xref: /dpdk/app/test-pmd/csumonly.c (revision f5057be340e44f3edc0fe90fa875eb89a4c49b4f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_vxlan.h>
39 #include <rte_sctp.h>
40 #include <rte_gtp.h>
41 #include <rte_prefetch.h>
42 #include <rte_string_fns.h>
43 #include <rte_flow.h>
44 #include <rte_gro.h>
45 #include <rte_gso.h>
46 
47 #include "testpmd.h"
48 
49 #define IP_DEFTTL  64   /* from RFC 1340. */
50 
51 #define GRE_CHECKSUM_PRESENT	0x8000
52 #define GRE_KEY_PRESENT		0x2000
53 #define GRE_SEQUENCE_PRESENT	0x1000
54 #define GRE_EXT_LEN		4
55 #define GRE_SUPPORTED_FIELDS	(GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
56 				 GRE_SEQUENCE_PRESENT)
57 
58 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
59 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
60 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
61 #else
62 #define _htons(x) (x)
63 #endif
64 
65 uint16_t vxlan_gpe_udp_port = 4790;
66 
67 /* structure that caches offload info for the current packet */
68 struct testpmd_offload_info {
69 	uint16_t ethertype;
70 	uint8_t gso_enable;
71 	uint16_t l2_len;
72 	uint16_t l3_len;
73 	uint16_t l4_len;
74 	uint8_t l4_proto;
75 	uint8_t is_tunnel;
76 	uint16_t outer_ethertype;
77 	uint16_t outer_l2_len;
78 	uint16_t outer_l3_len;
79 	uint8_t outer_l4_proto;
80 	uint16_t tso_segsz;
81 	uint16_t tunnel_tso_segsz;
82 	uint32_t pkt_len;
83 };
84 
85 /* simplified GRE header */
86 struct simple_gre_hdr {
87 	uint16_t flags;
88 	uint16_t proto;
89 } __rte_packed;
90 
91 static uint16_t
92 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
93 {
94 	if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
95 		return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
96 	else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
97 		return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
98 }
99 
100 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
101 static void
102 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
103 {
104 	struct rte_tcp_hdr *tcp_hdr;
105 
106 	info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
107 	info->l4_proto = ipv4_hdr->next_proto_id;
108 
109 	/* only fill l4_len for TCP, it's useful for TSO */
110 	if (info->l4_proto == IPPROTO_TCP) {
111 		tcp_hdr = (struct rte_tcp_hdr *)
112 			((char *)ipv4_hdr + info->l3_len);
113 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
114 	} else if (info->l4_proto == IPPROTO_UDP)
115 		info->l4_len = sizeof(struct rte_udp_hdr);
116 	else
117 		info->l4_len = 0;
118 }
119 
120 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
121 static void
122 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
123 {
124 	struct rte_tcp_hdr *tcp_hdr;
125 
126 	info->l3_len = sizeof(struct rte_ipv6_hdr);
127 	info->l4_proto = ipv6_hdr->proto;
128 
129 	/* only fill l4_len for TCP, it's useful for TSO */
130 	if (info->l4_proto == IPPROTO_TCP) {
131 		tcp_hdr = (struct rte_tcp_hdr *)
132 			((char *)ipv6_hdr + info->l3_len);
133 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
134 	} else if (info->l4_proto == IPPROTO_UDP)
135 		info->l4_len = sizeof(struct rte_udp_hdr);
136 	else
137 		info->l4_len = 0;
138 }
139 
140 /*
141  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
142  * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
143  * headers. The l4_len argument is only set in case of TCP (useful for TSO).
144  */
145 static void
146 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
147 {
148 	struct rte_ipv4_hdr *ipv4_hdr;
149 	struct rte_ipv6_hdr *ipv6_hdr;
150 	struct rte_vlan_hdr *vlan_hdr;
151 
152 	info->l2_len = sizeof(struct rte_ether_hdr);
153 	info->ethertype = eth_hdr->ether_type;
154 
155 	while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
156 	       info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
157 		vlan_hdr = (struct rte_vlan_hdr *)
158 			((char *)eth_hdr + info->l2_len);
159 		info->l2_len  += sizeof(struct rte_vlan_hdr);
160 		info->ethertype = vlan_hdr->eth_proto;
161 	}
162 
163 	switch (info->ethertype) {
164 	case _htons(RTE_ETHER_TYPE_IPV4):
165 		ipv4_hdr = (struct rte_ipv4_hdr *)
166 			((char *)eth_hdr + info->l2_len);
167 		parse_ipv4(ipv4_hdr, info);
168 		break;
169 	case _htons(RTE_ETHER_TYPE_IPV6):
170 		ipv6_hdr = (struct rte_ipv6_hdr *)
171 			((char *)eth_hdr + info->l2_len);
172 		parse_ipv6(ipv6_hdr, info);
173 		break;
174 	default:
175 		info->l4_len = 0;
176 		info->l3_len = 0;
177 		info->l4_proto = 0;
178 		break;
179 	}
180 }
181 
182 /*
183  * Parse a GTP protocol header.
184  * No optional fields and next extension header type.
185  */
186 static void
187 parse_gtp(struct rte_udp_hdr *udp_hdr,
188 	  struct testpmd_offload_info *info)
189 {
190 	struct rte_ipv4_hdr *ipv4_hdr;
191 	struct rte_ipv6_hdr *ipv6_hdr;
192 	struct rte_gtp_hdr *gtp_hdr;
193 	uint8_t gtp_len = sizeof(*gtp_hdr);
194 	uint8_t ip_ver;
195 
196 	/* Check udp destination port. */
197 	if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
198 	    udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
199 	    udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
200 		return;
201 
202 	info->is_tunnel = 1;
203 	info->outer_ethertype = info->ethertype;
204 	info->outer_l2_len = info->l2_len;
205 	info->outer_l3_len = info->l3_len;
206 	info->outer_l4_proto = info->l4_proto;
207 	info->l2_len = 0;
208 
209 	gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
210 		  sizeof(struct rte_udp_hdr));
211 
212 	/*
213 	 * Check message type. If message type is 0xff, it is
214 	 * a GTP data packet. If not, it is a GTP control packet
215 	 */
216 	if (gtp_hdr->msg_type == 0xff) {
217 		ip_ver = *(uint8_t *)((char *)udp_hdr +
218 			 sizeof(struct rte_udp_hdr) +
219 			 sizeof(struct rte_gtp_hdr));
220 		ip_ver = (ip_ver) & 0xf0;
221 
222 		if (ip_ver == RTE_GTP_TYPE_IPV4) {
223 			ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
224 				   gtp_len);
225 			info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
226 			parse_ipv4(ipv4_hdr, info);
227 		} else if (ip_ver == RTE_GTP_TYPE_IPV6) {
228 			ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
229 				   gtp_len);
230 			info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
231 			parse_ipv6(ipv6_hdr, info);
232 		}
233 	} else {
234 		info->ethertype = 0;
235 		info->l4_len = 0;
236 		info->l3_len = 0;
237 		info->l4_proto = 0;
238 	}
239 
240 	info->l2_len += RTE_ETHER_GTP_HLEN;
241 }
242 
243 /* Parse a vxlan header */
244 static void
245 parse_vxlan(struct rte_udp_hdr *udp_hdr,
246 	    struct testpmd_offload_info *info,
247 	    uint32_t pkt_type)
248 {
249 	struct rte_ether_hdr *eth_hdr;
250 
251 	/* check udp destination port, 4789 is the default vxlan port
252 	 * (rfc7348) or that the rx offload flag is set (i40e only
253 	 * currently) */
254 	if (udp_hdr->dst_port != _htons(4789) &&
255 		RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
256 		return;
257 
258 	info->is_tunnel = 1;
259 	info->outer_ethertype = info->ethertype;
260 	info->outer_l2_len = info->l2_len;
261 	info->outer_l3_len = info->l3_len;
262 	info->outer_l4_proto = info->l4_proto;
263 
264 	eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
265 		sizeof(struct rte_udp_hdr) +
266 		sizeof(struct rte_vxlan_hdr));
267 
268 	parse_ethernet(eth_hdr, info);
269 	info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
270 }
271 
272 /* Parse a vxlan-gpe header */
273 static void
274 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
275 	    struct testpmd_offload_info *info)
276 {
277 	struct rte_ether_hdr *eth_hdr;
278 	struct rte_ipv4_hdr *ipv4_hdr;
279 	struct rte_ipv6_hdr *ipv6_hdr;
280 	struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
281 	uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
282 
283 	/* Check udp destination port. */
284 	if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
285 		return;
286 
287 	vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
288 				sizeof(struct rte_udp_hdr));
289 
290 	if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
291 	    RTE_VXLAN_GPE_TYPE_IPV4) {
292 		info->is_tunnel = 1;
293 		info->outer_ethertype = info->ethertype;
294 		info->outer_l2_len = info->l2_len;
295 		info->outer_l3_len = info->l3_len;
296 		info->outer_l4_proto = info->l4_proto;
297 
298 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
299 			   vxlan_gpe_len);
300 
301 		parse_ipv4(ipv4_hdr, info);
302 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
303 		info->l2_len = 0;
304 
305 	} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
306 		info->is_tunnel = 1;
307 		info->outer_ethertype = info->ethertype;
308 		info->outer_l2_len = info->l2_len;
309 		info->outer_l3_len = info->l3_len;
310 		info->outer_l4_proto = info->l4_proto;
311 
312 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
313 			   vxlan_gpe_len);
314 
315 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
316 		parse_ipv6(ipv6_hdr, info);
317 		info->l2_len = 0;
318 
319 	} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
320 		info->is_tunnel = 1;
321 		info->outer_ethertype = info->ethertype;
322 		info->outer_l2_len = info->l2_len;
323 		info->outer_l3_len = info->l3_len;
324 		info->outer_l4_proto = info->l4_proto;
325 
326 		eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
327 			  vxlan_gpe_len);
328 
329 		parse_ethernet(eth_hdr, info);
330 	} else
331 		return;
332 
333 	info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
334 }
335 
336 /* Parse a gre header */
337 static void
338 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
339 {
340 	struct rte_ether_hdr *eth_hdr;
341 	struct rte_ipv4_hdr *ipv4_hdr;
342 	struct rte_ipv6_hdr *ipv6_hdr;
343 	uint8_t gre_len = 0;
344 
345 	gre_len += sizeof(struct simple_gre_hdr);
346 
347 	if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
348 		gre_len += GRE_EXT_LEN;
349 	if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
350 		gre_len += GRE_EXT_LEN;
351 	if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
352 		gre_len += GRE_EXT_LEN;
353 
354 	if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
355 		info->is_tunnel = 1;
356 		info->outer_ethertype = info->ethertype;
357 		info->outer_l2_len = info->l2_len;
358 		info->outer_l3_len = info->l3_len;
359 		info->outer_l4_proto = info->l4_proto;
360 
361 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
362 
363 		parse_ipv4(ipv4_hdr, info);
364 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
365 		info->l2_len = 0;
366 
367 	} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
368 		info->is_tunnel = 1;
369 		info->outer_ethertype = info->ethertype;
370 		info->outer_l2_len = info->l2_len;
371 		info->outer_l3_len = info->l3_len;
372 		info->outer_l4_proto = info->l4_proto;
373 
374 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
375 
376 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
377 		parse_ipv6(ipv6_hdr, info);
378 		info->l2_len = 0;
379 
380 	} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
381 		info->is_tunnel = 1;
382 		info->outer_ethertype = info->ethertype;
383 		info->outer_l2_len = info->l2_len;
384 		info->outer_l3_len = info->l3_len;
385 		info->outer_l4_proto = info->l4_proto;
386 
387 		eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
388 
389 		parse_ethernet(eth_hdr, info);
390 	} else
391 		return;
392 
393 	info->l2_len += gre_len;
394 }
395 
396 
397 /* Parse an encapsulated ip or ipv6 header */
398 static void
399 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
400 {
401 	struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
402 	struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
403 	uint8_t ip_version;
404 
405 	ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
406 
407 	if (ip_version != 4 && ip_version != 6)
408 		return;
409 
410 	info->is_tunnel = 1;
411 	info->outer_ethertype = info->ethertype;
412 	info->outer_l2_len = info->l2_len;
413 	info->outer_l3_len = info->l3_len;
414 
415 	if (ip_version == 4) {
416 		parse_ipv4(ipv4_hdr, info);
417 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
418 	} else {
419 		parse_ipv6(ipv6_hdr, info);
420 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
421 	}
422 	info->l2_len = 0;
423 }
424 
425 /* if possible, calculate the checksum of a packet in hw or sw,
426  * depending on the testpmd command line configuration */
427 static uint64_t
428 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
429 	uint64_t tx_offloads)
430 {
431 	struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
432 	struct rte_udp_hdr *udp_hdr;
433 	struct rte_tcp_hdr *tcp_hdr;
434 	struct rte_sctp_hdr *sctp_hdr;
435 	uint64_t ol_flags = 0;
436 	uint32_t max_pkt_len, tso_segsz = 0;
437 
438 	/* ensure packet is large enough to require tso */
439 	if (!info->is_tunnel) {
440 		max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
441 			info->tso_segsz;
442 		if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
443 			tso_segsz = info->tso_segsz;
444 	} else {
445 		max_pkt_len = info->outer_l2_len + info->outer_l3_len +
446 			info->l2_len + info->l3_len + info->l4_len +
447 			info->tunnel_tso_segsz;
448 		if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
449 			tso_segsz = info->tunnel_tso_segsz;
450 	}
451 
452 	if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
453 		ipv4_hdr = l3_hdr;
454 		ipv4_hdr->hdr_checksum = 0;
455 
456 		ol_flags |= PKT_TX_IPV4;
457 		if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
458 			ol_flags |= PKT_TX_IP_CKSUM;
459 		} else {
460 			if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
461 				ol_flags |= PKT_TX_IP_CKSUM;
462 			else
463 				ipv4_hdr->hdr_checksum =
464 					rte_ipv4_cksum(ipv4_hdr);
465 		}
466 	} else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
467 		ol_flags |= PKT_TX_IPV6;
468 	else
469 		return 0; /* packet type not supported, nothing to do */
470 
471 	if (info->l4_proto == IPPROTO_UDP) {
472 		udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
473 		/* do not recalculate udp cksum if it was 0 */
474 		if (udp_hdr->dgram_cksum != 0) {
475 			udp_hdr->dgram_cksum = 0;
476 			if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
477 				ol_flags |= PKT_TX_UDP_CKSUM;
478 			else {
479 				udp_hdr->dgram_cksum =
480 					get_udptcp_checksum(l3_hdr, udp_hdr,
481 						info->ethertype);
482 			}
483 		}
484 		if (info->gso_enable)
485 			ol_flags |= PKT_TX_UDP_SEG;
486 	} else if (info->l4_proto == IPPROTO_TCP) {
487 		tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
488 		tcp_hdr->cksum = 0;
489 		if (tso_segsz)
490 			ol_flags |= PKT_TX_TCP_SEG;
491 		else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
492 			ol_flags |= PKT_TX_TCP_CKSUM;
493 		else {
494 			tcp_hdr->cksum =
495 				get_udptcp_checksum(l3_hdr, tcp_hdr,
496 					info->ethertype);
497 		}
498 		if (info->gso_enable)
499 			ol_flags |= PKT_TX_TCP_SEG;
500 	} else if (info->l4_proto == IPPROTO_SCTP) {
501 		sctp_hdr = (struct rte_sctp_hdr *)
502 			((char *)l3_hdr + info->l3_len);
503 		sctp_hdr->cksum = 0;
504 		/* sctp payload must be a multiple of 4 to be
505 		 * offloaded */
506 		if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
507 			((ipv4_hdr->total_length & 0x3) == 0)) {
508 			ol_flags |= PKT_TX_SCTP_CKSUM;
509 		} else {
510 			/* XXX implement CRC32c, example available in
511 			 * RFC3309 */
512 		}
513 	}
514 
515 	return ol_flags;
516 }
517 
518 /* Calculate the checksum of outer header */
519 static uint64_t
520 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
521 	uint64_t tx_offloads, int tso_enabled)
522 {
523 	struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
524 	struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
525 	struct rte_udp_hdr *udp_hdr;
526 	uint64_t ol_flags = 0;
527 
528 	if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
529 		ipv4_hdr->hdr_checksum = 0;
530 		ol_flags |= PKT_TX_OUTER_IPV4;
531 
532 		if (tx_offloads	& DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
533 			ol_flags |= PKT_TX_OUTER_IP_CKSUM;
534 		else
535 			ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
536 	} else
537 		ol_flags |= PKT_TX_OUTER_IPV6;
538 
539 	if (info->outer_l4_proto != IPPROTO_UDP)
540 		return ol_flags;
541 
542 	udp_hdr = (struct rte_udp_hdr *)
543 		((char *)outer_l3_hdr + info->outer_l3_len);
544 
545 	if (tso_enabled)
546 		ol_flags |= PKT_TX_TCP_SEG;
547 
548 	/* Skip SW outer UDP checksum generation if HW supports it */
549 	if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
550 		if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
551 			udp_hdr->dgram_cksum
552 				= rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
553 		else
554 			udp_hdr->dgram_cksum
555 				= rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
556 
557 		ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
558 		return ol_flags;
559 	}
560 
561 	/* outer UDP checksum is done in software. In the other side, for
562 	 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
563 	 * set to zero.
564 	 *
565 	 * If a packet will be TSOed into small packets by NIC, we cannot
566 	 * set/calculate a non-zero checksum, because it will be a wrong
567 	 * value after the packet be split into several small packets.
568 	 */
569 	if (tso_enabled)
570 		udp_hdr->dgram_cksum = 0;
571 
572 	/* do not recalculate udp cksum if it was 0 */
573 	if (udp_hdr->dgram_cksum != 0) {
574 		udp_hdr->dgram_cksum = 0;
575 		if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
576 			udp_hdr->dgram_cksum =
577 				rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
578 		else
579 			udp_hdr->dgram_cksum =
580 				rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
581 	}
582 
583 	return ol_flags;
584 }
585 
586 /*
587  * Helper function.
588  * Performs actual copying.
589  * Returns number of segments in the destination mbuf on success,
590  * or negative error code on failure.
591  */
592 static int
593 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
594 	uint16_t seglen[], uint8_t nb_seg)
595 {
596 	uint32_t dlen, slen, tlen;
597 	uint32_t i, len;
598 	const struct rte_mbuf *m;
599 	const uint8_t *src;
600 	uint8_t *dst;
601 
602 	dlen = 0;
603 	slen = 0;
604 	tlen = 0;
605 
606 	dst = NULL;
607 	src = NULL;
608 
609 	m = ms;
610 	i = 0;
611 	while (ms != NULL && i != nb_seg) {
612 
613 		if (slen == 0) {
614 			slen = rte_pktmbuf_data_len(ms);
615 			src = rte_pktmbuf_mtod(ms, const uint8_t *);
616 		}
617 
618 		if (dlen == 0) {
619 			dlen = RTE_MIN(seglen[i], slen);
620 			md[i]->data_len = dlen;
621 			md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
622 			dst = rte_pktmbuf_mtod(md[i], uint8_t *);
623 		}
624 
625 		len = RTE_MIN(slen, dlen);
626 		memcpy(dst, src, len);
627 		tlen += len;
628 		slen -= len;
629 		dlen -= len;
630 		src += len;
631 		dst += len;
632 
633 		if (slen == 0)
634 			ms = ms->next;
635 		if (dlen == 0)
636 			i++;
637 	}
638 
639 	if (ms != NULL)
640 		return -ENOBUFS;
641 	else if (tlen != m->pkt_len)
642 		return -EINVAL;
643 
644 	md[0]->nb_segs = nb_seg;
645 	md[0]->pkt_len = tlen;
646 	md[0]->vlan_tci = m->vlan_tci;
647 	md[0]->vlan_tci_outer = m->vlan_tci_outer;
648 	md[0]->ol_flags = m->ol_flags;
649 	md[0]->tx_offload = m->tx_offload;
650 
651 	return nb_seg;
652 }
653 
654 /*
655  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
656  * Copy packet contents and offload information into the new segmented mbuf.
657  */
658 static struct rte_mbuf *
659 pkt_copy_split(const struct rte_mbuf *pkt)
660 {
661 	int32_t n, rc;
662 	uint32_t i, len, nb_seg;
663 	struct rte_mempool *mp;
664 	uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
665 	struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
666 
667 	mp = current_fwd_lcore()->mbp;
668 
669 	if (tx_pkt_split == TX_PKT_SPLIT_RND)
670 		nb_seg = random() % tx_pkt_nb_segs + 1;
671 	else
672 		nb_seg = tx_pkt_nb_segs;
673 
674 	memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
675 
676 	/* calculate number of segments to use and their length. */
677 	len = 0;
678 	for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
679 		len += seglen[i];
680 		md[i] = NULL;
681 	}
682 
683 	n = pkt->pkt_len - len;
684 
685 	/* update size of the last segment to fit rest of the packet */
686 	if (n >= 0) {
687 		seglen[i - 1] += n;
688 		len += n;
689 	}
690 
691 	nb_seg = i;
692 	while (i != 0) {
693 		p = rte_pktmbuf_alloc(mp);
694 		if (p == NULL) {
695 			TESTPMD_LOG(ERR,
696 				"failed to allocate %u-th of %u mbuf "
697 				"from mempool: %s\n",
698 				nb_seg - i, nb_seg, mp->name);
699 			break;
700 		}
701 
702 		md[--i] = p;
703 		if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
704 			TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
705 				"expected seglen: %u, "
706 				"actual mbuf tailroom: %u\n",
707 				mp->name, i, seglen[i],
708 				rte_pktmbuf_tailroom(md[i]));
709 			break;
710 		}
711 	}
712 
713 	/* all mbufs successfully allocated, do copy */
714 	if (i == 0) {
715 		rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
716 		if (rc < 0)
717 			TESTPMD_LOG(ERR,
718 				"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
719 				"into %u segments failed with error code: %d\n",
720 				pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
721 
722 		/* figure out how many mbufs to free. */
723 		i = RTE_MAX(rc, 0);
724 	}
725 
726 	/* free unused mbufs */
727 	for (; i != nb_seg; i++) {
728 		rte_pktmbuf_free_seg(md[i]);
729 		md[i] = NULL;
730 	}
731 
732 	return md[0];
733 }
734 
735 /*
736  * Receive a burst of packets, and for each packet:
737  *  - parse packet, and try to recognize a supported packet type (1)
738  *  - if it's not a supported packet type, don't touch the packet, else:
739  *  - reprocess the checksum of all supported layers. This is done in SW
740  *    or HW, depending on testpmd command line configuration
741  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
742  *    segmentation offload (this implies HW TCP checksum)
743  * Then transmit packets on the output port.
744  *
745  * (1) Supported packets are:
746  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
747  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
748  *           UDP|TCP|SCTP
749  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
750  *           UDP|TCP|SCTP
751  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
752  *           UDP|TCP|SCTP
753  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
754  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
755  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
756  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
757  *
758  * The testpmd command line for this forward engine sets the flags
759  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
760  * wether a checksum must be calculated in software or in hardware. The
761  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
762  * OUTER_IP is only useful for tunnel packets.
763  */
764 static void
765 pkt_burst_checksum_forward(struct fwd_stream *fs)
766 {
767 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
768 	struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
769 	struct rte_gso_ctx *gso_ctx;
770 	struct rte_mbuf **tx_pkts_burst;
771 	struct rte_port *txp;
772 	struct rte_mbuf *m, *p;
773 	struct rte_ether_hdr *eth_hdr;
774 	void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
775 	void **gro_ctx;
776 	uint16_t gro_pkts_num;
777 	uint8_t gro_enable;
778 	uint16_t nb_rx;
779 	uint16_t nb_tx;
780 	uint16_t nb_prep;
781 	uint16_t i;
782 	uint64_t rx_ol_flags, tx_ol_flags;
783 	uint64_t tx_offloads;
784 	uint32_t retry;
785 	uint32_t rx_bad_ip_csum;
786 	uint32_t rx_bad_l4_csum;
787 	uint32_t rx_bad_outer_l4_csum;
788 	struct testpmd_offload_info info;
789 	uint16_t nb_segments = 0;
790 	int ret;
791 
792 	uint64_t start_tsc = 0;
793 
794 	get_start_cycles(&start_tsc);
795 
796 	/* receive a burst of packet */
797 	nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
798 				 nb_pkt_per_burst);
799 	inc_rx_burst_stats(fs, nb_rx);
800 	if (unlikely(nb_rx == 0))
801 		return;
802 
803 	fs->rx_packets += nb_rx;
804 	rx_bad_ip_csum = 0;
805 	rx_bad_l4_csum = 0;
806 	rx_bad_outer_l4_csum = 0;
807 	gro_enable = gro_ports[fs->rx_port].enable;
808 
809 	txp = &ports[fs->tx_port];
810 	tx_offloads = txp->dev_conf.txmode.offloads;
811 	memset(&info, 0, sizeof(info));
812 	info.tso_segsz = txp->tso_segsz;
813 	info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
814 	if (gso_ports[fs->tx_port].enable)
815 		info.gso_enable = 1;
816 
817 	for (i = 0; i < nb_rx; i++) {
818 		if (likely(i < nb_rx - 1))
819 			rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
820 						       void *));
821 
822 		m = pkts_burst[i];
823 		info.is_tunnel = 0;
824 		info.pkt_len = rte_pktmbuf_pkt_len(m);
825 		tx_ol_flags = m->ol_flags &
826 			      (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
827 		rx_ol_flags = m->ol_flags;
828 
829 		/* Update the L3/L4 checksum error packet statistics */
830 		if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
831 			rx_bad_ip_csum += 1;
832 		if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
833 			rx_bad_l4_csum += 1;
834 		if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
835 			rx_bad_outer_l4_csum += 1;
836 
837 		/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
838 		 * and inner headers */
839 
840 		eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
841 		rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
842 				&eth_hdr->d_addr);
843 		rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
844 				&eth_hdr->s_addr);
845 		parse_ethernet(eth_hdr, &info);
846 		l3_hdr = (char *)eth_hdr + info.l2_len;
847 
848 		/* check if it's a supported tunnel */
849 		if (txp->parse_tunnel) {
850 			if (info.l4_proto == IPPROTO_UDP) {
851 				struct rte_udp_hdr *udp_hdr;
852 
853 				udp_hdr = (struct rte_udp_hdr *)
854 					((char *)l3_hdr + info.l3_len);
855 				parse_gtp(udp_hdr, &info);
856 				if (info.is_tunnel) {
857 					tx_ol_flags |= PKT_TX_TUNNEL_GTP;
858 					goto tunnel_update;
859 				}
860 				parse_vxlan_gpe(udp_hdr, &info);
861 				if (info.is_tunnel) {
862 					tx_ol_flags |=
863 						PKT_TX_TUNNEL_VXLAN_GPE;
864 					goto tunnel_update;
865 				}
866 				parse_vxlan(udp_hdr, &info,
867 					    m->packet_type);
868 				if (info.is_tunnel)
869 					tx_ol_flags |=
870 						PKT_TX_TUNNEL_VXLAN;
871 			} else if (info.l4_proto == IPPROTO_GRE) {
872 				struct simple_gre_hdr *gre_hdr;
873 
874 				gre_hdr = (struct simple_gre_hdr *)
875 					((char *)l3_hdr + info.l3_len);
876 				parse_gre(gre_hdr, &info);
877 				if (info.is_tunnel)
878 					tx_ol_flags |= PKT_TX_TUNNEL_GRE;
879 			} else if (info.l4_proto == IPPROTO_IPIP) {
880 				void *encap_ip_hdr;
881 
882 				encap_ip_hdr = (char *)l3_hdr + info.l3_len;
883 				parse_encap_ip(encap_ip_hdr, &info);
884 				if (info.is_tunnel)
885 					tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
886 			}
887 		}
888 
889 tunnel_update:
890 		/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
891 		if (info.is_tunnel) {
892 			outer_l3_hdr = l3_hdr;
893 			l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
894 		}
895 
896 		/* step 2: depending on user command line configuration,
897 		 * recompute checksum either in software or flag the
898 		 * mbuf to offload the calculation to the NIC. If TSO
899 		 * is configured, prepare the mbuf for TCP segmentation. */
900 
901 		/* process checksums of inner headers first */
902 		tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
903 			tx_offloads);
904 
905 		/* Then process outer headers if any. Note that the software
906 		 * checksum will be wrong if one of the inner checksums is
907 		 * processed in hardware. */
908 		if (info.is_tunnel == 1) {
909 			tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
910 					tx_offloads,
911 					!!(tx_ol_flags & PKT_TX_TCP_SEG));
912 		}
913 
914 		/* step 3: fill the mbuf meta data (flags and header lengths) */
915 
916 		m->tx_offload = 0;
917 		if (info.is_tunnel == 1) {
918 			if (info.tunnel_tso_segsz ||
919 			    (tx_offloads &
920 			     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
921 			    (tx_offloads &
922 			     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
923 			    (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
924 				m->outer_l2_len = info.outer_l2_len;
925 				m->outer_l3_len = info.outer_l3_len;
926 				m->l2_len = info.l2_len;
927 				m->l3_len = info.l3_len;
928 				m->l4_len = info.l4_len;
929 				m->tso_segsz = info.tunnel_tso_segsz;
930 			}
931 			else {
932 				/* if there is a outer UDP cksum
933 				   processed in sw and the inner in hw,
934 				   the outer checksum will be wrong as
935 				   the payload will be modified by the
936 				   hardware */
937 				m->l2_len = info.outer_l2_len +
938 					info.outer_l3_len + info.l2_len;
939 				m->l3_len = info.l3_len;
940 				m->l4_len = info.l4_len;
941 			}
942 		} else {
943 			/* this is only useful if an offload flag is
944 			 * set, but it does not hurt to fill it in any
945 			 * case */
946 			m->l2_len = info.l2_len;
947 			m->l3_len = info.l3_len;
948 			m->l4_len = info.l4_len;
949 			m->tso_segsz = info.tso_segsz;
950 		}
951 		m->ol_flags = tx_ol_flags;
952 
953 		/* Do split & copy for the packet. */
954 		if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
955 			p = pkt_copy_split(m);
956 			if (p != NULL) {
957 				rte_pktmbuf_free(m);
958 				m = p;
959 				pkts_burst[i] = m;
960 			}
961 		}
962 
963 		/* if verbose mode is enabled, dump debug info */
964 		if (verbose_level > 0) {
965 			char buf[256];
966 
967 			printf("-----------------\n");
968 			printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
969 				fs->rx_port, m, m->pkt_len, m->nb_segs);
970 			/* dump rx parsed packet info */
971 			rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
972 			printf("rx: l2_len=%d ethertype=%x l3_len=%d "
973 				"l4_proto=%d l4_len=%d flags=%s\n",
974 				info.l2_len, rte_be_to_cpu_16(info.ethertype),
975 				info.l3_len, info.l4_proto, info.l4_len, buf);
976 			if (rx_ol_flags & PKT_RX_LRO)
977 				printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
978 			if (info.is_tunnel == 1)
979 				printf("rx: outer_l2_len=%d outer_ethertype=%x "
980 					"outer_l3_len=%d\n", info.outer_l2_len,
981 					rte_be_to_cpu_16(info.outer_ethertype),
982 					info.outer_l3_len);
983 			/* dump tx packet info */
984 			if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
985 					    DEV_TX_OFFLOAD_UDP_CKSUM |
986 					    DEV_TX_OFFLOAD_TCP_CKSUM |
987 					    DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
988 				info.tso_segsz != 0)
989 				printf("tx: m->l2_len=%d m->l3_len=%d "
990 					"m->l4_len=%d\n",
991 					m->l2_len, m->l3_len, m->l4_len);
992 			if (info.is_tunnel == 1) {
993 				if ((tx_offloads &
994 				    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
995 				    (tx_offloads &
996 				    DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
997 				    (tx_ol_flags & PKT_TX_OUTER_IPV6))
998 					printf("tx: m->outer_l2_len=%d "
999 						"m->outer_l3_len=%d\n",
1000 						m->outer_l2_len,
1001 						m->outer_l3_len);
1002 				if (info.tunnel_tso_segsz != 0 &&
1003 						(m->ol_flags & PKT_TX_TCP_SEG))
1004 					printf("tx: m->tso_segsz=%d\n",
1005 						m->tso_segsz);
1006 			} else if (info.tso_segsz != 0 &&
1007 					(m->ol_flags & PKT_TX_TCP_SEG))
1008 				printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1009 			rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1010 			printf("tx: flags=%s", buf);
1011 			printf("\n");
1012 		}
1013 	}
1014 
1015 	if (unlikely(gro_enable)) {
1016 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1017 			nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1018 					&(gro_ports[fs->rx_port].param));
1019 		} else {
1020 			gro_ctx = current_fwd_lcore()->gro_ctx;
1021 			nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1022 
1023 			if (++fs->gro_times >= gro_flush_cycles) {
1024 				gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1025 				if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1026 					gro_pkts_num = MAX_PKT_BURST - nb_rx;
1027 
1028 				nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1029 						RTE_GRO_TCP_IPV4,
1030 						&pkts_burst[nb_rx],
1031 						gro_pkts_num);
1032 				fs->gro_times = 0;
1033 			}
1034 		}
1035 	}
1036 
1037 	if (gso_ports[fs->tx_port].enable == 0)
1038 		tx_pkts_burst = pkts_burst;
1039 	else {
1040 		gso_ctx = &(current_fwd_lcore()->gso_ctx);
1041 		gso_ctx->gso_size = gso_max_segment_size;
1042 		for (i = 0; i < nb_rx; i++) {
1043 			ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1044 					&gso_segments[nb_segments],
1045 					GSO_MAX_PKT_BURST - nb_segments);
1046 			if (ret >= 0)
1047 				nb_segments += ret;
1048 			else {
1049 				TESTPMD_LOG(DEBUG, "Unable to segment packet");
1050 				rte_pktmbuf_free(pkts_burst[i]);
1051 			}
1052 		}
1053 
1054 		tx_pkts_burst = gso_segments;
1055 		nb_rx = nb_segments;
1056 	}
1057 
1058 	nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1059 			tx_pkts_burst, nb_rx);
1060 	if (nb_prep != nb_rx)
1061 		printf("Preparing packet burst to transmit failed: %s\n",
1062 				rte_strerror(rte_errno));
1063 
1064 	nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1065 			nb_prep);
1066 
1067 	/*
1068 	 * Retry if necessary
1069 	 */
1070 	if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1071 		retry = 0;
1072 		while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1073 			rte_delay_us(burst_tx_delay_time);
1074 			nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1075 					&tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1076 		}
1077 	}
1078 	fs->tx_packets += nb_tx;
1079 	fs->rx_bad_ip_csum += rx_bad_ip_csum;
1080 	fs->rx_bad_l4_csum += rx_bad_l4_csum;
1081 	fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1082 
1083 	inc_tx_burst_stats(fs, nb_tx);
1084 	if (unlikely(nb_tx < nb_rx)) {
1085 		fs->fwd_dropped += (nb_rx - nb_tx);
1086 		do {
1087 			rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1088 		} while (++nb_tx < nb_rx);
1089 	}
1090 
1091 	get_end_cycles(fs, start_tsc);
1092 }
1093 
1094 struct fwd_engine csum_fwd_engine = {
1095 	.fwd_mode_name  = "csum",
1096 	.port_fwd_begin = NULL,
1097 	.port_fwd_end   = NULL,
1098 	.packet_fwd     = pkt_burst_checksum_forward,
1099 };
1100