPPROTO_UDP)
427 		return ol_flags;
428 
429 	udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
430 
431 	/* outer UDP checksum is done in software as we have no hardware
432 	 * supporting it today, and no API for it. In the other side, for
433 	 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
434 	 * set to zero.
435 	 *
436 	 * If a packet will be TSOed into small packets by NIC, we cannot
437 	 * set/calculate a non-zero checksum, because it will be a wrong
438 	 * value after the packet be split into several small packets.
439 	 */
440 	if (tso_enabled)
441 		udp_hdr->dgram_cksum = 0;
442 
443 	/* do not recalculate udp cksum if it was 0 */
444 	if (udp_hdr->dgram_cksum != 0) {
445 		udp_hdr->dgram_cksum = 0;
446 		if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
447 			udp_hdr->dgram_cksum =
448 				rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
449 		else
450 			udp_hdr->dgram_cksum =
451 				rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
452 	}
453 
454 	return ol_flags;
455 }
456 
457 /*
458  * Helper function.
459  * Performs actual copying.
460  * Returns number of segments in the destination mbuf on success,
461  * or negative error code on failure.
462  */
463 static int
464 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
465 	uint16_t seglen[], uint8_t nb_seg)
466 {
467 	uint32_t dlen, slen, tlen;
468 	uint32_t i, len;
469 	const struct rte_mbuf *m;
470 	const uint8_t *src;
471 	uint8_t *dst;
472 
473 	dlen = 0;
474 	slen = 0;
475 	tlen = 0;
476 
477 	dst = NULL;
478 	src = NULL;
479 
480 	m = ms;
481 	i = 0;
482 	while (ms != NULL && i != nb_seg) {
483 
484 		if (slen == 0) {
485 			slen = rte_pktmbuf_data_len(ms);
486 			src = rte_pktmbuf_mtod(ms, const uint8_t *);
487 		}
488 
489 		if (dlen == 0) {
490 			dlen = RTE_MIN(seglen[i], slen);
491 			md[i]->data_len = dlen;
492 			md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
493 			dst = rte_pktmbuf_mtod(md[i], uint8_t *);
494 		}
495 
496 		len = RTE_MIN(slen, dlen);
497 		memcpy(dst, src, len);
498 		tlen += len;
499 		slen -= len;
500 		dlen -= len;
501 		src += len;
502 		dst += len;
503 
504 		if (slen == 0)
505 			ms = ms->next;
506 		if (dlen == 0)
507 			i++;
508 	}
509 
510 	if (ms != NULL)
511 		return -ENOBUFS;
512 	else if (tlen != m->pkt_len)
513 		return -EINVAL;
514 
515 	md[0]->nb_segs = nb_seg;
516 	md[0]->pkt_len = tlen;
517 	md[0]->vlan_tci = m->vlan_tci;
518 	md[0]->vlan_tci_outer = m->vlan_tci_outer;
519 	md[0]->ol_flags = m->ol_flags;
520 	md[0]->tx_offload = m->tx_offload;
521 
522 	return nb_seg;
523 }
524 
525 /*
526  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
527  * Copy packet contents and offload information into then new segmented mbuf.
528  */
529 static struct rte_mbuf *
530 pkt_copy_split(const struct rte_mbuf *pkt)
531 {
532 	int32_t n, rc;
533 	uint32_t i, len, nb_seg;
534 	struct rte_mempool *mp;
535 	uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
536 	struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
537 
538 	mp = current_fwd_lcore()->mbp;
539 
540 	if (tx_pkt_split == TX_PKT_SPLIT_RND)
541 		nb_seg = random() % tx_pkt_nb_segs + 1;
542 	else
543 		nb_seg = tx_pkt_nb_segs;
544 
545 	memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
546 
547 	/* calculate number of segments to use and their length. */
548 	len = 0;
549 	for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
550 		len += seglen[i];
551 		md[i] = NULL;
552 	}
553 
554 	n = pkt->pkt_len - len;
555 
556 	/* update size of the last segment to fit rest of the packet */
557 	if (n >= 0) {
558 		seglen[i - 1] += n;
559 		len += n;
560 	}
561 
562 	nb_seg = i;
563 	while (i != 0) {
564 		p = rte_pktmbuf_alloc(mp);
565 		if (p == NULL) {
566 			TESTPMD_LOG(ERR,
567 				"failed to allocate %u-th of %u mbuf "
568 				"from mempool: %s\n",
569 				nb_seg - i, nb_seg, mp->name);
570 			break;
571 		}
572 
573 		md[--i] = p;
574 		if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
575 			TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
576 				"expected seglen: %u, "
577 				"actual mbuf tailroom: %u\n",
578 				mp->name, i, seglen[i],
579 				rte_pktmbuf_tailroom(md[i]));
580 			break;
581 		}
582 	}
583 
584 	/* all mbufs successfully allocated, do copy */
585 	if (i == 0) {
586 		rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
587 		if (rc < 0)
588 			TESTPMD_LOG(ERR,
589 				"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
590 				"into %u segments failed with error code: %d\n",
591 				pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
592 
593 		/* figure out how many mbufs to free. */
594 		i = RTE_MAX(rc, 0);
595 	}
596 
597 	/* free unused mbufs */
598 	for (; i != nb_seg; i++) {
599 		rte_pktmbuf_free_seg(md[i]);
600 		md[i] = NULL;
601 	}
602 
603 	return md[0];
604 }
605 
606 /*
607  * Receive a burst of packets, and for each packet:
608  *  - parse packet, and try to recognize a supported packet type (1)
609  *  - if it's not a supported packet type, don't touch the packet, else:
610  *  - reprocess the checksum of all supported layers. This is done in SW
611  *    or HW, depending on testpmd command line configuration
612  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
613  *    segmentation offload (this implies HW TCP checksum)
614  * Then transmit packets on the output port.
615  *
616  * (1) Supported packets are:
617  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
618  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
619  *           UDP|TCP|SCTP
620  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
621  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
622  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
623  *
624  * The testpmd command line for this forward engine sets the flags
625  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
626  * wether a checksum must be calculated in software or in hardware. The
627  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
628  * OUTER_IP is only useful for tunnel packets.
629  */
630 static void
631 pkt_burst_checksum_forward(struct fwd_stream *fs)
632 {
633 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
634 	struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
635 	struct rte_gso_ctx *gso_ctx;
636 	struct rte_mbuf **tx_pkts_burst;
637 	struct rte_port *txp;
638 	struct rte_mbuf *m, *p;
639 	struct ether_hdr *eth_hdr;
640 	void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
641 	void **gro_ctx;
642 	uint16_t gro_pkts_num;
643 	uint8_t gro_enable;
644 	uint16_t nb_rx;
645 	uint16_t nb_tx;
646 	uint16_t nb_prep;
647 	uint16_t i;
648 	uint64_t rx_ol_flags, tx_ol_flags;
649 	uint64_t tx_offloads;
650 	uint32_t retry;
651 	uint32_t rx_bad_ip_csum;
652 	uint32_t rx_bad_l4_csum;
653 	struct testpmd_offload_info info;
654 	uint16_t nb_segments = 0;
655 	int ret;
656 
657 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
658 	uint64_t start_tsc;
659 	uint64_t end_tsc;
660 	uint64_t core_cycles;
661 #endif
662 
663 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
664 	start_tsc = rte_rdtsc();
665 #endif
666 
667 	/* receive a burst of packet */
668 	nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
669 				 nb_pkt_per_burst);
670 	if (unlikely(nb_rx == 0))
671 		return;
672 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
673 	fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
674 #endif
675 	fs->rx_packets += nb_rx;
676 	rx_bad_ip_csum = 0;
677 	rx_bad_l4_csum = 0;
678 	gro_enable = gro_ports[fs->rx_port].enable;
679 
680 	txp = &ports[fs->tx_port];
681 	tx_offloads = txp->dev_conf.txmode.offloads;
682 	memset(&info, 0, sizeof(info));
683 	info.tso_segsz = txp->tso_segsz;
684 	info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
685 	if (gso_ports[fs->tx_port].enable)
686 		info.gso_enable = 1;
687 
688 	for (i = 0; i < nb_rx; i++) {
689 		if (likely(i < nb_rx - 1))
690 			rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
691 						       void *));
692 
693 		m = pkts_burst[i];
694 		info.is_tunnel = 0;
695 		info.pkt_len = rte_pktmbuf_pkt_len(m);
696 		tx_ol_flags = 0;
697 		rx_ol_flags = m->ol_flags;
698 
699 		/* Update the L3/L4 checksum error packet statistics */
700 		if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
701 			rx_bad_ip_csum += 1;
702 		if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
703 			rx_bad_l4_csum += 1;
704 
705 		/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
706 		 * and inner headers */
707 
708 		eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
709 		ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
710 				&eth_hdr->d_addr);
711 		ether_addr_copy(&ports[fs->tx_port].eth_addr,
712 				&eth_hdr->s_addr);
713 		parse_ethernet(eth_hdr, &info);
714 		l3_hdr = (char *)eth_hdr + info.l2_len;
715 
716 		/* check if it's a supported tunnel */
717 		if (txp->parse_tunnel) {
718 			if (info.l4_proto == IPPROTO_UDP) {
719 				struct udp_hdr *udp_hdr;
720 
721 				udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
722 					info.l3_len);
723 				parse_vxlan(udp_hdr, &info, m->packet_type);
724 				if (info.is_tunnel)
725 					tx_ol_flags |= PKT_TX_TUNNEL_VXLAN;
726 			} else if (info.l4_proto == IPPROTO_GRE) {
727 				struct simple_gre_hdr *gre_hdr;
728 
729 				gre_hdr = (struct simple_gre_hdr *)
730 					((char *)l3_hdr + info.l3_len);
731 				parse_gre(gre_hdr, &info);
732 				if (info.is_tunnel)
733 					tx_ol_flags |= PKT_TX_TUNNEL_GRE;
734 			} else if (info.l4_proto == IPPROTO_IPIP) {
735 				void *encap_ip_hdr;
736 
737 				encap_ip_hdr = (char *)l3_hdr + info.l3_len;
738 				parse_encap_ip(encap_ip_hdr, &info);
739 				if (info.is_tunnel)
740 					tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
741 			}
742 		}
743 
744 		/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
745 		if (info.is_tunnel) {
746 			outer_l3_hdr = l3_hdr;
747 			l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
748 		}
749 
750 		/* step 2: depending on user command line configuration,
751 		 * recompute checksum either in software or flag the
752 		 * mbuf to offload the calculation to the NIC. If TSO
753 		 * is configured, prepare the mbuf for TCP segmentation. */
754 
755 		/* process checksums of inner headers first */
756 		tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
757 			tx_offloads);
758 
759 		/* Then process outer headers if any. Note that the software
760 		 * checksum will be wrong if one of the inner checksums is
761 		 * processed in hardware. */
762 		if (info.is_tunnel == 1) {
763 			tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
764 					tx_offloads,
765 					!!(tx_ol_flags & PKT_TX_TCP_SEG));
766 		}
767 
768 		/* step 3: fill the mbuf meta data (flags and header lengths) */
769 
770 		if (info.is_tunnel == 1) {
771 			if (info.tunnel_tso_segsz ||
772 			    (tx_offloads &
773 			     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
774 			    (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
775 				m->outer_l2_len = info.outer_l2_len;
776 				m->outer_l3_len = info.outer_l3_len;
777 				m->l2_len = info.l2_len;
778 				m->l3_len = info.l3_len;
779 				m->l4_len = info.l4_len;
780 				m->tso_segsz = info.tunnel_tso_segsz;
781 			}
782 			else {
783 				/* if there is a outer UDP cksum
784 				   processed in sw and the inner in hw,
785 				   the outer checksum will be wrong as
786 				   the payload will be modified by the
787 				   hardware */
788 				m->l2_len = info.outer_l2_len +
789 					info.outer_l3_len + info.l2_len;
790 				m->l3_len = info.l3_len;
791 				m->l4_len = info.l4_len;
792 			}
793 		} else {
794 			/* this is only useful if an offload flag is
795 			 * set, but it does not hurt to fill it in any
796 			 * case */
797 			m->l2_len = info.l2_len;
798 			m->l3_len = info.l3_len;
799 			m->l4_len = info.l4_len;
800 			m->tso_segsz = info.tso_segsz;
801 		}
802 		m->ol_flags = tx_ol_flags;
803 
804 		/* Do split & copy for the packet. */
805 		if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
806 			p = pkt_copy_split(m);
807 			if (p != NULL) {
808 				rte_pktmbuf_free(m);
809 				m = p;
810 				pkts_burst[i] = m;
811 			}
812 		}
813 
814 		/* if verbose mode is enabled, dump debug info */
815 		if (verbose_level > 0) {
816 			char buf[256];
817 
818 			printf("-----------------\n");
819 			printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
820 				fs->rx_port, m, m->pkt_len, m->nb_segs);
821 			/* dump rx parsed packet info */
822 			rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
823 			printf("rx: l2_len=%d ethertype=%x l3_len=%d "
824 				"l4_proto=%d l4_len=%d flags=%s\n",
825 				info.l2_len, rte_be_to_cpu_16(info.ethertype),
826 				info.l3_len, info.l4_proto, info.l4_len, buf);
827 			if (rx_ol_flags & PKT_RX_LRO)
828 				printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
829 			if (info.is_tunnel == 1)
830 				printf("rx: outer_l2_len=%d outer_ethertype=%x "
831 					"outer_l3_len=%d\n", info.outer_l2_len,
832 					rte_be_to_cpu_16(info.outer_ethertype),
833 					info.outer_l3_len);
834 			/* dump tx packet info */
835 			if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
836 					    DEV_TX_OFFLOAD_UDP_CKSUM |
837 					    DEV_TX_OFFLOAD_TCP_CKSUM |
838 					    DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
839 				info.tso_segsz != 0)
840 				printf("tx: m->l2_len=%d m->l3_len=%d "
841 					"m->l4_len=%d\n",
842 					m->l2_len, m->l3_len, m->l4_len);
843 			if (info.is_tunnel == 1) {
844 				if ((tx_offloads &
845 				    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
846 				    (tx_ol_flags & PKT_TX_OUTER_IPV6))
847 					printf("tx: m->outer_l2_len=%d "
848 						"m->outer_l3_len=%d\n",
849 						m->outer_l2_len,
850 						m->outer_l3_len);
851 				if (info.tunnel_tso_segsz != 0 &&
852 						(m->ol_flags & PKT_TX_TCP_SEG))
853 					printf("tx: m->tso_segsz=%d\n",
854 						m->tso_segsz);
855 			} else if (info.tso_segsz != 0 &&
856 					(m->ol_flags & PKT_TX_TCP_SEG))
857 				printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
858 			rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
859 			printf("tx: flags=%s", buf);
860 			printf("\n");
861 		}
862 	}
863 
864 	if (unlikely(gro_enable)) {
865 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
866 			nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
867 					&(gro_ports[fs->rx_port].param));
868 		} else {
869 			gro_ctx = current_fwd_lcore()->gro_ctx;
870 			nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
871 
872 			if (++fs->gro_times >= gro_flush_cycles) {
873 				gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
874 				if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
875 					gro_pkts_num = MAX_PKT_BURST - nb_rx;
876 
877 				nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
878 						RTE_GRO_TCP_IPV4,
879 						&pkts_burst[nb_rx],
880 						gro_pkts_num);
881 				fs->gro_times = 0;
882 			}
883 		}
884 	}
885 
886 	if (gso_ports[fs->tx_port].enable == 0)
887 		tx_pkts_burst = pkts_burst;
888 	else {
889 		gso_ctx = &(current_fwd_lcore()->gso_ctx);
890 		gso_ctx->gso_size = gso_max_segment_size;
891 		for (i = 0; i < nb_rx; i++) {
892 			ret = rte_gso_segment(pkts_burst[i], gso_ctx,
893 					&gso_segments[nb_segments],
894 					GSO_MAX_PKT_BURST - nb_segments);
895 			if (ret >= 0)
896 				nb_segments += ret;
897 			else {
898 				TESTPMD_LOG(DEBUG, "Unable to segment packet");
899 				rte_pktmbuf_free(pkts_burst[i]);
900 			}
901 		}
902 
903 		tx_pkts_burst = gso_segments;
904 		nb_rx = nb_segments;
905 	}
906 
907 	nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
908 			tx_pkts_burst, nb_rx);
909 	if (nb_prep != nb_rx)
910 		printf("Preparing packet burst to transmit failed: %s\n",
911 				rte_strerror(rte_errno));
912 
913 	nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
914 			nb_prep);
915 
916 	/*
917 	 * Retry if necessary
918 	 */
919 	if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
920 		retry = 0;
921 		while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
922 			rte_delay_us(burst_tx_delay_time);
923 			nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
924 					&tx_pkts_burst[nb_tx], nb_rx - nb_tx);
925 		}
926 	}
927 	fs->tx_packets += nb_tx;
928 	fs->rx_bad_ip_csum += rx_bad_ip_csum;
929 	fs->rx_bad_l4_csum += rx_bad_l4_csum;
930 
931 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
932 	fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
933 #endif
934 	if (unlikely(nb_tx < nb_rx)) {
935 		fs->fwd_dropped += (nb_rx - nb_tx);
936 		do {
937 			rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
938 		} while (++nb_tx < nb_rx);
939 	}
940 
941 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
942 	end_tsc = rte_rdtsc();
943 	core_cycles = (end_tsc - start_tsc);
944 	fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
945 #endif
946 }
947 
948 struct fwd_engine csum_fwd_engine = {
949 	.fwd_mode_name  = "csum",
950 	.port_fwd_begin = NULL,
951 	.port_fwd_end   = NULL,
952 	.packet_fwd     = pkt_burst_checksum_forward,
953 };
954