1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_branch_prediction.h> 28 #include <rte_mempool.h> 29 #include <rte_mbuf.h> 30 #include <rte_interrupts.h> 31 #include <rte_ether.h> 32 #include <rte_ethdev.h> 33 #include <rte_ip.h> 34 #include <rte_tcp.h> 35 #include <rte_udp.h> 36 #include <rte_vxlan.h> 37 #include <rte_sctp.h> 38 #include <rte_gtp.h> 39 #include <rte_prefetch.h> 40 #include <rte_string_fns.h> 41 #include <rte_flow.h> 42 #ifdef RTE_LIB_GRO 43 #include <rte_gro.h> 44 #endif 45 #ifdef RTE_LIB_GSO 46 #include <rte_gso.h> 47 #endif 48 #include <rte_geneve.h> 49 50 #include "testpmd.h" 51 52 #define IP_DEFTTL 64 /* from RFC 1340. */ 53 54 #define GRE_CHECKSUM_PRESENT 0x8000 55 #define GRE_KEY_PRESENT 0x2000 56 #define GRE_SEQUENCE_PRESENT 0x1000 57 #define GRE_EXT_LEN 4 58 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 59 GRE_SEQUENCE_PRESENT) 60 61 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 62 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 63 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 64 #else 65 #define _htons(x) (x) 66 #endif 67 68 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; 69 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; 70 71 /* structure that caches offload info for the current packet */ 72 struct testpmd_offload_info { 73 uint16_t ethertype; 74 #ifdef RTE_LIB_GSO 75 uint8_t gso_enable; 76 #endif 77 uint16_t l2_len; 78 uint16_t l3_len; 79 uint16_t l4_len; 80 uint8_t l4_proto; 81 uint8_t is_tunnel; 82 uint16_t outer_ethertype; 83 uint16_t outer_l2_len; 84 uint16_t outer_l3_len; 85 uint8_t outer_l4_proto; 86 uint16_t tso_segsz; 87 uint16_t tunnel_tso_segsz; 88 uint32_t pkt_len; 89 }; 90 91 /* simplified GRE header */ 92 struct simple_gre_hdr { 93 uint16_t flags; 94 uint16_t proto; 95 } __rte_packed; 96 97 static uint16_t 98 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off, 99 uint16_t ethertype) 100 { 101 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 102 return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 103 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ 104 return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 105 } 106 107 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 108 static void 109 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 110 { 111 struct rte_tcp_hdr *tcp_hdr; 112 113 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); 114 info->l4_proto = ipv4_hdr->next_proto_id; 115 116 /* only fill l4_len for TCP, it's useful for TSO */ 117 if (info->l4_proto == IPPROTO_TCP) { 118 tcp_hdr = (struct rte_tcp_hdr *) 119 ((char *)ipv4_hdr + info->l3_len); 120 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 121 } else if (info->l4_proto == IPPROTO_UDP) 122 info->l4_len = sizeof(struct rte_udp_hdr); 123 else 124 info->l4_len = 0; 125 } 126 127 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 128 static void 129 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 130 { 131 struct rte_tcp_hdr *tcp_hdr; 132 133 info->l3_len = sizeof(struct rte_ipv6_hdr); 134 info->l4_proto = ipv6_hdr->proto; 135 136 /* only fill l4_len for TCP, it's useful for TSO */ 137 if (info->l4_proto == IPPROTO_TCP) { 138 tcp_hdr = (struct rte_tcp_hdr *) 139 ((char *)ipv6_hdr + info->l3_len); 140 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 141 } else if (info->l4_proto == IPPROTO_UDP) 142 info->l4_len = sizeof(struct rte_udp_hdr); 143 else 144 info->l4_len = 0; 145 } 146 147 /* 148 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 149 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN 150 * headers. The l4_len argument is only set in case of TCP (useful for TSO). 151 */ 152 static void 153 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 154 { 155 struct rte_ipv4_hdr *ipv4_hdr; 156 struct rte_ipv6_hdr *ipv6_hdr; 157 struct rte_vlan_hdr *vlan_hdr; 158 159 info->l2_len = sizeof(struct rte_ether_hdr); 160 info->ethertype = eth_hdr->ether_type; 161 162 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || 163 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { 164 vlan_hdr = (struct rte_vlan_hdr *) 165 ((char *)eth_hdr + info->l2_len); 166 info->l2_len += sizeof(struct rte_vlan_hdr); 167 info->ethertype = vlan_hdr->eth_proto; 168 } 169 170 switch (info->ethertype) { 171 case _htons(RTE_ETHER_TYPE_IPV4): 172 ipv4_hdr = (struct rte_ipv4_hdr *) 173 ((char *)eth_hdr + info->l2_len); 174 parse_ipv4(ipv4_hdr, info); 175 break; 176 case _htons(RTE_ETHER_TYPE_IPV6): 177 ipv6_hdr = (struct rte_ipv6_hdr *) 178 ((char *)eth_hdr + info->l2_len); 179 parse_ipv6(ipv6_hdr, info); 180 break; 181 default: 182 info->l4_len = 0; 183 info->l3_len = 0; 184 info->l4_proto = 0; 185 break; 186 } 187 } 188 189 /* Fill in outer layers length */ 190 static void 191 update_tunnel_outer(struct testpmd_offload_info *info) 192 { 193 info->is_tunnel = 1; 194 info->outer_ethertype = info->ethertype; 195 info->outer_l2_len = info->l2_len; 196 info->outer_l3_len = info->l3_len; 197 info->outer_l4_proto = info->l4_proto; 198 } 199 200 /* 201 * Parse a GTP protocol header. 202 * No optional fields and next extension header type. 203 */ 204 static void 205 parse_gtp(struct rte_udp_hdr *udp_hdr, 206 struct testpmd_offload_info *info) 207 { 208 struct rte_ipv4_hdr *ipv4_hdr; 209 struct rte_ipv6_hdr *ipv6_hdr; 210 struct rte_gtp_hdr *gtp_hdr; 211 uint8_t gtp_len = sizeof(*gtp_hdr); 212 uint8_t ip_ver; 213 214 /* Check udp destination port. */ 215 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && 216 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && 217 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) 218 return; 219 220 update_tunnel_outer(info); 221 info->l2_len = 0; 222 223 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + 224 sizeof(struct rte_udp_hdr)); 225 if (gtp_hdr->e || gtp_hdr->s || gtp_hdr->pn) 226 gtp_len += sizeof(struct rte_gtp_hdr_ext_word); 227 /* 228 * Check message type. If message type is 0xff, it is 229 * a GTP data packet. If not, it is a GTP control packet 230 */ 231 if (gtp_hdr->msg_type == 0xff) { 232 ip_ver = *(uint8_t *)((char *)gtp_hdr + gtp_len); 233 ip_ver = (ip_ver) & 0xf0; 234 235 if (ip_ver == RTE_GTP_TYPE_IPV4) { 236 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + 237 gtp_len); 238 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 239 parse_ipv4(ipv4_hdr, info); 240 } else if (ip_ver == RTE_GTP_TYPE_IPV6) { 241 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + 242 gtp_len); 243 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 244 parse_ipv6(ipv6_hdr, info); 245 } 246 } else { 247 info->ethertype = 0; 248 info->l4_len = 0; 249 info->l3_len = 0; 250 info->l4_proto = 0; 251 } 252 253 info->l2_len += gtp_len + sizeof(*udp_hdr); 254 } 255 256 /* Parse a vxlan header */ 257 static void 258 parse_vxlan(struct rte_udp_hdr *udp_hdr, 259 struct testpmd_offload_info *info) 260 { 261 struct rte_ether_hdr *eth_hdr; 262 263 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the 264 * default vxlan port (rfc7348) or that the rx offload flag is set 265 * (i40e only currently) 266 */ 267 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT)) 268 return; 269 270 update_tunnel_outer(info); 271 272 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 273 sizeof(struct rte_udp_hdr) + 274 sizeof(struct rte_vxlan_hdr)); 275 276 parse_ethernet(eth_hdr, info); 277 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 278 } 279 280 /* Parse a vxlan-gpe header */ 281 static void 282 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 283 struct testpmd_offload_info *info) 284 { 285 struct rte_ether_hdr *eth_hdr; 286 struct rte_ipv4_hdr *ipv4_hdr; 287 struct rte_ipv6_hdr *ipv6_hdr; 288 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 289 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 290 291 /* Check udp destination port. */ 292 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 293 return; 294 295 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 296 sizeof(struct rte_udp_hdr)); 297 298 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 299 RTE_VXLAN_GPE_TYPE_IPV4) { 300 update_tunnel_outer(info); 301 302 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 303 vxlan_gpe_len); 304 305 parse_ipv4(ipv4_hdr, info); 306 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 307 info->l2_len = 0; 308 309 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 310 update_tunnel_outer(info); 311 312 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 313 vxlan_gpe_len); 314 315 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 316 parse_ipv6(ipv6_hdr, info); 317 info->l2_len = 0; 318 319 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 320 update_tunnel_outer(info); 321 322 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 323 vxlan_gpe_len); 324 325 parse_ethernet(eth_hdr, info); 326 } else 327 return; 328 329 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 330 } 331 332 /* Parse a geneve header */ 333 static void 334 parse_geneve(struct rte_udp_hdr *udp_hdr, 335 struct testpmd_offload_info *info) 336 { 337 struct rte_ether_hdr *eth_hdr; 338 struct rte_ipv4_hdr *ipv4_hdr; 339 struct rte_ipv6_hdr *ipv6_hdr; 340 struct rte_geneve_hdr *geneve_hdr; 341 uint16_t geneve_len; 342 343 /* Check udp destination port. */ 344 if (udp_hdr->dst_port != _htons(geneve_udp_port)) 345 return; 346 347 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + 348 sizeof(struct rte_udp_hdr)); 349 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; 350 if (!geneve_hdr->proto || geneve_hdr->proto == 351 _htons(RTE_ETHER_TYPE_IPV4)) { 352 update_tunnel_outer(info); 353 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + 354 geneve_len); 355 parse_ipv4(ipv4_hdr, info); 356 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 357 info->l2_len = 0; 358 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 359 update_tunnel_outer(info); 360 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + 361 geneve_len); 362 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 363 parse_ipv6(ipv6_hdr, info); 364 info->l2_len = 0; 365 366 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { 367 update_tunnel_outer(info); 368 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + 369 geneve_len); 370 parse_ethernet(eth_hdr, info); 371 } else 372 return; 373 374 info->l2_len += 375 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + 376 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); 377 } 378 379 /* Parse a gre header */ 380 static void 381 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 382 { 383 struct rte_ether_hdr *eth_hdr; 384 struct rte_ipv4_hdr *ipv4_hdr; 385 struct rte_ipv6_hdr *ipv6_hdr; 386 uint8_t gre_len = 0; 387 388 gre_len += sizeof(struct simple_gre_hdr); 389 390 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 391 gre_len += GRE_EXT_LEN; 392 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 393 gre_len += GRE_EXT_LEN; 394 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 395 gre_len += GRE_EXT_LEN; 396 397 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { 398 update_tunnel_outer(info); 399 400 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 401 402 parse_ipv4(ipv4_hdr, info); 403 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 404 info->l2_len = 0; 405 406 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 407 update_tunnel_outer(info); 408 409 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 410 411 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 412 parse_ipv6(ipv6_hdr, info); 413 info->l2_len = 0; 414 415 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 416 update_tunnel_outer(info); 417 418 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 419 420 parse_ethernet(eth_hdr, info); 421 } else 422 return; 423 424 info->l2_len += gre_len; 425 } 426 427 428 /* Parse an encapsulated ip or ipv6 header */ 429 static void 430 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 431 { 432 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 433 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 434 uint8_t ip_version; 435 436 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 437 438 if (ip_version != 4 && ip_version != 6) 439 return; 440 441 info->is_tunnel = 1; 442 info->outer_ethertype = info->ethertype; 443 info->outer_l2_len = info->l2_len; 444 info->outer_l3_len = info->l3_len; 445 446 if (ip_version == 4) { 447 parse_ipv4(ipv4_hdr, info); 448 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 449 } else { 450 parse_ipv6(ipv6_hdr, info); 451 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 452 } 453 info->l2_len = 0; 454 } 455 456 /* if possible, calculate the checksum of a packet in hw or sw, 457 * depending on the testpmd command line configuration */ 458 static uint64_t 459 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 460 uint64_t tx_offloads, struct rte_mbuf *m) 461 { 462 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 463 struct rte_udp_hdr *udp_hdr; 464 struct rte_tcp_hdr *tcp_hdr; 465 struct rte_sctp_hdr *sctp_hdr; 466 uint64_t ol_flags = 0; 467 uint32_t max_pkt_len, tso_segsz = 0; 468 uint16_t l4_off; 469 uint64_t all_tunnel_tso = RTE_ETH_TX_OFFLOAD_VXLAN_TNL_TSO | 470 RTE_ETH_TX_OFFLOAD_GRE_TNL_TSO | 471 RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO | 472 RTE_ETH_TX_OFFLOAD_GENEVE_TNL_TSO | 473 RTE_ETH_TX_OFFLOAD_IP_TNL_TSO | 474 RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO; 475 476 /* ensure packet is large enough to require tso */ 477 if (!info->is_tunnel) { 478 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 479 info->tso_segsz; 480 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 481 tso_segsz = info->tso_segsz; 482 } else { 483 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 484 info->l2_len + info->l3_len + info->l4_len + 485 info->tunnel_tso_segsz; 486 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 487 tso_segsz = info->tunnel_tso_segsz; 488 } 489 490 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 491 ipv4_hdr = l3_hdr; 492 493 ol_flags |= RTE_MBUF_F_TX_IPV4; 494 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 495 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 496 } else { 497 if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) { 498 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 499 } else { 500 ipv4_hdr->hdr_checksum = 0; 501 ipv4_hdr->hdr_checksum = 502 rte_ipv4_cksum(ipv4_hdr); 503 } 504 } 505 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) 506 ol_flags |= RTE_MBUF_F_TX_IPV6; 507 else 508 return 0; /* packet type not supported, nothing to do */ 509 510 if (info->l4_proto == IPPROTO_UDP) { 511 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 512 /* do not recalculate udp cksum if it was 0 */ 513 if (udp_hdr->dgram_cksum != 0) { 514 if (tso_segsz && (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_TSO)) 515 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 516 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) { 517 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM; 518 } else { 519 if (info->is_tunnel) 520 l4_off = info->outer_l2_len + 521 info->outer_l3_len + 522 info->l2_len + info->l3_len; 523 else 524 l4_off = info->l2_len + info->l3_len; 525 udp_hdr->dgram_cksum = 0; 526 udp_hdr->dgram_cksum = 527 get_udptcp_checksum(m, l3_hdr, l4_off, 528 info->ethertype); 529 } 530 } 531 #ifdef RTE_LIB_GSO 532 if (info->gso_enable) 533 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 534 #endif 535 } else if (info->l4_proto == IPPROTO_TCP) { 536 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 537 if (tso_segsz && 538 (tx_offloads & (RTE_ETH_TX_OFFLOAD_TCP_TSO | all_tunnel_tso))) 539 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 540 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) { 541 ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM; 542 } else { 543 if (info->is_tunnel) 544 l4_off = info->outer_l2_len + info->outer_l3_len + 545 info->l2_len + info->l3_len; 546 else 547 l4_off = info->l2_len + info->l3_len; 548 tcp_hdr->cksum = 0; 549 tcp_hdr->cksum = 550 get_udptcp_checksum(m, l3_hdr, l4_off, 551 info->ethertype); 552 } 553 #ifdef RTE_LIB_GSO 554 if (info->gso_enable) 555 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 556 #endif 557 } else if (info->l4_proto == IPPROTO_SCTP) { 558 sctp_hdr = (struct rte_sctp_hdr *) 559 ((char *)l3_hdr + info->l3_len); 560 /* sctp payload must be a multiple of 4 to be 561 * offloaded */ 562 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) && 563 ((ipv4_hdr->total_length & 0x3) == 0)) { 564 ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM; 565 } else { 566 sctp_hdr->cksum = 0; 567 /* XXX implement CRC32c, example available in 568 * RFC3309 */ 569 } 570 } 571 572 return ol_flags; 573 } 574 575 /* Calculate the checksum of outer header */ 576 static uint64_t 577 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 578 uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m) 579 { 580 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 581 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 582 struct rte_udp_hdr *udp_hdr; 583 uint64_t ol_flags = 0; 584 585 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 586 ipv4_hdr->hdr_checksum = 0; 587 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4; 588 589 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) 590 ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM; 591 else 592 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 593 } else 594 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6; 595 596 if (info->outer_l4_proto != IPPROTO_UDP) 597 return ol_flags; 598 599 udp_hdr = (struct rte_udp_hdr *) 600 ((char *)outer_l3_hdr + info->outer_l3_len); 601 602 if (tso_enabled && info->l4_proto == IPPROTO_TCP) 603 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 604 else if (tso_enabled && info->l4_proto == IPPROTO_UDP) 605 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 606 607 /* Skip SW outer UDP checksum generation if HW supports it */ 608 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) { 609 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 610 udp_hdr->dgram_cksum 611 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 612 else 613 udp_hdr->dgram_cksum 614 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 615 616 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM; 617 return ol_flags; 618 } 619 620 /* outer UDP checksum is done in software. In the other side, for 621 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 622 * set to zero. 623 * 624 * If a packet will be TSOed into small packets by NIC, we cannot 625 * set/calculate a non-zero checksum, because it will be a wrong 626 * value after the packet be split into several small packets. 627 */ 628 if (tso_enabled) 629 udp_hdr->dgram_cksum = 0; 630 631 /* do not recalculate udp cksum if it was 0 */ 632 if (udp_hdr->dgram_cksum != 0) { 633 udp_hdr->dgram_cksum = 0; 634 udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr, 635 info->outer_l2_len + info->outer_l3_len, 636 info->outer_ethertype); 637 } 638 639 return ol_flags; 640 } 641 642 /* 643 * Helper function. 644 * Performs actual copying. 645 * Returns number of segments in the destination mbuf on success, 646 * or negative error code on failure. 647 */ 648 static int 649 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 650 uint16_t seglen[], uint8_t nb_seg) 651 { 652 uint32_t dlen, slen, tlen; 653 uint32_t i, len; 654 const struct rte_mbuf *m; 655 const uint8_t *src; 656 uint8_t *dst; 657 658 dlen = 0; 659 slen = 0; 660 tlen = 0; 661 662 dst = NULL; 663 src = NULL; 664 665 m = ms; 666 i = 0; 667 while (ms != NULL && i != nb_seg) { 668 669 if (slen == 0) { 670 slen = rte_pktmbuf_data_len(ms); 671 src = rte_pktmbuf_mtod(ms, const uint8_t *); 672 } 673 674 if (dlen == 0) { 675 dlen = RTE_MIN(seglen[i], slen); 676 md[i]->data_len = dlen; 677 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 678 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 679 } 680 681 len = RTE_MIN(slen, dlen); 682 memcpy(dst, src, len); 683 tlen += len; 684 slen -= len; 685 dlen -= len; 686 src += len; 687 dst += len; 688 689 if (slen == 0) 690 ms = ms->next; 691 if (dlen == 0) 692 i++; 693 } 694 695 if (ms != NULL) 696 return -ENOBUFS; 697 else if (tlen != m->pkt_len) 698 return -EINVAL; 699 700 md[0]->nb_segs = nb_seg; 701 md[0]->pkt_len = tlen; 702 md[0]->vlan_tci = m->vlan_tci; 703 md[0]->vlan_tci_outer = m->vlan_tci_outer; 704 md[0]->ol_flags = m->ol_flags; 705 md[0]->tx_offload = m->tx_offload; 706 707 return nb_seg; 708 } 709 710 /* 711 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 712 * Copy packet contents and offload information into the new segmented mbuf. 713 */ 714 static struct rte_mbuf * 715 pkt_copy_split(const struct rte_mbuf *pkt) 716 { 717 int32_t n, rc; 718 uint32_t i, len, nb_seg; 719 struct rte_mempool *mp; 720 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 721 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 722 723 mp = current_fwd_lcore()->mbp; 724 725 if (tx_pkt_split == TX_PKT_SPLIT_RND) 726 nb_seg = rte_rand() % tx_pkt_nb_segs + 1; 727 else 728 nb_seg = tx_pkt_nb_segs; 729 730 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 731 732 /* calculate number of segments to use and their length. */ 733 len = 0; 734 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 735 len += seglen[i]; 736 md[i] = NULL; 737 } 738 739 n = pkt->pkt_len - len; 740 741 /* update size of the last segment to fit rest of the packet */ 742 if (n >= 0) { 743 seglen[i - 1] += n; 744 len += n; 745 } 746 747 nb_seg = i; 748 while (i != 0) { 749 p = rte_pktmbuf_alloc(mp); 750 if (p == NULL) { 751 TESTPMD_LOG(ERR, 752 "failed to allocate %u-th of %u mbuf " 753 "from mempool: %s\n", 754 nb_seg - i, nb_seg, mp->name); 755 break; 756 } 757 758 md[--i] = p; 759 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 760 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 761 "expected seglen: %u, " 762 "actual mbuf tailroom: %u\n", 763 mp->name, i, seglen[i], 764 rte_pktmbuf_tailroom(md[i])); 765 break; 766 } 767 } 768 769 /* all mbufs successfully allocated, do copy */ 770 if (i == 0) { 771 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 772 if (rc < 0) 773 TESTPMD_LOG(ERR, 774 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 775 "into %u segments failed with error code: %d\n", 776 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 777 778 /* figure out how many mbufs to free. */ 779 i = RTE_MAX(rc, 0); 780 } 781 782 /* free unused mbufs */ 783 for (; i != nb_seg; i++) { 784 rte_pktmbuf_free_seg(md[i]); 785 md[i] = NULL; 786 } 787 788 return md[0]; 789 } 790 791 #if defined(RTE_LIB_GRO) || defined(RTE_LIB_GSO) 792 /* 793 * Re-calculate IP checksum for merged/fragmented packets. 794 */ 795 static void 796 pkts_ip_csum_recalc(struct rte_mbuf **pkts_burst, const uint16_t nb_pkts, uint64_t tx_offloads) 797 { 798 int i; 799 struct rte_ipv4_hdr *ipv4_hdr; 800 for (i = 0; i < nb_pkts; i++) { 801 if ((pkts_burst[i]->ol_flags & RTE_MBUF_F_TX_IPV4) && 802 (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) == 0) { 803 ipv4_hdr = rte_pktmbuf_mtod_offset(pkts_burst[i], 804 struct rte_ipv4_hdr *, 805 pkts_burst[i]->l2_len); 806 ipv4_hdr->hdr_checksum = 0; 807 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 808 } 809 } 810 } 811 #endif 812 813 /* 814 * Receive a burst of packets, and for each packet: 815 * - parse packet, and try to recognize a supported packet type (1) 816 * - if it's not a supported packet type, don't touch the packet, else: 817 * - reprocess the checksum of all supported layers. This is done in SW 818 * or HW, depending on testpmd command line configuration 819 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 820 * segmentation offload (this implies HW TCP checksum) 821 * Then transmit packets on the output port. 822 * 823 * (1) Supported packets are: 824 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 825 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 826 * UDP|TCP|SCTP 827 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 828 * UDP|TCP|SCTP 829 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 830 * UDP|TCP|SCTP 831 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP 832 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 833 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 834 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 835 * 836 * The testpmd command line for this forward engine sets the flags 837 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 838 * whether a checksum must be calculated in software or in hardware. The 839 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 840 * OUTER_IP is only useful for tunnel packets. 841 */ 842 static bool 843 pkt_burst_checksum_forward(struct fwd_stream *fs) 844 { 845 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 846 #ifdef RTE_LIB_GSO 847 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 848 struct rte_gso_ctx *gso_ctx; 849 #endif 850 struct rte_mbuf **tx_pkts_burst; 851 struct rte_port *txp; 852 struct rte_mbuf *m, *p; 853 struct rte_ether_hdr *eth_hdr; 854 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 855 #ifdef RTE_LIB_GRO 856 void **gro_ctx; 857 uint16_t gro_pkts_num; 858 uint8_t gro_enable; 859 #endif 860 uint16_t nb_rx; 861 uint16_t nb_prep; 862 uint16_t i; 863 uint64_t rx_ol_flags, tx_ol_flags; 864 uint64_t tx_offloads; 865 uint32_t rx_bad_ip_csum; 866 uint32_t rx_bad_l4_csum; 867 uint32_t rx_bad_outer_l4_csum; 868 uint32_t rx_bad_outer_ip_csum; 869 struct testpmd_offload_info info; 870 871 /* receive a burst of packet */ 872 nb_rx = common_fwd_stream_receive(fs, pkts_burst, nb_pkt_per_burst); 873 if (unlikely(nb_rx == 0)) { 874 #ifndef RTE_LIB_GRO 875 return false; 876 #else 877 gro_enable = gro_ports[fs->rx_port].enable; 878 /* 879 * Check if packets need to be flushed in the GRO context 880 * due to a timeout. 881 * 882 * Continue only in GRO heavyweight mode and if there are 883 * packets in the GRO context. 884 */ 885 if (!gro_enable || (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) || 886 (rte_gro_get_pkt_count(current_fwd_lcore()->gro_ctx) == 0)) 887 return false; 888 #endif 889 } 890 891 rx_bad_ip_csum = 0; 892 rx_bad_l4_csum = 0; 893 rx_bad_outer_l4_csum = 0; 894 rx_bad_outer_ip_csum = 0; 895 896 txp = &ports[fs->tx_port]; 897 tx_offloads = txp->dev_conf.txmode.offloads; 898 memset(&info, 0, sizeof(info)); 899 info.tso_segsz = txp->tso_segsz; 900 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 901 #ifdef RTE_LIB_GSO 902 if (gso_ports[fs->tx_port].enable) 903 info.gso_enable = 1; 904 #endif 905 906 for (i = 0; i < nb_rx; i++) { 907 if (likely(i < nb_rx - 1)) 908 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 909 void *)); 910 911 m = pkts_burst[i]; 912 info.is_tunnel = 0; 913 info.pkt_len = rte_pktmbuf_pkt_len(m); 914 tx_ol_flags = m->ol_flags & 915 (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL); 916 rx_ol_flags = m->ol_flags; 917 918 /* Update the L3/L4 checksum error packet statistics */ 919 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD) 920 rx_bad_ip_csum += 1; 921 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD) 922 rx_bad_l4_csum += 1; 923 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD) 924 rx_bad_outer_l4_csum += 1; 925 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) 926 rx_bad_outer_ip_csum += 1; 927 928 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 929 * and inner headers */ 930 931 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 932 if (ports[fs->tx_port].fwd_mac_swap) { 933 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 934 ð_hdr->dst_addr); 935 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, 936 ð_hdr->src_addr); 937 } 938 parse_ethernet(eth_hdr, &info); 939 l3_hdr = (char *)eth_hdr + info.l2_len; 940 941 /* check if it's a supported tunnel */ 942 if (txp->parse_tunnel) { 943 if (info.l4_proto == IPPROTO_UDP) { 944 struct rte_udp_hdr *udp_hdr; 945 946 udp_hdr = (struct rte_udp_hdr *) 947 ((char *)l3_hdr + info.l3_len); 948 parse_gtp(udp_hdr, &info); 949 if (info.is_tunnel) { 950 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP; 951 goto tunnel_update; 952 } 953 parse_vxlan_gpe(udp_hdr, &info); 954 if (info.is_tunnel) { 955 tx_ol_flags |= 956 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE; 957 goto tunnel_update; 958 } 959 parse_vxlan(udp_hdr, &info); 960 if (info.is_tunnel) { 961 tx_ol_flags |= 962 RTE_MBUF_F_TX_TUNNEL_VXLAN; 963 goto tunnel_update; 964 } 965 parse_geneve(udp_hdr, &info); 966 if (info.is_tunnel) { 967 tx_ol_flags |= 968 RTE_MBUF_F_TX_TUNNEL_GENEVE; 969 goto tunnel_update; 970 } 971 /* Always keep last. */ 972 if (unlikely(RTE_ETH_IS_TUNNEL_PKT( 973 m->packet_type) != 0)) { 974 TESTPMD_LOG(DEBUG, "Unknown tunnel packet. UDP dst port: %hu", 975 udp_hdr->dst_port); 976 } 977 } else if (info.l4_proto == IPPROTO_GRE) { 978 struct simple_gre_hdr *gre_hdr; 979 980 gre_hdr = (struct simple_gre_hdr *) 981 ((char *)l3_hdr + info.l3_len); 982 parse_gre(gre_hdr, &info); 983 if (info.is_tunnel) 984 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE; 985 } else if (info.l4_proto == IPPROTO_IPIP) { 986 void *encap_ip_hdr; 987 988 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 989 parse_encap_ip(encap_ip_hdr, &info); 990 if (info.is_tunnel) 991 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP; 992 } 993 } 994 995 tunnel_update: 996 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 997 if (info.is_tunnel) { 998 outer_l3_hdr = l3_hdr; 999 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 1000 } 1001 1002 /* step 2: depending on user command line configuration, 1003 * recompute checksum either in software or flag the 1004 * mbuf to offload the calculation to the NIC. If TSO 1005 * is configured, prepare the mbuf for TCP segmentation. */ 1006 1007 /* process checksums of inner headers first */ 1008 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 1009 tx_offloads, m); 1010 1011 /* Then process outer headers if any. Note that the software 1012 * checksum will be wrong if one of the inner checksums is 1013 * processed in hardware. */ 1014 if (info.is_tunnel == 1) { 1015 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 1016 tx_offloads, 1017 !!(tx_ol_flags & (RTE_MBUF_F_TX_TCP_SEG | 1018 RTE_MBUF_F_TX_UDP_SEG)), 1019 m); 1020 } 1021 1022 /* step 3: fill the mbuf meta data (flags and header lengths) */ 1023 1024 m->tx_offload = 0; 1025 if (info.is_tunnel == 1) { 1026 if (info.tunnel_tso_segsz || 1027 (tx_offloads & 1028 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1029 (tx_offloads & 1030 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) { 1031 m->outer_l2_len = info.outer_l2_len; 1032 m->outer_l3_len = info.outer_l3_len; 1033 m->l2_len = info.l2_len; 1034 m->l3_len = info.l3_len; 1035 m->l4_len = info.l4_len; 1036 m->tso_segsz = info.tunnel_tso_segsz; 1037 } 1038 else { 1039 /* if there is a outer UDP cksum 1040 processed in sw and the inner in hw, 1041 the outer checksum will be wrong as 1042 the payload will be modified by the 1043 hardware */ 1044 m->l2_len = info.outer_l2_len + 1045 info.outer_l3_len + info.l2_len; 1046 m->l3_len = info.l3_len; 1047 m->l4_len = info.l4_len; 1048 } 1049 } else { 1050 /* this is only useful if an offload flag is 1051 * set, but it does not hurt to fill it in any 1052 * case */ 1053 m->l2_len = info.l2_len; 1054 m->l3_len = info.l3_len; 1055 m->l4_len = info.l4_len; 1056 m->tso_segsz = info.tso_segsz; 1057 } 1058 m->ol_flags = tx_ol_flags; 1059 1060 /* Do split & copy for the packet. */ 1061 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 1062 p = pkt_copy_split(m); 1063 if (p != NULL) { 1064 rte_pktmbuf_free(m); 1065 m = p; 1066 pkts_burst[i] = m; 1067 } 1068 } 1069 1070 /* if verbose mode is enabled, dump debug info */ 1071 if (verbose_level > 0) { 1072 char buf[256]; 1073 1074 printf("-----------------\n"); 1075 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 1076 fs->rx_port, m, m->pkt_len, m->nb_segs); 1077 /* dump rx parsed packet info */ 1078 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 1079 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 1080 "l4_proto=%d l4_len=%d flags=%s\n", 1081 info.l2_len, rte_be_to_cpu_16(info.ethertype), 1082 info.l3_len, info.l4_proto, info.l4_len, buf); 1083 if (rx_ol_flags & RTE_MBUF_F_RX_LRO) 1084 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 1085 if (info.is_tunnel == 1) 1086 printf("rx: outer_l2_len=%d outer_ethertype=%x " 1087 "outer_l3_len=%d\n", info.outer_l2_len, 1088 rte_be_to_cpu_16(info.outer_ethertype), 1089 info.outer_l3_len); 1090 /* dump tx packet info */ 1091 if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 1092 RTE_ETH_TX_OFFLOAD_UDP_CKSUM | 1093 RTE_ETH_TX_OFFLOAD_TCP_CKSUM | 1094 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) || 1095 info.tso_segsz != 0) 1096 printf("tx: m->l2_len=%d m->l3_len=%d " 1097 "m->l4_len=%d\n", 1098 m->l2_len, m->l3_len, m->l4_len); 1099 if (info.is_tunnel == 1) { 1100 if ((tx_offloads & 1101 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1102 (tx_offloads & 1103 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) || 1104 (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)) 1105 printf("tx: m->outer_l2_len=%d " 1106 "m->outer_l3_len=%d\n", 1107 m->outer_l2_len, 1108 m->outer_l3_len); 1109 if (info.tunnel_tso_segsz != 0 && 1110 (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | 1111 RTE_MBUF_F_TX_UDP_SEG))) 1112 printf("tx: m->tso_segsz=%d\n", 1113 m->tso_segsz); 1114 } else if (info.tso_segsz != 0 && 1115 (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | 1116 RTE_MBUF_F_TX_UDP_SEG))) 1117 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 1118 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 1119 printf("tx: flags=%s", buf); 1120 printf("\n"); 1121 } 1122 } 1123 1124 #ifdef RTE_LIB_GRO 1125 gro_enable = gro_ports[fs->rx_port].enable; 1126 if (unlikely(gro_enable)) { 1127 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 1128 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 1129 &(gro_ports[fs->rx_port].param)); 1130 } else { 1131 gro_ctx = current_fwd_lcore()->gro_ctx; 1132 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 1133 1134 if (++fs->gro_times >= gro_flush_cycles) { 1135 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 1136 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 1137 gro_pkts_num = MAX_PKT_BURST - nb_rx; 1138 1139 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 1140 RTE_GRO_TCP_IPV4, 1141 &pkts_burst[nb_rx], 1142 gro_pkts_num); 1143 fs->gro_times = 0; 1144 } 1145 if (nb_rx == 0) 1146 return false; 1147 } 1148 1149 pkts_ip_csum_recalc(pkts_burst, nb_rx, tx_offloads); 1150 } 1151 #endif 1152 1153 #ifdef RTE_LIB_GSO 1154 if (gso_ports[fs->tx_port].enable != 0) { 1155 uint16_t nb_segments = 0; 1156 1157 gso_ctx = &(current_fwd_lcore()->gso_ctx); 1158 gso_ctx->gso_size = gso_max_segment_size; 1159 for (i = 0; i < nb_rx; i++) { 1160 int ret; 1161 1162 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 1163 &gso_segments[nb_segments], 1164 GSO_MAX_PKT_BURST - nb_segments); 1165 if (ret >= 1) { 1166 /* pkts_burst[i] can be freed safely here. */ 1167 rte_pktmbuf_free(pkts_burst[i]); 1168 nb_segments += ret; 1169 } else if (ret == 0) { 1170 /* 0 means it can be transmitted directly 1171 * without gso. 1172 */ 1173 gso_segments[nb_segments] = pkts_burst[i]; 1174 nb_segments += 1; 1175 } else { 1176 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 1177 rte_pktmbuf_free(pkts_burst[i]); 1178 } 1179 } 1180 1181 tx_pkts_burst = gso_segments; 1182 nb_rx = nb_segments; 1183 1184 pkts_ip_csum_recalc(tx_pkts_burst, nb_rx, tx_offloads); 1185 } else 1186 #endif 1187 tx_pkts_burst = pkts_burst; 1188 1189 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 1190 tx_pkts_burst, nb_rx); 1191 if (nb_prep != nb_rx) { 1192 fprintf(stderr, 1193 "Preparing packet burst to transmit failed: %s\n", 1194 rte_strerror(rte_errno)); 1195 fs->fwd_dropped += (nb_rx - nb_prep); 1196 rte_pktmbuf_free_bulk(&tx_pkts_burst[nb_prep], nb_rx - nb_prep); 1197 } 1198 1199 common_fwd_stream_transmit(fs, tx_pkts_burst, nb_prep); 1200 1201 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1202 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1203 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1204 fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; 1205 1206 return true; 1207 } 1208 1209 struct fwd_engine csum_fwd_engine = { 1210 .fwd_mode_name = "csum", 1211 .stream_init = common_fwd_stream_init, 1212 .packet_fwd = pkt_burst_checksum_forward, 1213 }; 1214