xref: /dpdk/app/test-pmd/csumonly.c (revision d56ec3dcad056c47cef4e837d5191d04c936d87e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_vxlan.h>
39 #include <rte_sctp.h>
40 #include <rte_gtp.h>
41 #include <rte_prefetch.h>
42 #include <rte_string_fns.h>
43 #include <rte_flow.h>
44 #include <rte_gro.h>
45 #include <rte_gso.h>
46 
47 #include "testpmd.h"
48 
49 #define IP_DEFTTL  64   /* from RFC 1340. */
50 
51 #define GRE_CHECKSUM_PRESENT	0x8000
52 #define GRE_KEY_PRESENT		0x2000
53 #define GRE_SEQUENCE_PRESENT	0x1000
54 #define GRE_EXT_LEN		4
55 #define GRE_SUPPORTED_FIELDS	(GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
56 				 GRE_SEQUENCE_PRESENT)
57 
58 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
59 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
60 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
61 #else
62 #define _htons(x) (x)
63 #endif
64 
65 uint16_t vxlan_gpe_udp_port = 4790;
66 
67 /* structure that caches offload info for the current packet */
68 struct testpmd_offload_info {
69 	uint16_t ethertype;
70 	uint8_t gso_enable;
71 	uint16_t l2_len;
72 	uint16_t l3_len;
73 	uint16_t l4_len;
74 	uint8_t l4_proto;
75 	uint8_t is_tunnel;
76 	uint16_t outer_ethertype;
77 	uint16_t outer_l2_len;
78 	uint16_t outer_l3_len;
79 	uint8_t outer_l4_proto;
80 	uint16_t tso_segsz;
81 	uint16_t tunnel_tso_segsz;
82 	uint32_t pkt_len;
83 };
84 
85 /* simplified GRE header */
86 struct simple_gre_hdr {
87 	uint16_t flags;
88 	uint16_t proto;
89 } __attribute__((__packed__));
90 
91 static uint16_t
92 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
93 {
94 	if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
95 		return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
96 	else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
97 		return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
98 }
99 
100 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
101 static void
102 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
103 {
104 	struct rte_tcp_hdr *tcp_hdr;
105 
106 	info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
107 	info->l4_proto = ipv4_hdr->next_proto_id;
108 
109 	/* only fill l4_len for TCP, it's useful for TSO */
110 	if (info->l4_proto == IPPROTO_TCP) {
111 		tcp_hdr = (struct rte_tcp_hdr *)
112 			((char *)ipv4_hdr + info->l3_len);
113 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
114 	} else if (info->l4_proto == IPPROTO_UDP)
115 		info->l4_len = sizeof(struct rte_udp_hdr);
116 	else
117 		info->l4_len = 0;
118 }
119 
120 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
121 static void
122 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
123 {
124 	struct rte_tcp_hdr *tcp_hdr;
125 
126 	info->l3_len = sizeof(struct rte_ipv6_hdr);
127 	info->l4_proto = ipv6_hdr->proto;
128 
129 	/* only fill l4_len for TCP, it's useful for TSO */
130 	if (info->l4_proto == IPPROTO_TCP) {
131 		tcp_hdr = (struct rte_tcp_hdr *)
132 			((char *)ipv6_hdr + info->l3_len);
133 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
134 	} else if (info->l4_proto == IPPROTO_UDP)
135 		info->l4_len = sizeof(struct rte_udp_hdr);
136 	else
137 		info->l4_len = 0;
138 }
139 
140 /*
141  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
142  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
143  * header. The l4_len argument is only set in case of TCP (useful for TSO).
144  */
145 static void
146 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
147 {
148 	struct rte_ipv4_hdr *ipv4_hdr;
149 	struct rte_ipv6_hdr *ipv6_hdr;
150 
151 	info->l2_len = sizeof(struct rte_ether_hdr);
152 	info->ethertype = eth_hdr->ether_type;
153 
154 	if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
155 		struct rte_vlan_hdr *vlan_hdr = (
156 			struct rte_vlan_hdr *)(eth_hdr + 1);
157 
158 		info->l2_len  += sizeof(struct rte_vlan_hdr);
159 		info->ethertype = vlan_hdr->eth_proto;
160 	}
161 
162 	switch (info->ethertype) {
163 	case _htons(RTE_ETHER_TYPE_IPV4):
164 		ipv4_hdr = (struct rte_ipv4_hdr *)
165 			((char *)eth_hdr + info->l2_len);
166 		parse_ipv4(ipv4_hdr, info);
167 		break;
168 	case _htons(RTE_ETHER_TYPE_IPV6):
169 		ipv6_hdr = (struct rte_ipv6_hdr *)
170 			((char *)eth_hdr + info->l2_len);
171 		parse_ipv6(ipv6_hdr, info);
172 		break;
173 	default:
174 		info->l4_len = 0;
175 		info->l3_len = 0;
176 		info->l4_proto = 0;
177 		break;
178 	}
179 }
180 
181 /*
182  * Parse a GTP protocol header.
183  * No optional fields and next extension header type.
184  */
185 static void
186 parse_gtp(struct rte_udp_hdr *udp_hdr,
187 	  struct testpmd_offload_info *info)
188 {
189 	struct rte_ipv4_hdr *ipv4_hdr;
190 	struct rte_ipv6_hdr *ipv6_hdr;
191 	struct rte_gtp_hdr *gtp_hdr;
192 	uint8_t gtp_len = sizeof(*gtp_hdr);
193 	uint8_t ip_ver;
194 
195 	/* Check udp destination port. */
196 	if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
197 	    udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
198 	    udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
199 		return;
200 
201 	info->is_tunnel = 1;
202 	info->outer_ethertype = info->ethertype;
203 	info->outer_l2_len = info->l2_len;
204 	info->outer_l3_len = info->l3_len;
205 	info->outer_l4_proto = info->l4_proto;
206 	info->l2_len = 0;
207 
208 	gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
209 		  sizeof(struct rte_udp_hdr));
210 
211 	/*
212 	 * Check message type. If message type is 0xff, it is
213 	 * a GTP data packet. If not, it is a GTP control packet
214 	 */
215 	if (gtp_hdr->msg_type == 0xff) {
216 		ip_ver = *(uint8_t *)((char *)udp_hdr +
217 			 sizeof(struct rte_udp_hdr) +
218 			 sizeof(struct rte_gtp_hdr));
219 		ip_ver = (ip_ver) & 0xf0;
220 
221 		if (ip_ver == RTE_GTP_TYPE_IPV4) {
222 			ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
223 				   gtp_len);
224 			info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
225 			parse_ipv4(ipv4_hdr, info);
226 		} else if (ip_ver == RTE_GTP_TYPE_IPV6) {
227 			ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
228 				   gtp_len);
229 			info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
230 			parse_ipv6(ipv6_hdr, info);
231 		}
232 	} else {
233 		info->ethertype = 0;
234 		info->l4_len = 0;
235 		info->l3_len = 0;
236 		info->l4_proto = 0;
237 	}
238 
239 	info->l2_len += RTE_ETHER_GTP_HLEN;
240 }
241 
242 /* Parse a vxlan header */
243 static void
244 parse_vxlan(struct rte_udp_hdr *udp_hdr,
245 	    struct testpmd_offload_info *info,
246 	    uint32_t pkt_type)
247 {
248 	struct rte_ether_hdr *eth_hdr;
249 
250 	/* check udp destination port, 4789 is the default vxlan port
251 	 * (rfc7348) or that the rx offload flag is set (i40e only
252 	 * currently) */
253 	if (udp_hdr->dst_port != _htons(4789) &&
254 		RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
255 		return;
256 
257 	info->is_tunnel = 1;
258 	info->outer_ethertype = info->ethertype;
259 	info->outer_l2_len = info->l2_len;
260 	info->outer_l3_len = info->l3_len;
261 	info->outer_l4_proto = info->l4_proto;
262 
263 	eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
264 		sizeof(struct rte_udp_hdr) +
265 		sizeof(struct rte_vxlan_hdr));
266 
267 	parse_ethernet(eth_hdr, info);
268 	info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
269 }
270 
271 /* Parse a vxlan-gpe header */
272 static void
273 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
274 	    struct testpmd_offload_info *info)
275 {
276 	struct rte_ether_hdr *eth_hdr;
277 	struct rte_ipv4_hdr *ipv4_hdr;
278 	struct rte_ipv6_hdr *ipv6_hdr;
279 	struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
280 	uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
281 
282 	/* Check udp destination port. */
283 	if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
284 		return;
285 
286 	vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
287 				sizeof(struct rte_udp_hdr));
288 
289 	if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
290 	    RTE_VXLAN_GPE_TYPE_IPV4) {
291 		info->is_tunnel = 1;
292 		info->outer_ethertype = info->ethertype;
293 		info->outer_l2_len = info->l2_len;
294 		info->outer_l3_len = info->l3_len;
295 		info->outer_l4_proto = info->l4_proto;
296 
297 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
298 			   vxlan_gpe_len);
299 
300 		parse_ipv4(ipv4_hdr, info);
301 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
302 		info->l2_len = 0;
303 
304 	} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
305 		info->is_tunnel = 1;
306 		info->outer_ethertype = info->ethertype;
307 		info->outer_l2_len = info->l2_len;
308 		info->outer_l3_len = info->l3_len;
309 		info->outer_l4_proto = info->l4_proto;
310 
311 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
312 			   vxlan_gpe_len);
313 
314 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
315 		parse_ipv6(ipv6_hdr, info);
316 		info->l2_len = 0;
317 
318 	} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
319 		info->is_tunnel = 1;
320 		info->outer_ethertype = info->ethertype;
321 		info->outer_l2_len = info->l2_len;
322 		info->outer_l3_len = info->l3_len;
323 		info->outer_l4_proto = info->l4_proto;
324 
325 		eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
326 			  vxlan_gpe_len);
327 
328 		parse_ethernet(eth_hdr, info);
329 	} else
330 		return;
331 
332 	info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
333 }
334 
335 /* Parse a gre header */
336 static void
337 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
338 {
339 	struct rte_ether_hdr *eth_hdr;
340 	struct rte_ipv4_hdr *ipv4_hdr;
341 	struct rte_ipv6_hdr *ipv6_hdr;
342 	uint8_t gre_len = 0;
343 
344 	gre_len += sizeof(struct simple_gre_hdr);
345 
346 	if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
347 		gre_len += GRE_EXT_LEN;
348 	if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
349 		gre_len += GRE_EXT_LEN;
350 	if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
351 		gre_len += GRE_EXT_LEN;
352 
353 	if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
354 		info->is_tunnel = 1;
355 		info->outer_ethertype = info->ethertype;
356 		info->outer_l2_len = info->l2_len;
357 		info->outer_l3_len = info->l3_len;
358 		info->outer_l4_proto = info->l4_proto;
359 
360 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
361 
362 		parse_ipv4(ipv4_hdr, info);
363 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
364 		info->l2_len = 0;
365 
366 	} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
367 		info->is_tunnel = 1;
368 		info->outer_ethertype = info->ethertype;
369 		info->outer_l2_len = info->l2_len;
370 		info->outer_l3_len = info->l3_len;
371 		info->outer_l4_proto = info->l4_proto;
372 
373 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
374 
375 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
376 		parse_ipv6(ipv6_hdr, info);
377 		info->l2_len = 0;
378 
379 	} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
380 		info->is_tunnel = 1;
381 		info->outer_ethertype = info->ethertype;
382 		info->outer_l2_len = info->l2_len;
383 		info->outer_l3_len = info->l3_len;
384 		info->outer_l4_proto = info->l4_proto;
385 
386 		eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
387 
388 		parse_ethernet(eth_hdr, info);
389 	} else
390 		return;
391 
392 	info->l2_len += gre_len;
393 }
394 
395 
396 /* Parse an encapsulated ip or ipv6 header */
397 static void
398 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
399 {
400 	struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
401 	struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
402 	uint8_t ip_version;
403 
404 	ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
405 
406 	if (ip_version != 4 && ip_version != 6)
407 		return;
408 
409 	info->is_tunnel = 1;
410 	info->outer_ethertype = info->ethertype;
411 	info->outer_l2_len = info->l2_len;
412 	info->outer_l3_len = info->l3_len;
413 
414 	if (ip_version == 4) {
415 		parse_ipv4(ipv4_hdr, info);
416 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
417 	} else {
418 		parse_ipv6(ipv6_hdr, info);
419 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
420 	}
421 	info->l2_len = 0;
422 }
423 
424 /* if possible, calculate the checksum of a packet in hw or sw,
425  * depending on the testpmd command line configuration */
426 static uint64_t
427 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
428 	uint64_t tx_offloads)
429 {
430 	struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
431 	struct rte_udp_hdr *udp_hdr;
432 	struct rte_tcp_hdr *tcp_hdr;
433 	struct rte_sctp_hdr *sctp_hdr;
434 	uint64_t ol_flags = 0;
435 	uint32_t max_pkt_len, tso_segsz = 0;
436 
437 	/* ensure packet is large enough to require tso */
438 	if (!info->is_tunnel) {
439 		max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
440 			info->tso_segsz;
441 		if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
442 			tso_segsz = info->tso_segsz;
443 	} else {
444 		max_pkt_len = info->outer_l2_len + info->outer_l3_len +
445 			info->l2_len + info->l3_len + info->l4_len +
446 			info->tunnel_tso_segsz;
447 		if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
448 			tso_segsz = info->tunnel_tso_segsz;
449 	}
450 
451 	if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
452 		ipv4_hdr = l3_hdr;
453 		ipv4_hdr->hdr_checksum = 0;
454 
455 		ol_flags |= PKT_TX_IPV4;
456 		if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
457 			ol_flags |= PKT_TX_IP_CKSUM;
458 		} else {
459 			if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
460 				ol_flags |= PKT_TX_IP_CKSUM;
461 			else
462 				ipv4_hdr->hdr_checksum =
463 					rte_ipv4_cksum(ipv4_hdr);
464 		}
465 	} else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
466 		ol_flags |= PKT_TX_IPV6;
467 	else
468 		return 0; /* packet type not supported, nothing to do */
469 
470 	if (info->l4_proto == IPPROTO_UDP) {
471 		udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
472 		/* do not recalculate udp cksum if it was 0 */
473 		if (udp_hdr->dgram_cksum != 0) {
474 			udp_hdr->dgram_cksum = 0;
475 			if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
476 				ol_flags |= PKT_TX_UDP_CKSUM;
477 			else {
478 				udp_hdr->dgram_cksum =
479 					get_udptcp_checksum(l3_hdr, udp_hdr,
480 						info->ethertype);
481 			}
482 		}
483 		if (info->gso_enable)
484 			ol_flags |= PKT_TX_UDP_SEG;
485 	} else if (info->l4_proto == IPPROTO_TCP) {
486 		tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
487 		tcp_hdr->cksum = 0;
488 		if (tso_segsz)
489 			ol_flags |= PKT_TX_TCP_SEG;
490 		else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
491 			ol_flags |= PKT_TX_TCP_CKSUM;
492 		else {
493 			tcp_hdr->cksum =
494 				get_udptcp_checksum(l3_hdr, tcp_hdr,
495 					info->ethertype);
496 		}
497 		if (info->gso_enable)
498 			ol_flags |= PKT_TX_TCP_SEG;
499 	} else if (info->l4_proto == IPPROTO_SCTP) {
500 		sctp_hdr = (struct rte_sctp_hdr *)
501 			((char *)l3_hdr + info->l3_len);
502 		sctp_hdr->cksum = 0;
503 		/* sctp payload must be a multiple of 4 to be
504 		 * offloaded */
505 		if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
506 			((ipv4_hdr->total_length & 0x3) == 0)) {
507 			ol_flags |= PKT_TX_SCTP_CKSUM;
508 		} else {
509 			/* XXX implement CRC32c, example available in
510 			 * RFC3309 */
511 		}
512 	}
513 
514 	return ol_flags;
515 }
516 
517 /* Calculate the checksum of outer header */
518 static uint64_t
519 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
520 	uint64_t tx_offloads, int tso_enabled)
521 {
522 	struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
523 	struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
524 	struct rte_udp_hdr *udp_hdr;
525 	uint64_t ol_flags = 0;
526 
527 	if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
528 		ipv4_hdr->hdr_checksum = 0;
529 		ol_flags |= PKT_TX_OUTER_IPV4;
530 
531 		if (tx_offloads	& DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
532 			ol_flags |= PKT_TX_OUTER_IP_CKSUM;
533 		else
534 			ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
535 	} else
536 		ol_flags |= PKT_TX_OUTER_IPV6;
537 
538 	if (info->outer_l4_proto != IPPROTO_UDP)
539 		return ol_flags;
540 
541 	udp_hdr = (struct rte_udp_hdr *)
542 		((char *)outer_l3_hdr + info->outer_l3_len);
543 
544 	if (tso_enabled)
545 		ol_flags |= PKT_TX_TCP_SEG;
546 
547 	/* Skip SW outer UDP checksum generation if HW supports it */
548 	if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
549 		if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
550 			udp_hdr->dgram_cksum
551 				= rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
552 		else
553 			udp_hdr->dgram_cksum
554 				= rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
555 
556 		ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
557 		return ol_flags;
558 	}
559 
560 	/* outer UDP checksum is done in software. In the other side, for
561 	 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
562 	 * set to zero.
563 	 *
564 	 * If a packet will be TSOed into small packets by NIC, we cannot
565 	 * set/calculate a non-zero checksum, because it will be a wrong
566 	 * value after the packet be split into several small packets.
567 	 */
568 	if (tso_enabled)
569 		udp_hdr->dgram_cksum = 0;
570 
571 	/* do not recalculate udp cksum if it was 0 */
572 	if (udp_hdr->dgram_cksum != 0) {
573 		udp_hdr->dgram_cksum = 0;
574 		if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
575 			udp_hdr->dgram_cksum =
576 				rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
577 		else
578 			udp_hdr->dgram_cksum =
579 				rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
580 	}
581 
582 	return ol_flags;
583 }
584 
585 /*
586  * Helper function.
587  * Performs actual copying.
588  * Returns number of segments in the destination mbuf on success,
589  * or negative error code on failure.
590  */
591 static int
592 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
593 	uint16_t seglen[], uint8_t nb_seg)
594 {
595 	uint32_t dlen, slen, tlen;
596 	uint32_t i, len;
597 	const struct rte_mbuf *m;
598 	const uint8_t *src;
599 	uint8_t *dst;
600 
601 	dlen = 0;
602 	slen = 0;
603 	tlen = 0;
604 
605 	dst = NULL;
606 	src = NULL;
607 
608 	m = ms;
609 	i = 0;
610 	while (ms != NULL && i != nb_seg) {
611 
612 		if (slen == 0) {
613 			slen = rte_pktmbuf_data_len(ms);
614 			src = rte_pktmbuf_mtod(ms, const uint8_t *);
615 		}
616 
617 		if (dlen == 0) {
618 			dlen = RTE_MIN(seglen[i], slen);
619 			md[i]->data_len = dlen;
620 			md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
621 			dst = rte_pktmbuf_mtod(md[i], uint8_t *);
622 		}
623 
624 		len = RTE_MIN(slen, dlen);
625 		memcpy(dst, src, len);
626 		tlen += len;
627 		slen -= len;
628 		dlen -= len;
629 		src += len;
630 		dst += len;
631 
632 		if (slen == 0)
633 			ms = ms->next;
634 		if (dlen == 0)
635 			i++;
636 	}
637 
638 	if (ms != NULL)
639 		return -ENOBUFS;
640 	else if (tlen != m->pkt_len)
641 		return -EINVAL;
642 
643 	md[0]->nb_segs = nb_seg;
644 	md[0]->pkt_len = tlen;
645 	md[0]->vlan_tci = m->vlan_tci;
646 	md[0]->vlan_tci_outer = m->vlan_tci_outer;
647 	md[0]->ol_flags = m->ol_flags;
648 	md[0]->tx_offload = m->tx_offload;
649 
650 	return nb_seg;
651 }
652 
653 /*
654  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
655  * Copy packet contents and offload information into the new segmented mbuf.
656  */
657 static struct rte_mbuf *
658 pkt_copy_split(const struct rte_mbuf *pkt)
659 {
660 	int32_t n, rc;
661 	uint32_t i, len, nb_seg;
662 	struct rte_mempool *mp;
663 	uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
664 	struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
665 
666 	mp = current_fwd_lcore()->mbp;
667 
668 	if (tx_pkt_split == TX_PKT_SPLIT_RND)
669 		nb_seg = random() % tx_pkt_nb_segs + 1;
670 	else
671 		nb_seg = tx_pkt_nb_segs;
672 
673 	memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
674 
675 	/* calculate number of segments to use and their length. */
676 	len = 0;
677 	for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
678 		len += seglen[i];
679 		md[i] = NULL;
680 	}
681 
682 	n = pkt->pkt_len - len;
683 
684 	/* update size of the last segment to fit rest of the packet */
685 	if (n >= 0) {
686 		seglen[i - 1] += n;
687 		len += n;
688 	}
689 
690 	nb_seg = i;
691 	while (i != 0) {
692 		p = rte_pktmbuf_alloc(mp);
693 		if (p == NULL) {
694 			TESTPMD_LOG(ERR,
695 				"failed to allocate %u-th of %u mbuf "
696 				"from mempool: %s\n",
697 				nb_seg - i, nb_seg, mp->name);
698 			break;
699 		}
700 
701 		md[--i] = p;
702 		if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
703 			TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
704 				"expected seglen: %u, "
705 				"actual mbuf tailroom: %u\n",
706 				mp->name, i, seglen[i],
707 				rte_pktmbuf_tailroom(md[i]));
708 			break;
709 		}
710 	}
711 
712 	/* all mbufs successfully allocated, do copy */
713 	if (i == 0) {
714 		rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
715 		if (rc < 0)
716 			TESTPMD_LOG(ERR,
717 				"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
718 				"into %u segments failed with error code: %d\n",
719 				pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
720 
721 		/* figure out how many mbufs to free. */
722 		i = RTE_MAX(rc, 0);
723 	}
724 
725 	/* free unused mbufs */
726 	for (; i != nb_seg; i++) {
727 		rte_pktmbuf_free_seg(md[i]);
728 		md[i] = NULL;
729 	}
730 
731 	return md[0];
732 }
733 
734 /*
735  * Receive a burst of packets, and for each packet:
736  *  - parse packet, and try to recognize a supported packet type (1)
737  *  - if it's not a supported packet type, don't touch the packet, else:
738  *  - reprocess the checksum of all supported layers. This is done in SW
739  *    or HW, depending on testpmd command line configuration
740  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
741  *    segmentation offload (this implies HW TCP checksum)
742  * Then transmit packets on the output port.
743  *
744  * (1) Supported packets are:
745  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
746  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
747  *           UDP|TCP|SCTP
748  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
749  *           UDP|TCP|SCTP
750  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
751  *           UDP|TCP|SCTP
752  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
753  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
754  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
755  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
756  *
757  * The testpmd command line for this forward engine sets the flags
758  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
759  * wether a checksum must be calculated in software or in hardware. The
760  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
761  * OUTER_IP is only useful for tunnel packets.
762  */
763 static void
764 pkt_burst_checksum_forward(struct fwd_stream *fs)
765 {
766 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
767 	struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
768 	struct rte_gso_ctx *gso_ctx;
769 	struct rte_mbuf **tx_pkts_burst;
770 	struct rte_port *txp;
771 	struct rte_mbuf *m, *p;
772 	struct rte_ether_hdr *eth_hdr;
773 	void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
774 	void **gro_ctx;
775 	uint16_t gro_pkts_num;
776 	uint8_t gro_enable;
777 	uint16_t nb_rx;
778 	uint16_t nb_tx;
779 	uint16_t nb_prep;
780 	uint16_t i;
781 	uint64_t rx_ol_flags, tx_ol_flags;
782 	uint64_t tx_offloads;
783 	uint32_t retry;
784 	uint32_t rx_bad_ip_csum;
785 	uint32_t rx_bad_l4_csum;
786 	uint32_t rx_bad_outer_l4_csum;
787 	struct testpmd_offload_info info;
788 	uint16_t nb_segments = 0;
789 	int ret;
790 
791 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
792 	uint64_t start_tsc;
793 	uint64_t end_tsc;
794 	uint64_t core_cycles;
795 #endif
796 
797 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
798 	start_tsc = rte_rdtsc();
799 #endif
800 
801 	/* receive a burst of packet */
802 	nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
803 				 nb_pkt_per_burst);
804 	if (unlikely(nb_rx == 0))
805 		return;
806 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
807 	fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
808 #endif
809 	fs->rx_packets += nb_rx;
810 	rx_bad_ip_csum = 0;
811 	rx_bad_l4_csum = 0;
812 	rx_bad_outer_l4_csum = 0;
813 	gro_enable = gro_ports[fs->rx_port].enable;
814 
815 	txp = &ports[fs->tx_port];
816 	tx_offloads = txp->dev_conf.txmode.offloads;
817 	memset(&info, 0, sizeof(info));
818 	info.tso_segsz = txp->tso_segsz;
819 	info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
820 	if (gso_ports[fs->tx_port].enable)
821 		info.gso_enable = 1;
822 
823 	for (i = 0; i < nb_rx; i++) {
824 		if (likely(i < nb_rx - 1))
825 			rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
826 						       void *));
827 
828 		m = pkts_burst[i];
829 		info.is_tunnel = 0;
830 		info.pkt_len = rte_pktmbuf_pkt_len(m);
831 		tx_ol_flags = m->ol_flags &
832 			      (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
833 		rx_ol_flags = m->ol_flags;
834 
835 		/* Update the L3/L4 checksum error packet statistics */
836 		if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
837 			rx_bad_ip_csum += 1;
838 		if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
839 			rx_bad_l4_csum += 1;
840 		if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
841 			rx_bad_outer_l4_csum += 1;
842 
843 		/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
844 		 * and inner headers */
845 
846 		eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
847 		rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
848 				&eth_hdr->d_addr);
849 		rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
850 				&eth_hdr->s_addr);
851 		parse_ethernet(eth_hdr, &info);
852 		l3_hdr = (char *)eth_hdr + info.l2_len;
853 
854 		/* check if it's a supported tunnel */
855 		if (txp->parse_tunnel) {
856 			if (info.l4_proto == IPPROTO_UDP) {
857 				struct rte_udp_hdr *udp_hdr;
858 
859 				udp_hdr = (struct rte_udp_hdr *)
860 					((char *)l3_hdr + info.l3_len);
861 				parse_gtp(udp_hdr, &info);
862 				if (info.is_tunnel) {
863 					tx_ol_flags |= PKT_TX_TUNNEL_GTP;
864 					goto tunnel_update;
865 				}
866 				parse_vxlan_gpe(udp_hdr, &info);
867 				if (info.is_tunnel) {
868 					tx_ol_flags |=
869 						PKT_TX_TUNNEL_VXLAN_GPE;
870 					goto tunnel_update;
871 				}
872 				parse_vxlan(udp_hdr, &info,
873 					    m->packet_type);
874 				if (info.is_tunnel)
875 					tx_ol_flags |=
876 						PKT_TX_TUNNEL_VXLAN;
877 			} else if (info.l4_proto == IPPROTO_GRE) {
878 				struct simple_gre_hdr *gre_hdr;
879 
880 				gre_hdr = (struct simple_gre_hdr *)
881 					((char *)l3_hdr + info.l3_len);
882 				parse_gre(gre_hdr, &info);
883 				if (info.is_tunnel)
884 					tx_ol_flags |= PKT_TX_TUNNEL_GRE;
885 			} else if (info.l4_proto == IPPROTO_IPIP) {
886 				void *encap_ip_hdr;
887 
888 				encap_ip_hdr = (char *)l3_hdr + info.l3_len;
889 				parse_encap_ip(encap_ip_hdr, &info);
890 				if (info.is_tunnel)
891 					tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
892 			}
893 		}
894 
895 tunnel_update:
896 		/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
897 		if (info.is_tunnel) {
898 			outer_l3_hdr = l3_hdr;
899 			l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
900 		}
901 
902 		/* step 2: depending on user command line configuration,
903 		 * recompute checksum either in software or flag the
904 		 * mbuf to offload the calculation to the NIC. If TSO
905 		 * is configured, prepare the mbuf for TCP segmentation. */
906 
907 		/* process checksums of inner headers first */
908 		tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
909 			tx_offloads);
910 
911 		/* Then process outer headers if any. Note that the software
912 		 * checksum will be wrong if one of the inner checksums is
913 		 * processed in hardware. */
914 		if (info.is_tunnel == 1) {
915 			tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
916 					tx_offloads,
917 					!!(tx_ol_flags & PKT_TX_TCP_SEG));
918 		}
919 
920 		/* step 3: fill the mbuf meta data (flags and header lengths) */
921 
922 		m->tx_offload = 0;
923 		if (info.is_tunnel == 1) {
924 			if (info.tunnel_tso_segsz ||
925 			    (tx_offloads &
926 			     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
927 			    (tx_offloads &
928 			     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
929 			    (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
930 				m->outer_l2_len = info.outer_l2_len;
931 				m->outer_l3_len = info.outer_l3_len;
932 				m->l2_len = info.l2_len;
933 				m->l3_len = info.l3_len;
934 				m->l4_len = info.l4_len;
935 				m->tso_segsz = info.tunnel_tso_segsz;
936 			}
937 			else {
938 				/* if there is a outer UDP cksum
939 				   processed in sw and the inner in hw,
940 				   the outer checksum will be wrong as
941 				   the payload will be modified by the
942 				   hardware */
943 				m->l2_len = info.outer_l2_len +
944 					info.outer_l3_len + info.l2_len;
945 				m->l3_len = info.l3_len;
946 				m->l4_len = info.l4_len;
947 			}
948 		} else {
949 			/* this is only useful if an offload flag is
950 			 * set, but it does not hurt to fill it in any
951 			 * case */
952 			m->l2_len = info.l2_len;
953 			m->l3_len = info.l3_len;
954 			m->l4_len = info.l4_len;
955 			m->tso_segsz = info.tso_segsz;
956 		}
957 		m->ol_flags = tx_ol_flags;
958 
959 		/* Do split & copy for the packet. */
960 		if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
961 			p = pkt_copy_split(m);
962 			if (p != NULL) {
963 				rte_pktmbuf_free(m);
964 				m = p;
965 				pkts_burst[i] = m;
966 			}
967 		}
968 
969 		/* if verbose mode is enabled, dump debug info */
970 		if (verbose_level > 0) {
971 			char buf[256];
972 
973 			printf("-----------------\n");
974 			printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
975 				fs->rx_port, m, m->pkt_len, m->nb_segs);
976 			/* dump rx parsed packet info */
977 			rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
978 			printf("rx: l2_len=%d ethertype=%x l3_len=%d "
979 				"l4_proto=%d l4_len=%d flags=%s\n",
980 				info.l2_len, rte_be_to_cpu_16(info.ethertype),
981 				info.l3_len, info.l4_proto, info.l4_len, buf);
982 			if (rx_ol_flags & PKT_RX_LRO)
983 				printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
984 			if (info.is_tunnel == 1)
985 				printf("rx: outer_l2_len=%d outer_ethertype=%x "
986 					"outer_l3_len=%d\n", info.outer_l2_len,
987 					rte_be_to_cpu_16(info.outer_ethertype),
988 					info.outer_l3_len);
989 			/* dump tx packet info */
990 			if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
991 					    DEV_TX_OFFLOAD_UDP_CKSUM |
992 					    DEV_TX_OFFLOAD_TCP_CKSUM |
993 					    DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
994 				info.tso_segsz != 0)
995 				printf("tx: m->l2_len=%d m->l3_len=%d "
996 					"m->l4_len=%d\n",
997 					m->l2_len, m->l3_len, m->l4_len);
998 			if (info.is_tunnel == 1) {
999 				if ((tx_offloads &
1000 				    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1001 				    (tx_offloads &
1002 				    DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1003 				    (tx_ol_flags & PKT_TX_OUTER_IPV6))
1004 					printf("tx: m->outer_l2_len=%d "
1005 						"m->outer_l3_len=%d\n",
1006 						m->outer_l2_len,
1007 						m->outer_l3_len);
1008 				if (info.tunnel_tso_segsz != 0 &&
1009 						(m->ol_flags & PKT_TX_TCP_SEG))
1010 					printf("tx: m->tso_segsz=%d\n",
1011 						m->tso_segsz);
1012 			} else if (info.tso_segsz != 0 &&
1013 					(m->ol_flags & PKT_TX_TCP_SEG))
1014 				printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1015 			rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1016 			printf("tx: flags=%s", buf);
1017 			printf("\n");
1018 		}
1019 	}
1020 
1021 	if (unlikely(gro_enable)) {
1022 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1023 			nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1024 					&(gro_ports[fs->rx_port].param));
1025 		} else {
1026 			gro_ctx = current_fwd_lcore()->gro_ctx;
1027 			nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1028 
1029 			if (++fs->gro_times >= gro_flush_cycles) {
1030 				gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1031 				if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1032 					gro_pkts_num = MAX_PKT_BURST - nb_rx;
1033 
1034 				nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1035 						RTE_GRO_TCP_IPV4,
1036 						&pkts_burst[nb_rx],
1037 						gro_pkts_num);
1038 				fs->gro_times = 0;
1039 			}
1040 		}
1041 	}
1042 
1043 	if (gso_ports[fs->tx_port].enable == 0)
1044 		tx_pkts_burst = pkts_burst;
1045 	else {
1046 		gso_ctx = &(current_fwd_lcore()->gso_ctx);
1047 		gso_ctx->gso_size = gso_max_segment_size;
1048 		for (i = 0; i < nb_rx; i++) {
1049 			ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1050 					&gso_segments[nb_segments],
1051 					GSO_MAX_PKT_BURST - nb_segments);
1052 			if (ret >= 0)
1053 				nb_segments += ret;
1054 			else {
1055 				TESTPMD_LOG(DEBUG, "Unable to segment packet");
1056 				rte_pktmbuf_free(pkts_burst[i]);
1057 			}
1058 		}
1059 
1060 		tx_pkts_burst = gso_segments;
1061 		nb_rx = nb_segments;
1062 	}
1063 
1064 	nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1065 			tx_pkts_burst, nb_rx);
1066 	if (nb_prep != nb_rx)
1067 		printf("Preparing packet burst to transmit failed: %s\n",
1068 				rte_strerror(rte_errno));
1069 
1070 	nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1071 			nb_prep);
1072 
1073 	/*
1074 	 * Retry if necessary
1075 	 */
1076 	if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1077 		retry = 0;
1078 		while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1079 			rte_delay_us(burst_tx_delay_time);
1080 			nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1081 					&tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1082 		}
1083 	}
1084 	fs->tx_packets += nb_tx;
1085 	fs->rx_bad_ip_csum += rx_bad_ip_csum;
1086 	fs->rx_bad_l4_csum += rx_bad_l4_csum;
1087 	fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1088 
1089 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1090 	fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1091 #endif
1092 	if (unlikely(nb_tx < nb_rx)) {
1093 		fs->fwd_dropped += (nb_rx - nb_tx);
1094 		do {
1095 			rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1096 		} while (++nb_tx < nb_rx);
1097 	}
1098 
1099 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1100 	end_tsc = rte_rdtsc();
1101 	core_cycles = (end_tsc - start_tsc);
1102 	fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1103 #endif
1104 }
1105 
1106 struct fwd_engine csum_fwd_engine = {
1107 	.fwd_mode_name  = "csum",
1108 	.port_fwd_begin = NULL,
1109 	.port_fwd_end   = NULL,
1110 	.packet_fwd     = pkt_burst_checksum_forward,
1111 };
1112