1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_branch_prediction.h> 28 #include <rte_mempool.h> 29 #include <rte_mbuf.h> 30 #include <rte_interrupts.h> 31 #include <rte_pci.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_ip.h> 35 #include <rte_tcp.h> 36 #include <rte_udp.h> 37 #include <rte_vxlan.h> 38 #include <rte_sctp.h> 39 #include <rte_gtp.h> 40 #include <rte_prefetch.h> 41 #include <rte_string_fns.h> 42 #include <rte_flow.h> 43 #ifdef RTE_LIB_GRO 44 #include <rte_gro.h> 45 #endif 46 #ifdef RTE_LIB_GSO 47 #include <rte_gso.h> 48 #endif 49 #include <rte_geneve.h> 50 51 #include "testpmd.h" 52 53 #define IP_DEFTTL 64 /* from RFC 1340. */ 54 55 #define GRE_CHECKSUM_PRESENT 0x8000 56 #define GRE_KEY_PRESENT 0x2000 57 #define GRE_SEQUENCE_PRESENT 0x1000 58 #define GRE_EXT_LEN 4 59 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 60 GRE_SEQUENCE_PRESENT) 61 62 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 63 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 64 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 65 #else 66 #define _htons(x) (x) 67 #endif 68 69 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; 70 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; 71 72 /* structure that caches offload info for the current packet */ 73 struct testpmd_offload_info { 74 uint16_t ethertype; 75 #ifdef RTE_LIB_GSO 76 uint8_t gso_enable; 77 #endif 78 uint16_t l2_len; 79 uint16_t l3_len; 80 uint16_t l4_len; 81 uint8_t l4_proto; 82 uint8_t is_tunnel; 83 uint16_t outer_ethertype; 84 uint16_t outer_l2_len; 85 uint16_t outer_l3_len; 86 uint8_t outer_l4_proto; 87 uint16_t tso_segsz; 88 uint16_t tunnel_tso_segsz; 89 uint32_t pkt_len; 90 }; 91 92 /* simplified GRE header */ 93 struct simple_gre_hdr { 94 uint16_t flags; 95 uint16_t proto; 96 } __rte_packed; 97 98 static uint16_t 99 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 100 { 101 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 102 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 103 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ 104 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 105 } 106 107 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 108 static void 109 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 110 { 111 struct rte_tcp_hdr *tcp_hdr; 112 113 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); 114 info->l4_proto = ipv4_hdr->next_proto_id; 115 116 /* only fill l4_len for TCP, it's useful for TSO */ 117 if (info->l4_proto == IPPROTO_TCP) { 118 tcp_hdr = (struct rte_tcp_hdr *) 119 ((char *)ipv4_hdr + info->l3_len); 120 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 121 } else if (info->l4_proto == IPPROTO_UDP) 122 info->l4_len = sizeof(struct rte_udp_hdr); 123 else 124 info->l4_len = 0; 125 } 126 127 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 128 static void 129 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 130 { 131 struct rte_tcp_hdr *tcp_hdr; 132 133 info->l3_len = sizeof(struct rte_ipv6_hdr); 134 info->l4_proto = ipv6_hdr->proto; 135 136 /* only fill l4_len for TCP, it's useful for TSO */ 137 if (info->l4_proto == IPPROTO_TCP) { 138 tcp_hdr = (struct rte_tcp_hdr *) 139 ((char *)ipv6_hdr + info->l3_len); 140 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 141 } else if (info->l4_proto == IPPROTO_UDP) 142 info->l4_len = sizeof(struct rte_udp_hdr); 143 else 144 info->l4_len = 0; 145 } 146 147 /* 148 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 149 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN 150 * headers. The l4_len argument is only set in case of TCP (useful for TSO). 151 */ 152 static void 153 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 154 { 155 struct rte_ipv4_hdr *ipv4_hdr; 156 struct rte_ipv6_hdr *ipv6_hdr; 157 struct rte_vlan_hdr *vlan_hdr; 158 159 info->l2_len = sizeof(struct rte_ether_hdr); 160 info->ethertype = eth_hdr->ether_type; 161 162 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || 163 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { 164 vlan_hdr = (struct rte_vlan_hdr *) 165 ((char *)eth_hdr + info->l2_len); 166 info->l2_len += sizeof(struct rte_vlan_hdr); 167 info->ethertype = vlan_hdr->eth_proto; 168 } 169 170 switch (info->ethertype) { 171 case _htons(RTE_ETHER_TYPE_IPV4): 172 ipv4_hdr = (struct rte_ipv4_hdr *) 173 ((char *)eth_hdr + info->l2_len); 174 parse_ipv4(ipv4_hdr, info); 175 break; 176 case _htons(RTE_ETHER_TYPE_IPV6): 177 ipv6_hdr = (struct rte_ipv6_hdr *) 178 ((char *)eth_hdr + info->l2_len); 179 parse_ipv6(ipv6_hdr, info); 180 break; 181 default: 182 info->l4_len = 0; 183 info->l3_len = 0; 184 info->l4_proto = 0; 185 break; 186 } 187 } 188 189 /* Fill in outer layers length */ 190 static void 191 update_tunnel_outer(struct testpmd_offload_info *info) 192 { 193 info->is_tunnel = 1; 194 info->outer_ethertype = info->ethertype; 195 info->outer_l2_len = info->l2_len; 196 info->outer_l3_len = info->l3_len; 197 info->outer_l4_proto = info->l4_proto; 198 } 199 200 /* 201 * Parse a GTP protocol header. 202 * No optional fields and next extension header type. 203 */ 204 static void 205 parse_gtp(struct rte_udp_hdr *udp_hdr, 206 struct testpmd_offload_info *info) 207 { 208 struct rte_ipv4_hdr *ipv4_hdr; 209 struct rte_ipv6_hdr *ipv6_hdr; 210 struct rte_gtp_hdr *gtp_hdr; 211 uint8_t gtp_len = sizeof(*gtp_hdr); 212 uint8_t ip_ver; 213 214 /* Check udp destination port. */ 215 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && 216 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && 217 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) 218 return; 219 220 update_tunnel_outer(info); 221 info->l2_len = 0; 222 223 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + 224 sizeof(struct rte_udp_hdr)); 225 226 /* 227 * Check message type. If message type is 0xff, it is 228 * a GTP data packet. If not, it is a GTP control packet 229 */ 230 if (gtp_hdr->msg_type == 0xff) { 231 ip_ver = *(uint8_t *)((char *)udp_hdr + 232 sizeof(struct rte_udp_hdr) + 233 sizeof(struct rte_gtp_hdr)); 234 ip_ver = (ip_ver) & 0xf0; 235 236 if (ip_ver == RTE_GTP_TYPE_IPV4) { 237 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + 238 gtp_len); 239 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 240 parse_ipv4(ipv4_hdr, info); 241 } else if (ip_ver == RTE_GTP_TYPE_IPV6) { 242 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + 243 gtp_len); 244 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 245 parse_ipv6(ipv6_hdr, info); 246 } 247 } else { 248 info->ethertype = 0; 249 info->l4_len = 0; 250 info->l3_len = 0; 251 info->l4_proto = 0; 252 } 253 254 info->l2_len += RTE_ETHER_GTP_HLEN; 255 } 256 257 /* Parse a vxlan header */ 258 static void 259 parse_vxlan(struct rte_udp_hdr *udp_hdr, 260 struct testpmd_offload_info *info, 261 uint32_t pkt_type) 262 { 263 struct rte_ether_hdr *eth_hdr; 264 265 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the 266 * default vxlan port (rfc7348) or that the rx offload flag is set 267 * (i40e only currently) 268 */ 269 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) && 270 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 271 return; 272 273 update_tunnel_outer(info); 274 275 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 276 sizeof(struct rte_udp_hdr) + 277 sizeof(struct rte_vxlan_hdr)); 278 279 parse_ethernet(eth_hdr, info); 280 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 281 } 282 283 /* Parse a vxlan-gpe header */ 284 static void 285 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 286 struct testpmd_offload_info *info) 287 { 288 struct rte_ether_hdr *eth_hdr; 289 struct rte_ipv4_hdr *ipv4_hdr; 290 struct rte_ipv6_hdr *ipv6_hdr; 291 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 292 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 293 294 /* Check udp destination port. */ 295 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 296 return; 297 298 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 299 sizeof(struct rte_udp_hdr)); 300 301 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 302 RTE_VXLAN_GPE_TYPE_IPV4) { 303 update_tunnel_outer(info); 304 305 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 306 vxlan_gpe_len); 307 308 parse_ipv4(ipv4_hdr, info); 309 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 310 info->l2_len = 0; 311 312 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 313 update_tunnel_outer(info); 314 315 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 316 vxlan_gpe_len); 317 318 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 319 parse_ipv6(ipv6_hdr, info); 320 info->l2_len = 0; 321 322 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 323 update_tunnel_outer(info); 324 325 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 326 vxlan_gpe_len); 327 328 parse_ethernet(eth_hdr, info); 329 } else 330 return; 331 332 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 333 } 334 335 /* Parse a geneve header */ 336 static void 337 parse_geneve(struct rte_udp_hdr *udp_hdr, 338 struct testpmd_offload_info *info) 339 { 340 struct rte_ether_hdr *eth_hdr; 341 struct rte_ipv4_hdr *ipv4_hdr; 342 struct rte_ipv6_hdr *ipv6_hdr; 343 struct rte_geneve_hdr *geneve_hdr; 344 uint16_t geneve_len; 345 346 /* Check udp destination port. */ 347 if (udp_hdr->dst_port != _htons(geneve_udp_port)) 348 return; 349 350 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + 351 sizeof(struct rte_udp_hdr)); 352 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; 353 if (!geneve_hdr->proto || geneve_hdr->proto == 354 _htons(RTE_ETHER_TYPE_IPV4)) { 355 update_tunnel_outer(info); 356 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + 357 geneve_len); 358 parse_ipv4(ipv4_hdr, info); 359 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 360 info->l2_len = 0; 361 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 362 update_tunnel_outer(info); 363 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + 364 geneve_len); 365 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 366 parse_ipv6(ipv6_hdr, info); 367 info->l2_len = 0; 368 369 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { 370 update_tunnel_outer(info); 371 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + 372 geneve_len); 373 parse_ethernet(eth_hdr, info); 374 } else 375 return; 376 377 info->l2_len += 378 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + 379 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); 380 } 381 382 /* Parse a gre header */ 383 static void 384 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 385 { 386 struct rte_ether_hdr *eth_hdr; 387 struct rte_ipv4_hdr *ipv4_hdr; 388 struct rte_ipv6_hdr *ipv6_hdr; 389 uint8_t gre_len = 0; 390 391 gre_len += sizeof(struct simple_gre_hdr); 392 393 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 394 gre_len += GRE_EXT_LEN; 395 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 396 gre_len += GRE_EXT_LEN; 397 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 398 gre_len += GRE_EXT_LEN; 399 400 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { 401 update_tunnel_outer(info); 402 403 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 404 405 parse_ipv4(ipv4_hdr, info); 406 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 407 info->l2_len = 0; 408 409 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 410 update_tunnel_outer(info); 411 412 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 413 414 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 415 parse_ipv6(ipv6_hdr, info); 416 info->l2_len = 0; 417 418 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 419 update_tunnel_outer(info); 420 421 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 422 423 parse_ethernet(eth_hdr, info); 424 } else 425 return; 426 427 info->l2_len += gre_len; 428 } 429 430 431 /* Parse an encapsulated ip or ipv6 header */ 432 static void 433 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 434 { 435 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 436 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 437 uint8_t ip_version; 438 439 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 440 441 if (ip_version != 4 && ip_version != 6) 442 return; 443 444 info->is_tunnel = 1; 445 info->outer_ethertype = info->ethertype; 446 info->outer_l2_len = info->l2_len; 447 info->outer_l3_len = info->l3_len; 448 449 if (ip_version == 4) { 450 parse_ipv4(ipv4_hdr, info); 451 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 452 } else { 453 parse_ipv6(ipv6_hdr, info); 454 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 455 } 456 info->l2_len = 0; 457 } 458 459 /* if possible, calculate the checksum of a packet in hw or sw, 460 * depending on the testpmd command line configuration */ 461 static uint64_t 462 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 463 uint64_t tx_offloads) 464 { 465 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 466 struct rte_udp_hdr *udp_hdr; 467 struct rte_tcp_hdr *tcp_hdr; 468 struct rte_sctp_hdr *sctp_hdr; 469 uint64_t ol_flags = 0; 470 uint32_t max_pkt_len, tso_segsz = 0; 471 472 /* ensure packet is large enough to require tso */ 473 if (!info->is_tunnel) { 474 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 475 info->tso_segsz; 476 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 477 tso_segsz = info->tso_segsz; 478 } else { 479 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 480 info->l2_len + info->l3_len + info->l4_len + 481 info->tunnel_tso_segsz; 482 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 483 tso_segsz = info->tunnel_tso_segsz; 484 } 485 486 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 487 ipv4_hdr = l3_hdr; 488 489 ol_flags |= RTE_MBUF_F_TX_IPV4; 490 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 491 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 492 } else { 493 if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) { 494 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 495 } else { 496 ipv4_hdr->hdr_checksum = 0; 497 ipv4_hdr->hdr_checksum = 498 rte_ipv4_cksum(ipv4_hdr); 499 } 500 } 501 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) 502 ol_flags |= RTE_MBUF_F_TX_IPV6; 503 else 504 return 0; /* packet type not supported, nothing to do */ 505 506 if (info->l4_proto == IPPROTO_UDP) { 507 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 508 /* do not recalculate udp cksum if it was 0 */ 509 if (udp_hdr->dgram_cksum != 0) { 510 if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) { 511 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM; 512 } else { 513 udp_hdr->dgram_cksum = 0; 514 udp_hdr->dgram_cksum = 515 get_udptcp_checksum(l3_hdr, udp_hdr, 516 info->ethertype); 517 } 518 } 519 #ifdef RTE_LIB_GSO 520 if (info->gso_enable) 521 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 522 #endif 523 } else if (info->l4_proto == IPPROTO_TCP) { 524 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 525 if (tso_segsz) 526 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 527 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) { 528 ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM; 529 } else { 530 tcp_hdr->cksum = 0; 531 tcp_hdr->cksum = 532 get_udptcp_checksum(l3_hdr, tcp_hdr, 533 info->ethertype); 534 } 535 #ifdef RTE_LIB_GSO 536 if (info->gso_enable) 537 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 538 #endif 539 } else if (info->l4_proto == IPPROTO_SCTP) { 540 sctp_hdr = (struct rte_sctp_hdr *) 541 ((char *)l3_hdr + info->l3_len); 542 /* sctp payload must be a multiple of 4 to be 543 * offloaded */ 544 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) && 545 ((ipv4_hdr->total_length & 0x3) == 0)) { 546 ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM; 547 } else { 548 sctp_hdr->cksum = 0; 549 /* XXX implement CRC32c, example available in 550 * RFC3309 */ 551 } 552 } 553 554 return ol_flags; 555 } 556 557 /* Calculate the checksum of outer header */ 558 static uint64_t 559 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 560 uint64_t tx_offloads, int tso_enabled) 561 { 562 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 563 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 564 struct rte_udp_hdr *udp_hdr; 565 uint64_t ol_flags = 0; 566 567 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 568 ipv4_hdr->hdr_checksum = 0; 569 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4; 570 571 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) 572 ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM; 573 else 574 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 575 } else 576 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6; 577 578 if (info->outer_l4_proto != IPPROTO_UDP) 579 return ol_flags; 580 581 udp_hdr = (struct rte_udp_hdr *) 582 ((char *)outer_l3_hdr + info->outer_l3_len); 583 584 if (tso_enabled) 585 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 586 587 /* Skip SW outer UDP checksum generation if HW supports it */ 588 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) { 589 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 590 udp_hdr->dgram_cksum 591 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 592 else 593 udp_hdr->dgram_cksum 594 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 595 596 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM; 597 return ol_flags; 598 } 599 600 /* outer UDP checksum is done in software. In the other side, for 601 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 602 * set to zero. 603 * 604 * If a packet will be TSOed into small packets by NIC, we cannot 605 * set/calculate a non-zero checksum, because it will be a wrong 606 * value after the packet be split into several small packets. 607 */ 608 if (tso_enabled) 609 udp_hdr->dgram_cksum = 0; 610 611 /* do not recalculate udp cksum if it was 0 */ 612 if (udp_hdr->dgram_cksum != 0) { 613 udp_hdr->dgram_cksum = 0; 614 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 615 udp_hdr->dgram_cksum = 616 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 617 else 618 udp_hdr->dgram_cksum = 619 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 620 } 621 622 return ol_flags; 623 } 624 625 /* 626 * Helper function. 627 * Performs actual copying. 628 * Returns number of segments in the destination mbuf on success, 629 * or negative error code on failure. 630 */ 631 static int 632 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 633 uint16_t seglen[], uint8_t nb_seg) 634 { 635 uint32_t dlen, slen, tlen; 636 uint32_t i, len; 637 const struct rte_mbuf *m; 638 const uint8_t *src; 639 uint8_t *dst; 640 641 dlen = 0; 642 slen = 0; 643 tlen = 0; 644 645 dst = NULL; 646 src = NULL; 647 648 m = ms; 649 i = 0; 650 while (ms != NULL && i != nb_seg) { 651 652 if (slen == 0) { 653 slen = rte_pktmbuf_data_len(ms); 654 src = rte_pktmbuf_mtod(ms, const uint8_t *); 655 } 656 657 if (dlen == 0) { 658 dlen = RTE_MIN(seglen[i], slen); 659 md[i]->data_len = dlen; 660 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 661 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 662 } 663 664 len = RTE_MIN(slen, dlen); 665 memcpy(dst, src, len); 666 tlen += len; 667 slen -= len; 668 dlen -= len; 669 src += len; 670 dst += len; 671 672 if (slen == 0) 673 ms = ms->next; 674 if (dlen == 0) 675 i++; 676 } 677 678 if (ms != NULL) 679 return -ENOBUFS; 680 else if (tlen != m->pkt_len) 681 return -EINVAL; 682 683 md[0]->nb_segs = nb_seg; 684 md[0]->pkt_len = tlen; 685 md[0]->vlan_tci = m->vlan_tci; 686 md[0]->vlan_tci_outer = m->vlan_tci_outer; 687 md[0]->ol_flags = m->ol_flags; 688 md[0]->tx_offload = m->tx_offload; 689 690 return nb_seg; 691 } 692 693 /* 694 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 695 * Copy packet contents and offload information into the new segmented mbuf. 696 */ 697 static struct rte_mbuf * 698 pkt_copy_split(const struct rte_mbuf *pkt) 699 { 700 int32_t n, rc; 701 uint32_t i, len, nb_seg; 702 struct rte_mempool *mp; 703 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 704 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 705 706 mp = current_fwd_lcore()->mbp; 707 708 if (tx_pkt_split == TX_PKT_SPLIT_RND) 709 nb_seg = rte_rand() % tx_pkt_nb_segs + 1; 710 else 711 nb_seg = tx_pkt_nb_segs; 712 713 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 714 715 /* calculate number of segments to use and their length. */ 716 len = 0; 717 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 718 len += seglen[i]; 719 md[i] = NULL; 720 } 721 722 n = pkt->pkt_len - len; 723 724 /* update size of the last segment to fit rest of the packet */ 725 if (n >= 0) { 726 seglen[i - 1] += n; 727 len += n; 728 } 729 730 nb_seg = i; 731 while (i != 0) { 732 p = rte_pktmbuf_alloc(mp); 733 if (p == NULL) { 734 TESTPMD_LOG(ERR, 735 "failed to allocate %u-th of %u mbuf " 736 "from mempool: %s\n", 737 nb_seg - i, nb_seg, mp->name); 738 break; 739 } 740 741 md[--i] = p; 742 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 743 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 744 "expected seglen: %u, " 745 "actual mbuf tailroom: %u\n", 746 mp->name, i, seglen[i], 747 rte_pktmbuf_tailroom(md[i])); 748 break; 749 } 750 } 751 752 /* all mbufs successfully allocated, do copy */ 753 if (i == 0) { 754 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 755 if (rc < 0) 756 TESTPMD_LOG(ERR, 757 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 758 "into %u segments failed with error code: %d\n", 759 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 760 761 /* figure out how many mbufs to free. */ 762 i = RTE_MAX(rc, 0); 763 } 764 765 /* free unused mbufs */ 766 for (; i != nb_seg; i++) { 767 rte_pktmbuf_free_seg(md[i]); 768 md[i] = NULL; 769 } 770 771 return md[0]; 772 } 773 774 /* 775 * Receive a burst of packets, and for each packet: 776 * - parse packet, and try to recognize a supported packet type (1) 777 * - if it's not a supported packet type, don't touch the packet, else: 778 * - reprocess the checksum of all supported layers. This is done in SW 779 * or HW, depending on testpmd command line configuration 780 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 781 * segmentation offload (this implies HW TCP checksum) 782 * Then transmit packets on the output port. 783 * 784 * (1) Supported packets are: 785 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 786 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 787 * UDP|TCP|SCTP 788 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 789 * UDP|TCP|SCTP 790 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 791 * UDP|TCP|SCTP 792 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP 793 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 794 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 795 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 796 * 797 * The testpmd command line for this forward engine sets the flags 798 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 799 * wether a checksum must be calculated in software or in hardware. The 800 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 801 * OUTER_IP is only useful for tunnel packets. 802 */ 803 static void 804 pkt_burst_checksum_forward(struct fwd_stream *fs) 805 { 806 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 807 #ifdef RTE_LIB_GSO 808 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 809 struct rte_gso_ctx *gso_ctx; 810 #endif 811 struct rte_mbuf **tx_pkts_burst; 812 struct rte_port *txp; 813 struct rte_mbuf *m, *p; 814 struct rte_ether_hdr *eth_hdr; 815 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 816 #ifdef RTE_LIB_GRO 817 void **gro_ctx; 818 uint16_t gro_pkts_num; 819 uint8_t gro_enable; 820 #endif 821 uint16_t nb_rx; 822 uint16_t nb_tx; 823 uint16_t nb_prep; 824 uint16_t i; 825 uint64_t rx_ol_flags, tx_ol_flags; 826 uint64_t tx_offloads; 827 uint32_t retry; 828 uint32_t rx_bad_ip_csum; 829 uint32_t rx_bad_l4_csum; 830 uint32_t rx_bad_outer_l4_csum; 831 uint32_t rx_bad_outer_ip_csum; 832 struct testpmd_offload_info info; 833 834 uint64_t start_tsc = 0; 835 836 get_start_cycles(&start_tsc); 837 838 /* receive a burst of packet */ 839 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 840 nb_pkt_per_burst); 841 inc_rx_burst_stats(fs, nb_rx); 842 if (unlikely(nb_rx == 0)) 843 return; 844 845 fs->rx_packets += nb_rx; 846 rx_bad_ip_csum = 0; 847 rx_bad_l4_csum = 0; 848 rx_bad_outer_l4_csum = 0; 849 rx_bad_outer_ip_csum = 0; 850 #ifdef RTE_LIB_GRO 851 gro_enable = gro_ports[fs->rx_port].enable; 852 #endif 853 854 txp = &ports[fs->tx_port]; 855 tx_offloads = txp->dev_conf.txmode.offloads; 856 memset(&info, 0, sizeof(info)); 857 info.tso_segsz = txp->tso_segsz; 858 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 859 #ifdef RTE_LIB_GSO 860 if (gso_ports[fs->tx_port].enable) 861 info.gso_enable = 1; 862 #endif 863 864 for (i = 0; i < nb_rx; i++) { 865 if (likely(i < nb_rx - 1)) 866 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 867 void *)); 868 869 m = pkts_burst[i]; 870 info.is_tunnel = 0; 871 info.pkt_len = rte_pktmbuf_pkt_len(m); 872 tx_ol_flags = m->ol_flags & 873 (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL); 874 rx_ol_flags = m->ol_flags; 875 876 /* Update the L3/L4 checksum error packet statistics */ 877 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD) 878 rx_bad_ip_csum += 1; 879 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD) 880 rx_bad_l4_csum += 1; 881 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD) 882 rx_bad_outer_l4_csum += 1; 883 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) 884 rx_bad_outer_ip_csum += 1; 885 886 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 887 * and inner headers */ 888 889 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 890 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 891 ð_hdr->dst_addr); 892 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, 893 ð_hdr->src_addr); 894 parse_ethernet(eth_hdr, &info); 895 l3_hdr = (char *)eth_hdr + info.l2_len; 896 897 /* check if it's a supported tunnel */ 898 if (txp->parse_tunnel) { 899 if (info.l4_proto == IPPROTO_UDP) { 900 struct rte_udp_hdr *udp_hdr; 901 902 udp_hdr = (struct rte_udp_hdr *) 903 ((char *)l3_hdr + info.l3_len); 904 parse_gtp(udp_hdr, &info); 905 if (info.is_tunnel) { 906 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP; 907 goto tunnel_update; 908 } 909 parse_vxlan_gpe(udp_hdr, &info); 910 if (info.is_tunnel) { 911 tx_ol_flags |= 912 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE; 913 goto tunnel_update; 914 } 915 parse_vxlan(udp_hdr, &info, 916 m->packet_type); 917 if (info.is_tunnel) { 918 tx_ol_flags |= 919 RTE_MBUF_F_TX_TUNNEL_VXLAN; 920 goto tunnel_update; 921 } 922 parse_geneve(udp_hdr, &info); 923 if (info.is_tunnel) { 924 tx_ol_flags |= 925 RTE_MBUF_F_TX_TUNNEL_GENEVE; 926 goto tunnel_update; 927 } 928 } else if (info.l4_proto == IPPROTO_GRE) { 929 struct simple_gre_hdr *gre_hdr; 930 931 gre_hdr = (struct simple_gre_hdr *) 932 ((char *)l3_hdr + info.l3_len); 933 parse_gre(gre_hdr, &info); 934 if (info.is_tunnel) 935 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE; 936 } else if (info.l4_proto == IPPROTO_IPIP) { 937 void *encap_ip_hdr; 938 939 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 940 parse_encap_ip(encap_ip_hdr, &info); 941 if (info.is_tunnel) 942 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP; 943 } 944 } 945 946 tunnel_update: 947 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 948 if (info.is_tunnel) { 949 outer_l3_hdr = l3_hdr; 950 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 951 } 952 953 /* step 2: depending on user command line configuration, 954 * recompute checksum either in software or flag the 955 * mbuf to offload the calculation to the NIC. If TSO 956 * is configured, prepare the mbuf for TCP segmentation. */ 957 958 /* process checksums of inner headers first */ 959 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 960 tx_offloads); 961 962 /* Then process outer headers if any. Note that the software 963 * checksum will be wrong if one of the inner checksums is 964 * processed in hardware. */ 965 if (info.is_tunnel == 1) { 966 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 967 tx_offloads, 968 !!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG)); 969 } 970 971 /* step 3: fill the mbuf meta data (flags and header lengths) */ 972 973 m->tx_offload = 0; 974 if (info.is_tunnel == 1) { 975 if (info.tunnel_tso_segsz || 976 (tx_offloads & 977 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 978 (tx_offloads & 979 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) { 980 m->outer_l2_len = info.outer_l2_len; 981 m->outer_l3_len = info.outer_l3_len; 982 m->l2_len = info.l2_len; 983 m->l3_len = info.l3_len; 984 m->l4_len = info.l4_len; 985 m->tso_segsz = info.tunnel_tso_segsz; 986 } 987 else { 988 /* if there is a outer UDP cksum 989 processed in sw and the inner in hw, 990 the outer checksum will be wrong as 991 the payload will be modified by the 992 hardware */ 993 m->l2_len = info.outer_l2_len + 994 info.outer_l3_len + info.l2_len; 995 m->l3_len = info.l3_len; 996 m->l4_len = info.l4_len; 997 } 998 } else { 999 /* this is only useful if an offload flag is 1000 * set, but it does not hurt to fill it in any 1001 * case */ 1002 m->l2_len = info.l2_len; 1003 m->l3_len = info.l3_len; 1004 m->l4_len = info.l4_len; 1005 m->tso_segsz = info.tso_segsz; 1006 } 1007 m->ol_flags = tx_ol_flags; 1008 1009 /* Do split & copy for the packet. */ 1010 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 1011 p = pkt_copy_split(m); 1012 if (p != NULL) { 1013 rte_pktmbuf_free(m); 1014 m = p; 1015 pkts_burst[i] = m; 1016 } 1017 } 1018 1019 /* if verbose mode is enabled, dump debug info */ 1020 if (verbose_level > 0) { 1021 char buf[256]; 1022 1023 printf("-----------------\n"); 1024 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 1025 fs->rx_port, m, m->pkt_len, m->nb_segs); 1026 /* dump rx parsed packet info */ 1027 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 1028 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 1029 "l4_proto=%d l4_len=%d flags=%s\n", 1030 info.l2_len, rte_be_to_cpu_16(info.ethertype), 1031 info.l3_len, info.l4_proto, info.l4_len, buf); 1032 if (rx_ol_flags & RTE_MBUF_F_RX_LRO) 1033 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 1034 if (info.is_tunnel == 1) 1035 printf("rx: outer_l2_len=%d outer_ethertype=%x " 1036 "outer_l3_len=%d\n", info.outer_l2_len, 1037 rte_be_to_cpu_16(info.outer_ethertype), 1038 info.outer_l3_len); 1039 /* dump tx packet info */ 1040 if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 1041 RTE_ETH_TX_OFFLOAD_UDP_CKSUM | 1042 RTE_ETH_TX_OFFLOAD_TCP_CKSUM | 1043 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) || 1044 info.tso_segsz != 0) 1045 printf("tx: m->l2_len=%d m->l3_len=%d " 1046 "m->l4_len=%d\n", 1047 m->l2_len, m->l3_len, m->l4_len); 1048 if (info.is_tunnel == 1) { 1049 if ((tx_offloads & 1050 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1051 (tx_offloads & 1052 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) || 1053 (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)) 1054 printf("tx: m->outer_l2_len=%d " 1055 "m->outer_l3_len=%d\n", 1056 m->outer_l2_len, 1057 m->outer_l3_len); 1058 if (info.tunnel_tso_segsz != 0 && 1059 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1060 printf("tx: m->tso_segsz=%d\n", 1061 m->tso_segsz); 1062 } else if (info.tso_segsz != 0 && 1063 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1064 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 1065 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 1066 printf("tx: flags=%s", buf); 1067 printf("\n"); 1068 } 1069 } 1070 1071 #ifdef RTE_LIB_GRO 1072 if (unlikely(gro_enable)) { 1073 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 1074 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 1075 &(gro_ports[fs->rx_port].param)); 1076 } else { 1077 gro_ctx = current_fwd_lcore()->gro_ctx; 1078 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 1079 1080 if (++fs->gro_times >= gro_flush_cycles) { 1081 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 1082 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 1083 gro_pkts_num = MAX_PKT_BURST - nb_rx; 1084 1085 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 1086 RTE_GRO_TCP_IPV4, 1087 &pkts_burst[nb_rx], 1088 gro_pkts_num); 1089 fs->gro_times = 0; 1090 } 1091 } 1092 } 1093 #endif 1094 1095 #ifdef RTE_LIB_GSO 1096 if (gso_ports[fs->tx_port].enable != 0) { 1097 uint16_t nb_segments = 0; 1098 1099 gso_ctx = &(current_fwd_lcore()->gso_ctx); 1100 gso_ctx->gso_size = gso_max_segment_size; 1101 for (i = 0; i < nb_rx; i++) { 1102 int ret; 1103 1104 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 1105 &gso_segments[nb_segments], 1106 GSO_MAX_PKT_BURST - nb_segments); 1107 if (ret >= 1) { 1108 /* pkts_burst[i] can be freed safely here. */ 1109 rte_pktmbuf_free(pkts_burst[i]); 1110 nb_segments += ret; 1111 } else if (ret == 0) { 1112 /* 0 means it can be transmitted directly 1113 * without gso. 1114 */ 1115 gso_segments[nb_segments] = pkts_burst[i]; 1116 nb_segments += 1; 1117 } else { 1118 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 1119 rte_pktmbuf_free(pkts_burst[i]); 1120 } 1121 } 1122 1123 tx_pkts_burst = gso_segments; 1124 nb_rx = nb_segments; 1125 } else 1126 #endif 1127 tx_pkts_burst = pkts_burst; 1128 1129 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 1130 tx_pkts_burst, nb_rx); 1131 if (nb_prep != nb_rx) 1132 fprintf(stderr, 1133 "Preparing packet burst to transmit failed: %s\n", 1134 rte_strerror(rte_errno)); 1135 1136 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 1137 nb_prep); 1138 1139 /* 1140 * Retry if necessary 1141 */ 1142 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 1143 retry = 0; 1144 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 1145 rte_delay_us(burst_tx_delay_time); 1146 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 1147 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 1148 } 1149 } 1150 fs->tx_packets += nb_tx; 1151 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1152 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1153 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1154 fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; 1155 1156 inc_tx_burst_stats(fs, nb_tx); 1157 if (unlikely(nb_tx < nb_rx)) { 1158 fs->fwd_dropped += (nb_rx - nb_tx); 1159 do { 1160 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 1161 } while (++nb_tx < nb_rx); 1162 } 1163 1164 get_end_cycles(fs, start_tsc); 1165 } 1166 1167 struct fwd_engine csum_fwd_engine = { 1168 .fwd_mode_name = "csum", 1169 .port_fwd_begin = NULL, 1170 .port_fwd_end = NULL, 1171 .packet_fwd = pkt_burst_checksum_forward, 1172 }; 1173