xref: /dpdk/app/test-pmd/csumonly.c (revision e9fd1ebf981f361844aea9ec94e17f4bda5e1479)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_branch_prediction.h>
28 #include <rte_mempool.h>
29 #include <rte_mbuf.h>
30 #include <rte_interrupts.h>
31 #include <rte_ether.h>
32 #include <rte_ethdev.h>
33 #include <rte_ip.h>
34 #include <rte_tcp.h>
35 #include <rte_udp.h>
36 #include <rte_vxlan.h>
37 #include <rte_sctp.h>
38 #include <rte_gtp.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
41 #include <rte_flow.h>
42 #ifdef RTE_LIB_GRO
43 #include <rte_gro.h>
44 #endif
45 #ifdef RTE_LIB_GSO
46 #include <rte_gso.h>
47 #endif
48 #include <rte_geneve.h>
49 
50 #include "testpmd.h"
51 
52 #define IP_DEFTTL  64   /* from RFC 1340. */
53 
54 #define GRE_CHECKSUM_PRESENT	0x8000
55 #define GRE_KEY_PRESENT		0x2000
56 #define GRE_SEQUENCE_PRESENT	0x1000
57 #define GRE_EXT_LEN		4
58 #define GRE_SUPPORTED_FIELDS	(GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
59 				 GRE_SEQUENCE_PRESENT)
60 
61 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
62 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
63 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
64 #else
65 #define _htons(x) (x)
66 #endif
67 
68 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT;
69 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT;
70 
71 /* structure that caches offload info for the current packet */
72 struct testpmd_offload_info {
73 	uint16_t ethertype;
74 #ifdef RTE_LIB_GSO
75 	uint8_t gso_enable;
76 #endif
77 	uint16_t l2_len;
78 	uint16_t l3_len;
79 	uint16_t l4_len;
80 	uint8_t l4_proto;
81 	uint8_t is_tunnel;
82 	uint16_t outer_ethertype;
83 	uint16_t outer_l2_len;
84 	uint16_t outer_l3_len;
85 	uint8_t outer_l4_proto;
86 	uint16_t tso_segsz;
87 	uint16_t tunnel_tso_segsz;
88 	uint32_t pkt_len;
89 };
90 
91 /* simplified GRE header */
92 struct simple_gre_hdr {
93 	uint16_t flags;
94 	uint16_t proto;
95 } __rte_packed;
96 
97 static uint16_t
98 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off,
99 		    uint16_t ethertype)
100 {
101 	if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
102 		return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off);
103 	else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
104 		return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off);
105 }
106 
107 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
108 static void
109 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
110 {
111 	struct rte_tcp_hdr *tcp_hdr;
112 
113 	info->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
114 	info->l4_proto = ipv4_hdr->next_proto_id;
115 
116 	/* only fill l4_len for TCP, it's useful for TSO */
117 	if (info->l4_proto == IPPROTO_TCP) {
118 		tcp_hdr = (struct rte_tcp_hdr *)
119 			((char *)ipv4_hdr + info->l3_len);
120 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
121 	} else if (info->l4_proto == IPPROTO_UDP)
122 		info->l4_len = sizeof(struct rte_udp_hdr);
123 	else
124 		info->l4_len = 0;
125 }
126 
127 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
128 static void
129 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
130 {
131 	struct rte_tcp_hdr *tcp_hdr;
132 
133 	info->l3_len = sizeof(struct rte_ipv6_hdr);
134 	info->l4_proto = ipv6_hdr->proto;
135 
136 	/* only fill l4_len for TCP, it's useful for TSO */
137 	if (info->l4_proto == IPPROTO_TCP) {
138 		tcp_hdr = (struct rte_tcp_hdr *)
139 			((char *)ipv6_hdr + info->l3_len);
140 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
141 	} else if (info->l4_proto == IPPROTO_UDP)
142 		info->l4_len = sizeof(struct rte_udp_hdr);
143 	else
144 		info->l4_len = 0;
145 }
146 
147 /*
148  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
149  * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
150  * headers. The l4_len argument is only set in case of TCP (useful for TSO).
151  */
152 static void
153 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
154 {
155 	struct rte_ipv4_hdr *ipv4_hdr;
156 	struct rte_ipv6_hdr *ipv6_hdr;
157 	struct rte_vlan_hdr *vlan_hdr;
158 
159 	info->l2_len = sizeof(struct rte_ether_hdr);
160 	info->ethertype = eth_hdr->ether_type;
161 
162 	while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
163 	       info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
164 		vlan_hdr = (struct rte_vlan_hdr *)
165 			((char *)eth_hdr + info->l2_len);
166 		info->l2_len  += sizeof(struct rte_vlan_hdr);
167 		info->ethertype = vlan_hdr->eth_proto;
168 	}
169 
170 	switch (info->ethertype) {
171 	case _htons(RTE_ETHER_TYPE_IPV4):
172 		ipv4_hdr = (struct rte_ipv4_hdr *)
173 			((char *)eth_hdr + info->l2_len);
174 		parse_ipv4(ipv4_hdr, info);
175 		break;
176 	case _htons(RTE_ETHER_TYPE_IPV6):
177 		ipv6_hdr = (struct rte_ipv6_hdr *)
178 			((char *)eth_hdr + info->l2_len);
179 		parse_ipv6(ipv6_hdr, info);
180 		break;
181 	default:
182 		info->l4_len = 0;
183 		info->l3_len = 0;
184 		info->l4_proto = 0;
185 		break;
186 	}
187 }
188 
189 /* Fill in outer layers length */
190 static void
191 update_tunnel_outer(struct testpmd_offload_info *info)
192 {
193 	info->is_tunnel = 1;
194 	info->outer_ethertype = info->ethertype;
195 	info->outer_l2_len = info->l2_len;
196 	info->outer_l3_len = info->l3_len;
197 	info->outer_l4_proto = info->l4_proto;
198 }
199 
200 /*
201  * Parse a GTP protocol header.
202  * No optional fields and next extension header type.
203  */
204 static void
205 parse_gtp(struct rte_udp_hdr *udp_hdr,
206 	  struct testpmd_offload_info *info)
207 {
208 	struct rte_ipv4_hdr *ipv4_hdr;
209 	struct rte_ipv6_hdr *ipv6_hdr;
210 	struct rte_gtp_hdr *gtp_hdr;
211 	uint8_t gtp_len = sizeof(*gtp_hdr);
212 	uint8_t ip_ver;
213 
214 	/* Check udp destination port. */
215 	if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
216 	    udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
217 	    udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
218 		return;
219 
220 	update_tunnel_outer(info);
221 	info->l2_len = 0;
222 
223 	gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
224 		  sizeof(struct rte_udp_hdr));
225 	if (gtp_hdr->e || gtp_hdr->s || gtp_hdr->pn)
226 		gtp_len += sizeof(struct rte_gtp_hdr_ext_word);
227 	/*
228 	 * Check message type. If message type is 0xff, it is
229 	 * a GTP data packet. If not, it is a GTP control packet
230 	 */
231 	if (gtp_hdr->msg_type == 0xff) {
232 		ip_ver = *(uint8_t *)((char *)gtp_hdr + gtp_len);
233 		ip_ver = (ip_ver) & 0xf0;
234 
235 		if (ip_ver == RTE_GTP_TYPE_IPV4) {
236 			ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
237 				   gtp_len);
238 			info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
239 			parse_ipv4(ipv4_hdr, info);
240 		} else if (ip_ver == RTE_GTP_TYPE_IPV6) {
241 			ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
242 				   gtp_len);
243 			info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
244 			parse_ipv6(ipv6_hdr, info);
245 		}
246 	} else {
247 		info->ethertype = 0;
248 		info->l4_len = 0;
249 		info->l3_len = 0;
250 		info->l4_proto = 0;
251 	}
252 
253 	info->l2_len += gtp_len + sizeof(*udp_hdr);
254 }
255 
256 /* Parse a vxlan header */
257 static void
258 parse_vxlan(struct rte_udp_hdr *udp_hdr,
259 	    struct testpmd_offload_info *info)
260 {
261 	struct rte_ether_hdr *eth_hdr;
262 
263 	/* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the
264 	 * default vxlan port (rfc7348) or that the rx offload flag is set
265 	 * (i40e only currently)
266 	 */
267 	if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT))
268 		return;
269 
270 	update_tunnel_outer(info);
271 
272 	eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
273 		sizeof(struct rte_udp_hdr) +
274 		sizeof(struct rte_vxlan_hdr));
275 
276 	parse_ethernet(eth_hdr, info);
277 	info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
278 }
279 
280 /* Parse a vxlan-gpe header */
281 static void
282 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
283 	    struct testpmd_offload_info *info)
284 {
285 	struct rte_ether_hdr *eth_hdr;
286 	struct rte_ipv4_hdr *ipv4_hdr;
287 	struct rte_ipv6_hdr *ipv6_hdr;
288 	struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
289 	uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
290 
291 	/* Check udp destination port. */
292 	if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
293 		return;
294 
295 	vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
296 				sizeof(struct rte_udp_hdr));
297 
298 	if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
299 	    RTE_VXLAN_GPE_TYPE_IPV4) {
300 		update_tunnel_outer(info);
301 
302 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
303 			   vxlan_gpe_len);
304 
305 		parse_ipv4(ipv4_hdr, info);
306 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
307 		info->l2_len = 0;
308 
309 	} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
310 		update_tunnel_outer(info);
311 
312 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
313 			   vxlan_gpe_len);
314 
315 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
316 		parse_ipv6(ipv6_hdr, info);
317 		info->l2_len = 0;
318 
319 	} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
320 		update_tunnel_outer(info);
321 
322 		eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
323 			  vxlan_gpe_len);
324 
325 		parse_ethernet(eth_hdr, info);
326 	} else
327 		return;
328 
329 	info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
330 }
331 
332 /* Parse a geneve header */
333 static void
334 parse_geneve(struct rte_udp_hdr *udp_hdr,
335 	    struct testpmd_offload_info *info)
336 {
337 	struct rte_ether_hdr *eth_hdr;
338 	struct rte_ipv4_hdr *ipv4_hdr;
339 	struct rte_ipv6_hdr *ipv6_hdr;
340 	struct rte_geneve_hdr *geneve_hdr;
341 	uint16_t geneve_len;
342 
343 	/* Check udp destination port. */
344 	if (udp_hdr->dst_port != _htons(geneve_udp_port))
345 		return;
346 
347 	geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr +
348 				sizeof(struct rte_udp_hdr));
349 	geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4;
350 	if (!geneve_hdr->proto || geneve_hdr->proto ==
351 	    _htons(RTE_ETHER_TYPE_IPV4)) {
352 		update_tunnel_outer(info);
353 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr +
354 			   geneve_len);
355 		parse_ipv4(ipv4_hdr, info);
356 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
357 		info->l2_len = 0;
358 	} else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
359 		update_tunnel_outer(info);
360 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr +
361 			   geneve_len);
362 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
363 		parse_ipv6(ipv6_hdr, info);
364 		info->l2_len = 0;
365 
366 	} else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) {
367 		update_tunnel_outer(info);
368 		eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr +
369 			  geneve_len);
370 		parse_ethernet(eth_hdr, info);
371 	} else
372 		return;
373 
374 	info->l2_len +=
375 		(sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) +
376 		((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4);
377 }
378 
379 /* Parse a gre header */
380 static void
381 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
382 {
383 	struct rte_ether_hdr *eth_hdr;
384 	struct rte_ipv4_hdr *ipv4_hdr;
385 	struct rte_ipv6_hdr *ipv6_hdr;
386 	uint8_t gre_len = 0;
387 
388 	gre_len += sizeof(struct simple_gre_hdr);
389 
390 	if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
391 		gre_len += GRE_EXT_LEN;
392 	if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
393 		gre_len += GRE_EXT_LEN;
394 	if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
395 		gre_len += GRE_EXT_LEN;
396 
397 	if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
398 		update_tunnel_outer(info);
399 
400 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
401 
402 		parse_ipv4(ipv4_hdr, info);
403 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
404 		info->l2_len = 0;
405 
406 	} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
407 		update_tunnel_outer(info);
408 
409 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
410 
411 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
412 		parse_ipv6(ipv6_hdr, info);
413 		info->l2_len = 0;
414 
415 	} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
416 		update_tunnel_outer(info);
417 
418 		eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
419 
420 		parse_ethernet(eth_hdr, info);
421 	} else
422 		return;
423 
424 	info->l2_len += gre_len;
425 }
426 
427 
428 /* Parse an encapsulated ip or ipv6 header */
429 static void
430 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
431 {
432 	struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
433 	struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
434 	uint8_t ip_version;
435 
436 	ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
437 
438 	if (ip_version != 4 && ip_version != 6)
439 		return;
440 
441 	info->is_tunnel = 1;
442 	info->outer_ethertype = info->ethertype;
443 	info->outer_l2_len = info->l2_len;
444 	info->outer_l3_len = info->l3_len;
445 
446 	if (ip_version == 4) {
447 		parse_ipv4(ipv4_hdr, info);
448 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
449 	} else {
450 		parse_ipv6(ipv6_hdr, info);
451 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
452 	}
453 	info->l2_len = 0;
454 }
455 
456 /* if possible, calculate the checksum of a packet in hw or sw,
457  * depending on the testpmd command line configuration */
458 static uint64_t
459 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
460 	uint64_t tx_offloads, struct rte_mbuf *m)
461 {
462 	struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
463 	struct rte_udp_hdr *udp_hdr;
464 	struct rte_tcp_hdr *tcp_hdr;
465 	struct rte_sctp_hdr *sctp_hdr;
466 	uint64_t ol_flags = 0;
467 	uint32_t max_pkt_len, tso_segsz = 0;
468 	uint16_t l4_off;
469 	uint64_t all_tunnel_tso = RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO |
470 				RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO |
471 				RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO |
472 				RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO |
473 				RTE_ETH_TX_OFFLOAD_IP_TNL_TSO |
474 				RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO;
475 
476 	/* ensure packet is large enough to require tso */
477 	if (!info->is_tunnel) {
478 		max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
479 			info->tso_segsz;
480 		if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
481 			tso_segsz = info->tso_segsz;
482 	} else {
483 		max_pkt_len = info->outer_l2_len + info->outer_l3_len +
484 			info->l2_len + info->l3_len + info->l4_len +
485 			info->tunnel_tso_segsz;
486 		if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
487 			tso_segsz = info->tunnel_tso_segsz;
488 	}
489 
490 	if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
491 		ipv4_hdr = l3_hdr;
492 
493 		ol_flags |= RTE_MBUF_F_TX_IPV4;
494 		if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
495 			ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
496 		} else {
497 			if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) {
498 				ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
499 			} else {
500 				ipv4_hdr->hdr_checksum = 0;
501 				ipv4_hdr->hdr_checksum =
502 					rte_ipv4_cksum(ipv4_hdr);
503 			}
504 		}
505 	} else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
506 		ol_flags |= RTE_MBUF_F_TX_IPV6;
507 	else
508 		return 0; /* packet type not supported, nothing to do */
509 
510 	if (info->l4_proto == IPPROTO_UDP) {
511 		udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
512 		/* do not recalculate udp cksum if it was 0 */
513 		if (udp_hdr->dgram_cksum != 0) {
514 			if (tso_segsz && (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_TSO))
515 				ol_flags |= RTE_MBUF_F_TX_UDP_SEG;
516 			else if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) {
517 				ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM;
518 			} else {
519 				if (info->is_tunnel)
520 					l4_off = info->outer_l2_len +
521 						 info->outer_l3_len +
522 						 info->l2_len + info->l3_len;
523 				else
524 					l4_off = info->l2_len +	info->l3_len;
525 				udp_hdr->dgram_cksum = 0;
526 				udp_hdr->dgram_cksum =
527 					get_udptcp_checksum(m, l3_hdr, l4_off,
528 						info->ethertype);
529 			}
530 		}
531 #ifdef RTE_LIB_GSO
532 		if (info->gso_enable)
533 			ol_flags |= RTE_MBUF_F_TX_UDP_SEG;
534 #endif
535 	} else if (info->l4_proto == IPPROTO_TCP) {
536 		tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
537 		if (tso_segsz &&
538 		    (tx_offloads & (RTE_ETH_TX_OFFLOAD_TCP_TSO | all_tunnel_tso)))
539 			ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
540 		else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) {
541 			ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
542 		} else {
543 			if (info->is_tunnel)
544 				l4_off = info->outer_l2_len + info->outer_l3_len +
545 					 info->l2_len + info->l3_len;
546 			else
547 				l4_off = info->l2_len + info->l3_len;
548 			tcp_hdr->cksum = 0;
549 			tcp_hdr->cksum =
550 				get_udptcp_checksum(m, l3_hdr, l4_off,
551 					info->ethertype);
552 		}
553 #ifdef RTE_LIB_GSO
554 		if (info->gso_enable)
555 			ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
556 #endif
557 	} else if (info->l4_proto == IPPROTO_SCTP) {
558 		sctp_hdr = (struct rte_sctp_hdr *)
559 			((char *)l3_hdr + info->l3_len);
560 		/* sctp payload must be a multiple of 4 to be
561 		 * offloaded */
562 		if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) &&
563 			((ipv4_hdr->total_length & 0x3) == 0)) {
564 			ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM;
565 		} else {
566 			sctp_hdr->cksum = 0;
567 			/* XXX implement CRC32c, example available in
568 			 * RFC3309 */
569 		}
570 	}
571 
572 	return ol_flags;
573 }
574 
575 /* Calculate the checksum of outer header */
576 static uint64_t
577 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
578 	uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m)
579 {
580 	struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
581 	struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
582 	struct rte_udp_hdr *udp_hdr;
583 	uint64_t ol_flags = 0;
584 
585 	if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
586 		ipv4_hdr->hdr_checksum = 0;
587 		ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4;
588 
589 		if (tx_offloads	& RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM)
590 			ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM;
591 		else
592 			ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
593 	} else
594 		ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6;
595 
596 	if (info->outer_l4_proto != IPPROTO_UDP)
597 		return ol_flags;
598 
599 	udp_hdr = (struct rte_udp_hdr *)
600 		((char *)outer_l3_hdr + info->outer_l3_len);
601 
602 	if (tso_enabled && info->l4_proto == IPPROTO_TCP)
603 		ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
604 	else if (tso_enabled && info->l4_proto == IPPROTO_UDP)
605 		ol_flags |= RTE_MBUF_F_TX_UDP_SEG;
606 
607 	/* Skip SW outer UDP checksum generation if HW supports it */
608 	if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) {
609 		if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
610 			udp_hdr->dgram_cksum
611 				= rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
612 		else
613 			udp_hdr->dgram_cksum
614 				= rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
615 
616 		ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM;
617 		return ol_flags;
618 	}
619 
620 	/* outer UDP checksum is done in software. In the other side, for
621 	 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
622 	 * set to zero.
623 	 *
624 	 * If a packet will be TSOed into small packets by NIC, we cannot
625 	 * set/calculate a non-zero checksum, because it will be a wrong
626 	 * value after the packet be split into several small packets.
627 	 */
628 	if (tso_enabled)
629 		udp_hdr->dgram_cksum = 0;
630 
631 	/* do not recalculate udp cksum if it was 0 */
632 	if (udp_hdr->dgram_cksum != 0) {
633 		udp_hdr->dgram_cksum = 0;
634 		udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr,
635 					info->outer_l2_len + info->outer_l3_len,
636 					info->outer_ethertype);
637 	}
638 
639 	return ol_flags;
640 }
641 
642 /*
643  * Helper function.
644  * Performs actual copying.
645  * Returns number of segments in the destination mbuf on success,
646  * or negative error code on failure.
647  */
648 static int
649 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
650 	uint16_t seglen[], uint8_t nb_seg)
651 {
652 	uint32_t dlen, slen, tlen;
653 	uint32_t i, len;
654 	const struct rte_mbuf *m;
655 	const uint8_t *src;
656 	uint8_t *dst;
657 
658 	dlen = 0;
659 	slen = 0;
660 	tlen = 0;
661 
662 	dst = NULL;
663 	src = NULL;
664 
665 	m = ms;
666 	i = 0;
667 	while (ms != NULL && i != nb_seg) {
668 
669 		if (slen == 0) {
670 			slen = rte_pktmbuf_data_len(ms);
671 			src = rte_pktmbuf_mtod(ms, const uint8_t *);
672 		}
673 
674 		if (dlen == 0) {
675 			dlen = RTE_MIN(seglen[i], slen);
676 			md[i]->data_len = dlen;
677 			md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
678 			dst = rte_pktmbuf_mtod(md[i], uint8_t *);
679 		}
680 
681 		len = RTE_MIN(slen, dlen);
682 		memcpy(dst, src, len);
683 		tlen += len;
684 		slen -= len;
685 		dlen -= len;
686 		src += len;
687 		dst += len;
688 
689 		if (slen == 0)
690 			ms = ms->next;
691 		if (dlen == 0)
692 			i++;
693 	}
694 
695 	if (ms != NULL)
696 		return -ENOBUFS;
697 	else if (tlen != m->pkt_len)
698 		return -EINVAL;
699 
700 	md[0]->nb_segs = nb_seg;
701 	md[0]->pkt_len = tlen;
702 	md[0]->vlan_tci = m->vlan_tci;
703 	md[0]->vlan_tci_outer = m->vlan_tci_outer;
704 	md[0]->ol_flags = m->ol_flags;
705 	md[0]->tx_offload = m->tx_offload;
706 
707 	return nb_seg;
708 }
709 
710 /*
711  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
712  * Copy packet contents and offload information into the new segmented mbuf.
713  */
714 static struct rte_mbuf *
715 pkt_copy_split(const struct rte_mbuf *pkt)
716 {
717 	int32_t n, rc;
718 	uint32_t i, len, nb_seg;
719 	struct rte_mempool *mp;
720 	uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
721 	struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
722 
723 	mp = current_fwd_lcore()->mbp;
724 
725 	if (tx_pkt_split == TX_PKT_SPLIT_RND)
726 		nb_seg = rte_rand() % tx_pkt_nb_segs + 1;
727 	else
728 		nb_seg = tx_pkt_nb_segs;
729 
730 	memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
731 
732 	/* calculate number of segments to use and their length. */
733 	len = 0;
734 	for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
735 		len += seglen[i];
736 		md[i] = NULL;
737 	}
738 
739 	n = pkt->pkt_len - len;
740 
741 	/* update size of the last segment to fit rest of the packet */
742 	if (n >= 0) {
743 		seglen[i - 1] += n;
744 		len += n;
745 	}
746 
747 	nb_seg = i;
748 	while (i != 0) {
749 		p = rte_pktmbuf_alloc(mp);
750 		if (p == NULL) {
751 			TESTPMD_LOG(ERR,
752 				"failed to allocate %u-th of %u mbuf "
753 				"from mempool: %s\n",
754 				nb_seg - i, nb_seg, mp->name);
755 			break;
756 		}
757 
758 		md[--i] = p;
759 		if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
760 			TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
761 				"expected seglen: %u, "
762 				"actual mbuf tailroom: %u\n",
763 				mp->name, i, seglen[i],
764 				rte_pktmbuf_tailroom(md[i]));
765 			break;
766 		}
767 	}
768 
769 	/* all mbufs successfully allocated, do copy */
770 	if (i == 0) {
771 		rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
772 		if (rc < 0)
773 			TESTPMD_LOG(ERR,
774 				"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
775 				"into %u segments failed with error code: %d\n",
776 				pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
777 
778 		/* figure out how many mbufs to free. */
779 		i = RTE_MAX(rc, 0);
780 	}
781 
782 	/* free unused mbufs */
783 	for (; i != nb_seg; i++) {
784 		rte_pktmbuf_free_seg(md[i]);
785 		md[i] = NULL;
786 	}
787 
788 	return md[0];
789 }
790 
791 #if defined(RTE_LIB_GRO) || defined(RTE_LIB_GSO)
792 /*
793  * Re-calculate IP checksum for merged/fragmented packets.
794  */
795 static void
796 pkts_ip_csum_recalc(struct rte_mbuf **pkts_burst, const uint16_t nb_pkts, uint64_t tx_offloads)
797 {
798 	int i;
799 	struct rte_ipv4_hdr *ipv4_hdr;
800 	for (i = 0; i < nb_pkts; i++) {
801 		if ((pkts_burst[i]->ol_flags & RTE_MBUF_F_TX_IPV4) &&
802 			(tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) == 0) {
803 			ipv4_hdr = rte_pktmbuf_mtod_offset(pkts_burst[i],
804 						struct rte_ipv4_hdr *,
805 						pkts_burst[i]->l2_len);
806 			ipv4_hdr->hdr_checksum = 0;
807 			ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
808 		}
809 	}
810 }
811 #endif
812 
813 /*
814  * Receive a burst of packets, and for each packet:
815  *  - parse packet, and try to recognize a supported packet type (1)
816  *  - if it's not a supported packet type, don't touch the packet, else:
817  *  - reprocess the checksum of all supported layers. This is done in SW
818  *    or HW, depending on testpmd command line configuration
819  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
820  *    segmentation offload (this implies HW TCP checksum)
821  * Then transmit packets on the output port.
822  *
823  * (1) Supported packets are:
824  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
825  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
826  *           UDP|TCP|SCTP
827  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
828  *           UDP|TCP|SCTP
829  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
830  *           UDP|TCP|SCTP
831  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
832  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
833  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
834  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
835  *
836  * The testpmd command line for this forward engine sets the flags
837  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
838  * whether a checksum must be calculated in software or in hardware. The
839  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
840  * OUTER_IP is only useful for tunnel packets.
841  */
842 static bool
843 pkt_burst_checksum_forward(struct fwd_stream *fs)
844 {
845 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
846 #ifdef RTE_LIB_GSO
847 	struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
848 	struct rte_gso_ctx *gso_ctx;
849 #endif
850 	struct rte_mbuf **tx_pkts_burst;
851 	struct rte_port *txp;
852 	struct rte_mbuf *m, *p;
853 	struct rte_ether_hdr *eth_hdr;
854 	void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
855 #ifdef RTE_LIB_GRO
856 	void **gro_ctx;
857 	uint16_t gro_pkts_num;
858 	uint8_t gro_enable;
859 #endif
860 	uint16_t nb_rx;
861 	uint16_t nb_prep;
862 	uint16_t i;
863 	uint64_t rx_ol_flags, tx_ol_flags;
864 	uint64_t tx_offloads;
865 	uint32_t rx_bad_ip_csum;
866 	uint32_t rx_bad_l4_csum;
867 	uint32_t rx_bad_outer_l4_csum;
868 	uint32_t rx_bad_outer_ip_csum;
869 	struct testpmd_offload_info info;
870 
871 	/* receive a burst of packet */
872 	nb_rx = common_fwd_stream_receive(fs, pkts_burst, nb_pkt_per_burst);
873 	if (unlikely(nb_rx == 0)) {
874 #ifndef RTE_LIB_GRO
875 		return false;
876 #else
877 		gro_enable = gro_ports[fs->rx_port].enable;
878 		/*
879 		 * Check if packets need to be flushed in the GRO context
880 		 * due to a timeout.
881 		 *
882 		 * Continue only in GRO heavyweight mode and if there are
883 		 * packets in the GRO context.
884 		 */
885 		if (!gro_enable || (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) ||
886 			(rte_gro_get_pkt_count(current_fwd_lcore()->gro_ctx) == 0))
887 			return false;
888 #endif
889 	}
890 
891 	rx_bad_ip_csum = 0;
892 	rx_bad_l4_csum = 0;
893 	rx_bad_outer_l4_csum = 0;
894 	rx_bad_outer_ip_csum = 0;
895 
896 	txp = &ports[fs->tx_port];
897 	tx_offloads = txp->dev_conf.txmode.offloads;
898 	memset(&info, 0, sizeof(info));
899 	info.tso_segsz = txp->tso_segsz;
900 	info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
901 #ifdef RTE_LIB_GSO
902 	if (gso_ports[fs->tx_port].enable)
903 		info.gso_enable = 1;
904 #endif
905 
906 	for (i = 0; i < nb_rx; i++) {
907 		if (likely(i < nb_rx - 1))
908 			rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
909 						       void *));
910 
911 		m = pkts_burst[i];
912 		info.is_tunnel = 0;
913 		info.pkt_len = rte_pktmbuf_pkt_len(m);
914 		tx_ol_flags = m->ol_flags &
915 			      (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL);
916 		rx_ol_flags = m->ol_flags;
917 
918 		/* Update the L3/L4 checksum error packet statistics */
919 		if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD)
920 			rx_bad_ip_csum += 1;
921 		if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD)
922 			rx_bad_l4_csum += 1;
923 		if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD)
924 			rx_bad_outer_l4_csum += 1;
925 		if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD)
926 			rx_bad_outer_ip_csum += 1;
927 
928 		/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
929 		 * and inner headers */
930 
931 		eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
932 		if (ports[fs->tx_port].fwd_mac_swap) {
933 			rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
934 					    &eth_hdr->dst_addr);
935 			rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
936 					    &eth_hdr->src_addr);
937 		}
938 		parse_ethernet(eth_hdr, &info);
939 		l3_hdr = (char *)eth_hdr + info.l2_len;
940 
941 		/* check if it's a supported tunnel */
942 		if (txp->parse_tunnel) {
943 			if (info.l4_proto == IPPROTO_UDP) {
944 				struct rte_udp_hdr *udp_hdr;
945 
946 				udp_hdr = (struct rte_udp_hdr *)
947 					((char *)l3_hdr + info.l3_len);
948 				parse_gtp(udp_hdr, &info);
949 				if (info.is_tunnel) {
950 					tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP;
951 					goto tunnel_update;
952 				}
953 				parse_vxlan_gpe(udp_hdr, &info);
954 				if (info.is_tunnel) {
955 					tx_ol_flags |=
956 						RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE;
957 					goto tunnel_update;
958 				}
959 				parse_vxlan(udp_hdr, &info);
960 				if (info.is_tunnel) {
961 					tx_ol_flags |=
962 						RTE_MBUF_F_TX_TUNNEL_VXLAN;
963 					goto tunnel_update;
964 				}
965 				parse_geneve(udp_hdr, &info);
966 				if (info.is_tunnel) {
967 					tx_ol_flags |=
968 						RTE_MBUF_F_TX_TUNNEL_GENEVE;
969 					goto tunnel_update;
970 				}
971 				/* Always keep last. */
972 				if (unlikely(RTE_ETH_IS_TUNNEL_PKT(
973 							m->packet_type) != 0)) {
974 					TESTPMD_LOG(DEBUG, "Unknown tunnel packet. UDP dst port: %hu",
975 						udp_hdr->dst_port);
976 				}
977 			} else if (info.l4_proto == IPPROTO_GRE) {
978 				struct simple_gre_hdr *gre_hdr;
979 
980 				gre_hdr = (struct simple_gre_hdr *)
981 					((char *)l3_hdr + info.l3_len);
982 				parse_gre(gre_hdr, &info);
983 				if (info.is_tunnel)
984 					tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE;
985 			} else if (info.l4_proto == IPPROTO_IPIP) {
986 				void *encap_ip_hdr;
987 
988 				encap_ip_hdr = (char *)l3_hdr + info.l3_len;
989 				parse_encap_ip(encap_ip_hdr, &info);
990 				if (info.is_tunnel)
991 					tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP;
992 			}
993 		}
994 
995 tunnel_update:
996 		/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
997 		if (info.is_tunnel) {
998 			outer_l3_hdr = l3_hdr;
999 			l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
1000 		}
1001 
1002 		/* step 2: depending on user command line configuration,
1003 		 * recompute checksum either in software or flag the
1004 		 * mbuf to offload the calculation to the NIC. If TSO
1005 		 * is configured, prepare the mbuf for TCP segmentation. */
1006 
1007 		/* process checksums of inner headers first */
1008 		tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
1009 			tx_offloads, m);
1010 
1011 		/* Then process outer headers if any. Note that the software
1012 		 * checksum will be wrong if one of the inner checksums is
1013 		 * processed in hardware. */
1014 		if (info.is_tunnel == 1) {
1015 			tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
1016 					tx_offloads,
1017 					!!(tx_ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
1018 						RTE_MBUF_F_TX_UDP_SEG)),
1019 					m);
1020 		}
1021 
1022 		/* step 3: fill the mbuf meta data (flags and header lengths) */
1023 
1024 		m->tx_offload = 0;
1025 		if (info.is_tunnel == 1) {
1026 			if (info.tunnel_tso_segsz ||
1027 			    (tx_offloads &
1028 			     RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1029 			    (tx_offloads &
1030 			     RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) {
1031 				m->outer_l2_len = info.outer_l2_len;
1032 				m->outer_l3_len = info.outer_l3_len;
1033 				m->l2_len = info.l2_len;
1034 				m->l3_len = info.l3_len;
1035 				m->l4_len = info.l4_len;
1036 				m->tso_segsz = info.tunnel_tso_segsz;
1037 			}
1038 			else {
1039 				/* if there is a outer UDP cksum
1040 				   processed in sw and the inner in hw,
1041 				   the outer checksum will be wrong as
1042 				   the payload will be modified by the
1043 				   hardware */
1044 				m->l2_len = info.outer_l2_len +
1045 					info.outer_l3_len + info.l2_len;
1046 				m->l3_len = info.l3_len;
1047 				m->l4_len = info.l4_len;
1048 			}
1049 		} else {
1050 			/* this is only useful if an offload flag is
1051 			 * set, but it does not hurt to fill it in any
1052 			 * case */
1053 			m->l2_len = info.l2_len;
1054 			m->l3_len = info.l3_len;
1055 			m->l4_len = info.l4_len;
1056 			m->tso_segsz = info.tso_segsz;
1057 		}
1058 		m->ol_flags = tx_ol_flags;
1059 
1060 		/* Do split & copy for the packet. */
1061 		if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
1062 			p = pkt_copy_split(m);
1063 			if (p != NULL) {
1064 				rte_pktmbuf_free(m);
1065 				m = p;
1066 				pkts_burst[i] = m;
1067 			}
1068 		}
1069 
1070 		/* if verbose mode is enabled, dump debug info */
1071 		if (verbose_level > 0) {
1072 			char buf[256];
1073 
1074 			printf("-----------------\n");
1075 			printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
1076 				fs->rx_port, m, m->pkt_len, m->nb_segs);
1077 			/* dump rx parsed packet info */
1078 			rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
1079 			printf("rx: l2_len=%d ethertype=%x l3_len=%d "
1080 				"l4_proto=%d l4_len=%d flags=%s\n",
1081 				info.l2_len, rte_be_to_cpu_16(info.ethertype),
1082 				info.l3_len, info.l4_proto, info.l4_len, buf);
1083 			if (rx_ol_flags & RTE_MBUF_F_RX_LRO)
1084 				printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
1085 			if (info.is_tunnel == 1)
1086 				printf("rx: outer_l2_len=%d outer_ethertype=%x "
1087 					"outer_l3_len=%d\n", info.outer_l2_len,
1088 					rte_be_to_cpu_16(info.outer_ethertype),
1089 					info.outer_l3_len);
1090 			/* dump tx packet info */
1091 			if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1092 					    RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1093 					    RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1094 					    RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) ||
1095 				info.tso_segsz != 0)
1096 				printf("tx: m->l2_len=%d m->l3_len=%d "
1097 					"m->l4_len=%d\n",
1098 					m->l2_len, m->l3_len, m->l4_len);
1099 			if (info.is_tunnel == 1) {
1100 				if ((tx_offloads &
1101 				    RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1102 				    (tx_offloads &
1103 				    RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1104 				    (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6))
1105 					printf("tx: m->outer_l2_len=%d "
1106 						"m->outer_l3_len=%d\n",
1107 						m->outer_l2_len,
1108 						m->outer_l3_len);
1109 				if (info.tunnel_tso_segsz != 0 &&
1110 						(m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
1111 							RTE_MBUF_F_TX_UDP_SEG)))
1112 					printf("tx: m->tso_segsz=%d\n",
1113 						m->tso_segsz);
1114 			} else if (info.tso_segsz != 0 &&
1115 					(m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG |
1116 						RTE_MBUF_F_TX_UDP_SEG)))
1117 				printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1118 			rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1119 			printf("tx: flags=%s", buf);
1120 			printf("\n");
1121 		}
1122 	}
1123 
1124 #ifdef RTE_LIB_GRO
1125 	gro_enable = gro_ports[fs->rx_port].enable;
1126 	if (unlikely(gro_enable)) {
1127 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1128 			nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1129 					&(gro_ports[fs->rx_port].param));
1130 		} else {
1131 			gro_ctx = current_fwd_lcore()->gro_ctx;
1132 			nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1133 
1134 			if (++fs->gro_times >= gro_flush_cycles) {
1135 				gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1136 				if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1137 					gro_pkts_num = MAX_PKT_BURST - nb_rx;
1138 
1139 				nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1140 						RTE_GRO_TCP_IPV4,
1141 						&pkts_burst[nb_rx],
1142 						gro_pkts_num);
1143 				fs->gro_times = 0;
1144 			}
1145 			if (nb_rx == 0)
1146 				return false;
1147 		}
1148 
1149 		pkts_ip_csum_recalc(pkts_burst, nb_rx, tx_offloads);
1150 	}
1151 #endif
1152 
1153 #ifdef RTE_LIB_GSO
1154 	if (gso_ports[fs->tx_port].enable != 0) {
1155 		uint16_t nb_segments = 0;
1156 
1157 		gso_ctx = &(current_fwd_lcore()->gso_ctx);
1158 		gso_ctx->gso_size = gso_max_segment_size;
1159 		for (i = 0; i < nb_rx; i++) {
1160 			int ret;
1161 
1162 			ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1163 					&gso_segments[nb_segments],
1164 					GSO_MAX_PKT_BURST - nb_segments);
1165 			if (ret >= 1) {
1166 				/* pkts_burst[i] can be freed safely here. */
1167 				rte_pktmbuf_free(pkts_burst[i]);
1168 				nb_segments += ret;
1169 			} else if (ret == 0) {
1170 				/* 0 means it can be transmitted directly
1171 				 * without gso.
1172 				 */
1173 				gso_segments[nb_segments] = pkts_burst[i];
1174 				nb_segments += 1;
1175 			} else {
1176 				TESTPMD_LOG(DEBUG, "Unable to segment packet");
1177 				rte_pktmbuf_free(pkts_burst[i]);
1178 			}
1179 		}
1180 
1181 		tx_pkts_burst = gso_segments;
1182 		nb_rx = nb_segments;
1183 
1184 		pkts_ip_csum_recalc(tx_pkts_burst, nb_rx, tx_offloads);
1185 	} else
1186 #endif
1187 		tx_pkts_burst = pkts_burst;
1188 
1189 	nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1190 			tx_pkts_burst, nb_rx);
1191 	if (nb_prep != nb_rx) {
1192 		fprintf(stderr,
1193 			"Preparing packet burst to transmit failed: %s\n",
1194 			rte_strerror(rte_errno));
1195 		fs->fwd_dropped += (nb_rx - nb_prep);
1196 		rte_pktmbuf_free_bulk(&tx_pkts_burst[nb_prep], nb_rx - nb_prep);
1197 	}
1198 
1199 	common_fwd_stream_transmit(fs, tx_pkts_burst, nb_prep);
1200 
1201 	fs->rx_bad_ip_csum += rx_bad_ip_csum;
1202 	fs->rx_bad_l4_csum += rx_bad_l4_csum;
1203 	fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1204 	fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum;
1205 
1206 	return true;
1207 }
1208 
1209 struct fwd_engine csum_fwd_engine = {
1210 	.fwd_mode_name  = "csum",
1211 	.stream_init    = common_fwd_stream_init,
1212 	.packet_fwd     = pkt_burst_checksum_forward,
1213 };
1214