1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * Copyright 2014 6WIND S.A. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <stdarg.h> 36 #include <stdio.h> 37 #include <errno.h> 38 #include <stdint.h> 39 #include <unistd.h> 40 #include <inttypes.h> 41 42 #include <sys/queue.h> 43 #include <sys/stat.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_log.h> 48 #include <rte_debug.h> 49 #include <rte_cycles.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_launch.h> 54 #include <rte_tailq.h> 55 #include <rte_eal.h> 56 #include <rte_per_lcore.h> 57 #include <rte_lcore.h> 58 #include <rte_atomic.h> 59 #include <rte_branch_prediction.h> 60 #include <rte_ring.h> 61 #include <rte_memory.h> 62 #include <rte_mempool.h> 63 #include <rte_mbuf.h> 64 #include <rte_memcpy.h> 65 #include <rte_interrupts.h> 66 #include <rte_pci.h> 67 #include <rte_ether.h> 68 #include <rte_ethdev.h> 69 #include <rte_ip.h> 70 #include <rte_tcp.h> 71 #include <rte_udp.h> 72 #include <rte_sctp.h> 73 #include <rte_prefetch.h> 74 #include <rte_string_fns.h> 75 #include "testpmd.h" 76 77 #define IP_DEFTTL 64 /* from RFC 1340. */ 78 #define IP_VERSION 0x40 79 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ 80 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) 81 82 #define GRE_KEY_PRESENT 0x2000 83 #define GRE_KEY_LEN 4 84 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT 85 86 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 87 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 88 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 89 #else 90 #define _htons(x) (x) 91 #endif 92 93 /* structure that caches offload info for the current packet */ 94 struct testpmd_offload_info { 95 uint16_t ethertype; 96 uint16_t l2_len; 97 uint16_t l3_len; 98 uint16_t l4_len; 99 uint8_t l4_proto; 100 uint8_t is_tunnel; 101 uint16_t outer_ethertype; 102 uint16_t outer_l2_len; 103 uint16_t outer_l3_len; 104 uint8_t outer_l4_proto; 105 uint16_t tso_segsz; 106 }; 107 108 /* simplified GRE header */ 109 struct simple_gre_hdr { 110 uint16_t flags; 111 uint16_t proto; 112 }; 113 114 static uint16_t 115 get_psd_sum(void *l3_hdr, uint16_t ethertype, uint64_t ol_flags) 116 { 117 if (ethertype == _htons(ETHER_TYPE_IPv4)) 118 return rte_ipv4_phdr_cksum(l3_hdr, ol_flags); 119 else /* assume ethertype == ETHER_TYPE_IPv6 */ 120 return rte_ipv6_phdr_cksum(l3_hdr, ol_flags); 121 } 122 123 static uint16_t 124 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 125 { 126 if (ethertype == _htons(ETHER_TYPE_IPv4)) 127 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 128 else /* assume ethertype == ETHER_TYPE_IPv6 */ 129 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 130 } 131 132 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 133 static void 134 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 135 { 136 struct tcp_hdr *tcp_hdr; 137 138 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; 139 info->l4_proto = ipv4_hdr->next_proto_id; 140 141 /* only fill l4_len for TCP, it's useful for TSO */ 142 if (info->l4_proto == IPPROTO_TCP) { 143 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len); 144 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 145 } else 146 info->l4_len = 0; 147 } 148 149 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 150 static void 151 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 152 { 153 struct tcp_hdr *tcp_hdr; 154 155 info->l3_len = sizeof(struct ipv6_hdr); 156 info->l4_proto = ipv6_hdr->proto; 157 158 /* only fill l4_len for TCP, it's useful for TSO */ 159 if (info->l4_proto == IPPROTO_TCP) { 160 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len); 161 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 162 } else 163 info->l4_len = 0; 164 } 165 166 /* 167 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 168 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan 169 * header. The l4_len argument is only set in case of TCP (useful for TSO). 170 */ 171 static void 172 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info) 173 { 174 struct ipv4_hdr *ipv4_hdr; 175 struct ipv6_hdr *ipv6_hdr; 176 177 info->l2_len = sizeof(struct ether_hdr); 178 info->ethertype = eth_hdr->ether_type; 179 180 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) { 181 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); 182 183 info->l2_len += sizeof(struct vlan_hdr); 184 info->ethertype = vlan_hdr->eth_proto; 185 } 186 187 switch (info->ethertype) { 188 case _htons(ETHER_TYPE_IPv4): 189 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len); 190 parse_ipv4(ipv4_hdr, info); 191 break; 192 case _htons(ETHER_TYPE_IPv6): 193 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len); 194 parse_ipv6(ipv6_hdr, info); 195 break; 196 default: 197 info->l4_len = 0; 198 info->l3_len = 0; 199 info->l4_proto = 0; 200 break; 201 } 202 } 203 204 /* Parse a vxlan header */ 205 static void 206 parse_vxlan(struct udp_hdr *udp_hdr, struct testpmd_offload_info *info, 207 uint64_t mbuf_olflags) 208 { 209 struct ether_hdr *eth_hdr; 210 211 /* check udp destination port, 4789 is the default vxlan port 212 * (rfc7348) or that the rx offload flag is set (i40e only 213 * currently) */ 214 if (udp_hdr->dst_port != _htons(4789) && 215 (mbuf_olflags & (PKT_RX_TUNNEL_IPV4_HDR | 216 PKT_RX_TUNNEL_IPV6_HDR)) == 0) 217 return; 218 219 info->is_tunnel = 1; 220 info->outer_ethertype = info->ethertype; 221 info->outer_l2_len = info->l2_len; 222 info->outer_l3_len = info->l3_len; 223 info->outer_l4_proto = info->l4_proto; 224 225 eth_hdr = (struct ether_hdr *)((char *)udp_hdr + 226 sizeof(struct udp_hdr) + 227 sizeof(struct vxlan_hdr)); 228 229 parse_ethernet(eth_hdr, info); 230 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */ 231 } 232 233 /* Parse a gre header */ 234 static void 235 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 236 { 237 struct ether_hdr *eth_hdr; 238 struct ipv4_hdr *ipv4_hdr; 239 struct ipv6_hdr *ipv6_hdr; 240 uint8_t gre_len = 0; 241 242 /* check which fields are supported */ 243 if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0) 244 return; 245 246 gre_len += sizeof(struct simple_gre_hdr); 247 248 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 249 gre_len += GRE_KEY_LEN; 250 251 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) { 252 info->is_tunnel = 1; 253 info->outer_ethertype = info->ethertype; 254 info->outer_l2_len = info->l2_len; 255 info->outer_l3_len = info->l3_len; 256 info->outer_l4_proto = info->l4_proto; 257 258 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len); 259 260 parse_ipv4(ipv4_hdr, info); 261 info->ethertype = _htons(ETHER_TYPE_IPv4); 262 info->l2_len = 0; 263 264 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) { 265 info->is_tunnel = 1; 266 info->outer_ethertype = info->ethertype; 267 info->outer_l2_len = info->l2_len; 268 info->outer_l3_len = info->l3_len; 269 info->outer_l4_proto = info->l4_proto; 270 271 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len); 272 273 info->ethertype = _htons(ETHER_TYPE_IPv6); 274 parse_ipv6(ipv6_hdr, info); 275 info->l2_len = 0; 276 277 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) { 278 info->is_tunnel = 1; 279 info->outer_ethertype = info->ethertype; 280 info->outer_l2_len = info->l2_len; 281 info->outer_l3_len = info->l3_len; 282 info->outer_l4_proto = info->l4_proto; 283 284 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len); 285 286 parse_ethernet(eth_hdr, info); 287 } else 288 return; 289 290 info->l2_len += gre_len; 291 } 292 293 294 /* Parse an encapsulated ip or ipv6 header */ 295 static void 296 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 297 { 298 struct ipv4_hdr *ipv4_hdr = encap_ip; 299 struct ipv6_hdr *ipv6_hdr = encap_ip; 300 uint8_t ip_version; 301 302 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 303 304 if (ip_version != 4 && ip_version != 6) 305 return; 306 307 info->is_tunnel = 1; 308 info->outer_ethertype = info->ethertype; 309 info->outer_l2_len = info->l2_len; 310 info->outer_l3_len = info->l3_len; 311 312 if (ip_version == 4) { 313 parse_ipv4(ipv4_hdr, info); 314 info->ethertype = _htons(ETHER_TYPE_IPv4); 315 } else { 316 parse_ipv6(ipv6_hdr, info); 317 info->ethertype = _htons(ETHER_TYPE_IPv6); 318 } 319 info->l2_len = 0; 320 } 321 322 /* modify the IPv4 or IPv4 source address of a packet */ 323 static void 324 change_ip_addresses(void *l3_hdr, uint16_t ethertype) 325 { 326 struct ipv4_hdr *ipv4_hdr = l3_hdr; 327 struct ipv6_hdr *ipv6_hdr = l3_hdr; 328 329 if (ethertype == _htons(ETHER_TYPE_IPv4)) { 330 ipv4_hdr->src_addr = 331 rte_cpu_to_be_32(rte_be_to_cpu_32(ipv4_hdr->src_addr) + 1); 332 } else if (ethertype == _htons(ETHER_TYPE_IPv6)) { 333 ipv6_hdr->src_addr[15] = ipv6_hdr->src_addr[15] + 1; 334 } 335 } 336 337 /* if possible, calculate the checksum of a packet in hw or sw, 338 * depending on the testpmd command line configuration */ 339 static uint64_t 340 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 341 uint16_t testpmd_ol_flags) 342 { 343 struct ipv4_hdr *ipv4_hdr = l3_hdr; 344 struct udp_hdr *udp_hdr; 345 struct tcp_hdr *tcp_hdr; 346 struct sctp_hdr *sctp_hdr; 347 uint64_t ol_flags = 0; 348 349 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) { 350 ipv4_hdr = l3_hdr; 351 ipv4_hdr->hdr_checksum = 0; 352 353 ol_flags |= PKT_TX_IPV4; 354 if (info->tso_segsz != 0 && info->l4_proto == IPPROTO_TCP) { 355 ol_flags |= PKT_TX_IP_CKSUM; 356 } else { 357 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 358 ol_flags |= PKT_TX_IP_CKSUM; 359 else 360 ipv4_hdr->hdr_checksum = 361 rte_ipv4_cksum(ipv4_hdr); 362 } 363 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6)) 364 ol_flags |= PKT_TX_IPV6; 365 else 366 return 0; /* packet type not supported, nothing to do */ 367 368 if (info->l4_proto == IPPROTO_UDP) { 369 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len); 370 /* do not recalculate udp cksum if it was 0 */ 371 if (udp_hdr->dgram_cksum != 0) { 372 udp_hdr->dgram_cksum = 0; 373 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) { 374 ol_flags |= PKT_TX_UDP_CKSUM; 375 udp_hdr->dgram_cksum = get_psd_sum(l3_hdr, 376 info->ethertype, ol_flags); 377 } else { 378 udp_hdr->dgram_cksum = 379 get_udptcp_checksum(l3_hdr, udp_hdr, 380 info->ethertype); 381 } 382 } 383 } else if (info->l4_proto == IPPROTO_TCP) { 384 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len); 385 tcp_hdr->cksum = 0; 386 if (info->tso_segsz != 0) { 387 ol_flags |= PKT_TX_TCP_SEG; 388 tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype, 389 ol_flags); 390 } else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) { 391 ol_flags |= PKT_TX_TCP_CKSUM; 392 tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype, 393 ol_flags); 394 } else { 395 tcp_hdr->cksum = 396 get_udptcp_checksum(l3_hdr, tcp_hdr, 397 info->ethertype); 398 } 399 } else if (info->l4_proto == IPPROTO_SCTP) { 400 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len); 401 sctp_hdr->cksum = 0; 402 /* sctp payload must be a multiple of 4 to be 403 * offloaded */ 404 if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) && 405 ((ipv4_hdr->total_length & 0x3) == 0)) { 406 ol_flags |= PKT_TX_SCTP_CKSUM; 407 } else { 408 /* XXX implement CRC32c, example available in 409 * RFC3309 */ 410 } 411 } 412 413 return ol_flags; 414 } 415 416 /* Calculate the checksum of outer header (only vxlan is supported, 417 * meaning IP + UDP). The caller already checked that it's a vxlan 418 * packet */ 419 static uint64_t 420 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 421 uint16_t testpmd_ol_flags) 422 { 423 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr; 424 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr; 425 struct udp_hdr *udp_hdr; 426 uint64_t ol_flags = 0; 427 428 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) { 429 ipv4_hdr->hdr_checksum = 0; 430 ol_flags |= PKT_TX_OUTER_IPV4; 431 432 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 433 ol_flags |= PKT_TX_OUTER_IP_CKSUM; 434 else 435 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 436 } else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 437 ol_flags |= PKT_TX_OUTER_IPV6; 438 439 if (info->outer_l4_proto != IPPROTO_UDP) 440 return ol_flags; 441 442 /* outer UDP checksum is always done in software as we have no 443 * hardware supporting it today, and no API for it. */ 444 445 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len); 446 /* do not recalculate udp cksum if it was 0 */ 447 if (udp_hdr->dgram_cksum != 0) { 448 udp_hdr->dgram_cksum = 0; 449 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) 450 udp_hdr->dgram_cksum = 451 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 452 else 453 udp_hdr->dgram_cksum = 454 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 455 } 456 457 return ol_flags; 458 } 459 460 /* 461 * Receive a burst of packets, and for each packet: 462 * - parse packet, and try to recognize a supported packet type (1) 463 * - if it's not a supported packet type, don't touch the packet, else: 464 * - modify the IPs in inner headers and in outer headers if any 465 * - reprocess the checksum of all supported layers. This is done in SW 466 * or HW, depending on testpmd command line configuration 467 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 468 * segmentation offload (this implies HW TCP checksum) 469 * Then transmit packets on the output port. 470 * 471 * (1) Supported packets are: 472 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 473 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 474 * UDP|TCP|SCTP 475 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 476 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 477 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 478 * 479 * The testpmd command line for this forward engine sets the flags 480 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 481 * wether a checksum must be calculated in software or in hardware. The 482 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 483 * OUTER_IP is only useful for tunnel packets. 484 */ 485 static void 486 pkt_burst_checksum_forward(struct fwd_stream *fs) 487 { 488 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 489 struct rte_port *txp; 490 struct rte_mbuf *m; 491 struct ether_hdr *eth_hdr; 492 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 493 uint16_t nb_rx; 494 uint16_t nb_tx; 495 uint16_t i; 496 uint64_t ol_flags; 497 uint16_t testpmd_ol_flags; 498 uint32_t rx_bad_ip_csum; 499 uint32_t rx_bad_l4_csum; 500 struct testpmd_offload_info info; 501 502 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 503 uint64_t start_tsc; 504 uint64_t end_tsc; 505 uint64_t core_cycles; 506 #endif 507 508 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 509 start_tsc = rte_rdtsc(); 510 #endif 511 512 /* receive a burst of packet */ 513 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 514 nb_pkt_per_burst); 515 if (unlikely(nb_rx == 0)) 516 return; 517 518 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 519 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++; 520 #endif 521 fs->rx_packets += nb_rx; 522 rx_bad_ip_csum = 0; 523 rx_bad_l4_csum = 0; 524 525 txp = &ports[fs->tx_port]; 526 testpmd_ol_flags = txp->tx_ol_flags; 527 memset(&info, 0, sizeof(info)); 528 info.tso_segsz = txp->tso_segsz; 529 530 for (i = 0; i < nb_rx; i++) { 531 532 ol_flags = 0; 533 info.is_tunnel = 0; 534 m = pkts_burst[i]; 535 536 /* Update the L3/L4 checksum error packet statistics */ 537 rx_bad_ip_csum += ((m->ol_flags & PKT_RX_IP_CKSUM_BAD) != 0); 538 rx_bad_l4_csum += ((m->ol_flags & PKT_RX_L4_CKSUM_BAD) != 0); 539 540 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 541 * and inner headers */ 542 543 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 544 parse_ethernet(eth_hdr, &info); 545 l3_hdr = (char *)eth_hdr + info.l2_len; 546 547 /* check if it's a supported tunnel */ 548 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) { 549 if (info.l4_proto == IPPROTO_UDP) { 550 struct udp_hdr *udp_hdr; 551 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + 552 info.l3_len); 553 parse_vxlan(udp_hdr, &info, m->ol_flags); 554 } else if (info.l4_proto == IPPROTO_GRE) { 555 struct simple_gre_hdr *gre_hdr; 556 gre_hdr = (struct simple_gre_hdr *) 557 ((char *)l3_hdr + info.l3_len); 558 parse_gre(gre_hdr, &info); 559 } else if (info.l4_proto == IPPROTO_IPIP) { 560 void *encap_ip_hdr; 561 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 562 parse_encap_ip(encap_ip_hdr, &info); 563 } 564 } 565 566 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 567 if (info.is_tunnel) { 568 outer_l3_hdr = l3_hdr; 569 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 570 } 571 572 /* step 2: change all source IPs (v4 or v6) so we need 573 * to recompute the chksums even if they were correct */ 574 575 change_ip_addresses(l3_hdr, info.ethertype); 576 if (info.is_tunnel == 1) 577 change_ip_addresses(outer_l3_hdr, info.outer_ethertype); 578 579 /* step 3: depending on user command line configuration, 580 * recompute checksum either in software or flag the 581 * mbuf to offload the calculation to the NIC. If TSO 582 * is configured, prepare the mbuf for TCP segmentation. */ 583 584 /* process checksums of inner headers first */ 585 ol_flags |= process_inner_cksums(l3_hdr, &info, testpmd_ol_flags); 586 587 /* Then process outer headers if any. Note that the software 588 * checksum will be wrong if one of the inner checksums is 589 * processed in hardware. */ 590 if (info.is_tunnel == 1) { 591 ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 592 testpmd_ol_flags); 593 } 594 595 /* step 4: fill the mbuf meta data (flags and header lengths) */ 596 597 if (info.is_tunnel == 1) { 598 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) { 599 m->outer_l2_len = info.outer_l2_len; 600 m->outer_l3_len = info.outer_l3_len; 601 m->l2_len = info.l2_len; 602 m->l3_len = info.l3_len; 603 m->l4_len = info.l4_len; 604 } 605 else { 606 /* if there is a outer UDP cksum 607 processed in sw and the inner in hw, 608 the outer checksum will be wrong as 609 the payload will be modified by the 610 hardware */ 611 m->l2_len = info.outer_l2_len + 612 info.outer_l3_len + info.l2_len; 613 m->l3_len = info.l3_len; 614 m->l4_len = info.l4_len; 615 } 616 } else { 617 /* this is only useful if an offload flag is 618 * set, but it does not hurt to fill it in any 619 * case */ 620 m->l2_len = info.l2_len; 621 m->l3_len = info.l3_len; 622 m->l4_len = info.l4_len; 623 } 624 m->tso_segsz = info.tso_segsz; 625 m->ol_flags = ol_flags; 626 627 /* if verbose mode is enabled, dump debug info */ 628 if (verbose_level > 0) { 629 struct { 630 uint64_t flag; 631 uint64_t mask; 632 } tx_flags[] = { 633 { PKT_TX_IP_CKSUM, PKT_TX_IP_CKSUM }, 634 { PKT_TX_UDP_CKSUM, PKT_TX_L4_MASK }, 635 { PKT_TX_TCP_CKSUM, PKT_TX_L4_MASK }, 636 { PKT_TX_SCTP_CKSUM, PKT_TX_L4_MASK }, 637 { PKT_TX_IPV4, PKT_TX_IPV4 }, 638 { PKT_TX_IPV6, PKT_TX_IPV6 }, 639 { PKT_TX_OUTER_IP_CKSUM, PKT_TX_OUTER_IP_CKSUM }, 640 { PKT_TX_OUTER_IPV4, PKT_TX_OUTER_IPV4 }, 641 { PKT_TX_OUTER_IPV6, PKT_TX_OUTER_IPV6 }, 642 { PKT_TX_TCP_SEG, PKT_TX_TCP_SEG }, 643 }; 644 unsigned j; 645 const char *name; 646 647 printf("-----------------\n"); 648 /* dump rx parsed packet info */ 649 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 650 "l4_proto=%d l4_len=%d\n", 651 info.l2_len, rte_be_to_cpu_16(info.ethertype), 652 info.l3_len, info.l4_proto, info.l4_len); 653 if (info.is_tunnel == 1) 654 printf("rx: outer_l2_len=%d outer_ethertype=%x " 655 "outer_l3_len=%d\n", info.outer_l2_len, 656 rte_be_to_cpu_16(info.outer_ethertype), 657 info.outer_l3_len); 658 /* dump tx packet info */ 659 if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM | 660 TESTPMD_TX_OFFLOAD_UDP_CKSUM | 661 TESTPMD_TX_OFFLOAD_TCP_CKSUM | 662 TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) || 663 info.tso_segsz != 0) 664 printf("tx: m->l2_len=%d m->l3_len=%d " 665 "m->l4_len=%d\n", 666 m->l2_len, m->l3_len, m->l4_len); 667 if ((info.is_tunnel == 1) && 668 (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM)) 669 printf("tx: m->outer_l2_len=%d m->outer_l3_len=%d\n", 670 m->outer_l2_len, m->outer_l3_len); 671 if (info.tso_segsz != 0) 672 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 673 printf("tx: flags="); 674 for (j = 0; j < sizeof(tx_flags)/sizeof(*tx_flags); j++) { 675 name = rte_get_tx_ol_flag_name(tx_flags[j].flag); 676 if ((m->ol_flags & tx_flags[j].mask) == 677 tx_flags[j].flag) 678 printf("%s ", name); 679 } 680 printf("\n"); 681 } 682 } 683 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx); 684 fs->tx_packets += nb_tx; 685 fs->rx_bad_ip_csum += rx_bad_ip_csum; 686 fs->rx_bad_l4_csum += rx_bad_l4_csum; 687 688 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 689 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++; 690 #endif 691 if (unlikely(nb_tx < nb_rx)) { 692 fs->fwd_dropped += (nb_rx - nb_tx); 693 do { 694 rte_pktmbuf_free(pkts_burst[nb_tx]); 695 } while (++nb_tx < nb_rx); 696 } 697 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 698 end_tsc = rte_rdtsc(); 699 core_cycles = (end_tsc - start_tsc); 700 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles); 701 #endif 702 } 703 704 struct fwd_engine csum_fwd_engine = { 705 .fwd_mode_name = "csum", 706 .port_fwd_begin = NULL, 707 .port_fwd_end = NULL, 708 .packet_fwd = pkt_burst_checksum_forward, 709 }; 710 711