1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * Copyright 2014 6WIND S.A. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <stdarg.h> 36 #include <stdio.h> 37 #include <errno.h> 38 #include <stdint.h> 39 #include <unistd.h> 40 #include <inttypes.h> 41 42 #include <sys/queue.h> 43 #include <sys/stat.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_log.h> 48 #include <rte_debug.h> 49 #include <rte_cycles.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_launch.h> 54 #include <rte_eal.h> 55 #include <rte_per_lcore.h> 56 #include <rte_lcore.h> 57 #include <rte_atomic.h> 58 #include <rte_branch_prediction.h> 59 #include <rte_memory.h> 60 #include <rte_mempool.h> 61 #include <rte_mbuf.h> 62 #include <rte_memcpy.h> 63 #include <rte_interrupts.h> 64 #include <rte_pci.h> 65 #include <rte_ether.h> 66 #include <rte_ethdev.h> 67 #include <rte_ip.h> 68 #include <rte_tcp.h> 69 #include <rte_udp.h> 70 #include <rte_sctp.h> 71 #include <rte_prefetch.h> 72 #include <rte_string_fns.h> 73 #include <rte_flow.h> 74 #include "testpmd.h" 75 76 #define IP_DEFTTL 64 /* from RFC 1340. */ 77 #define IP_VERSION 0x40 78 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ 79 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) 80 81 #define GRE_KEY_PRESENT 0x2000 82 #define GRE_KEY_LEN 4 83 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT 84 85 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 86 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 87 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 88 #else 89 #define _htons(x) (x) 90 #endif 91 92 /* structure that caches offload info for the current packet */ 93 struct testpmd_offload_info { 94 uint16_t ethertype; 95 uint16_t l2_len; 96 uint16_t l3_len; 97 uint16_t l4_len; 98 uint8_t l4_proto; 99 uint8_t is_tunnel; 100 uint16_t outer_ethertype; 101 uint16_t outer_l2_len; 102 uint16_t outer_l3_len; 103 uint8_t outer_l4_proto; 104 uint16_t tso_segsz; 105 uint16_t tunnel_tso_segsz; 106 uint32_t pkt_len; 107 }; 108 109 /* simplified GRE header */ 110 struct simple_gre_hdr { 111 uint16_t flags; 112 uint16_t proto; 113 } __attribute__((__packed__)); 114 115 static uint16_t 116 get_psd_sum(void *l3_hdr, uint16_t ethertype, uint64_t ol_flags) 117 { 118 if (ethertype == _htons(ETHER_TYPE_IPv4)) 119 return rte_ipv4_phdr_cksum(l3_hdr, ol_flags); 120 else /* assume ethertype == ETHER_TYPE_IPv6 */ 121 return rte_ipv6_phdr_cksum(l3_hdr, ol_flags); 122 } 123 124 static uint16_t 125 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 126 { 127 if (ethertype == _htons(ETHER_TYPE_IPv4)) 128 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 129 else /* assume ethertype == ETHER_TYPE_IPv6 */ 130 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 131 } 132 133 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 134 static void 135 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 136 { 137 struct tcp_hdr *tcp_hdr; 138 139 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; 140 info->l4_proto = ipv4_hdr->next_proto_id; 141 142 /* only fill l4_len for TCP, it's useful for TSO */ 143 if (info->l4_proto == IPPROTO_TCP) { 144 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len); 145 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 146 } else 147 info->l4_len = 0; 148 } 149 150 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 151 static void 152 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 153 { 154 struct tcp_hdr *tcp_hdr; 155 156 info->l3_len = sizeof(struct ipv6_hdr); 157 info->l4_proto = ipv6_hdr->proto; 158 159 /* only fill l4_len for TCP, it's useful for TSO */ 160 if (info->l4_proto == IPPROTO_TCP) { 161 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len); 162 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 163 } else 164 info->l4_len = 0; 165 } 166 167 /* 168 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 169 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan 170 * header. The l4_len argument is only set in case of TCP (useful for TSO). 171 */ 172 static void 173 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info) 174 { 175 struct ipv4_hdr *ipv4_hdr; 176 struct ipv6_hdr *ipv6_hdr; 177 178 info->l2_len = sizeof(struct ether_hdr); 179 info->ethertype = eth_hdr->ether_type; 180 181 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) { 182 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); 183 184 info->l2_len += sizeof(struct vlan_hdr); 185 info->ethertype = vlan_hdr->eth_proto; 186 } 187 188 switch (info->ethertype) { 189 case _htons(ETHER_TYPE_IPv4): 190 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len); 191 parse_ipv4(ipv4_hdr, info); 192 break; 193 case _htons(ETHER_TYPE_IPv6): 194 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len); 195 parse_ipv6(ipv6_hdr, info); 196 break; 197 default: 198 info->l4_len = 0; 199 info->l3_len = 0; 200 info->l4_proto = 0; 201 break; 202 } 203 } 204 205 /* Parse a vxlan header */ 206 static void 207 parse_vxlan(struct udp_hdr *udp_hdr, 208 struct testpmd_offload_info *info, 209 uint32_t pkt_type) 210 { 211 struct ether_hdr *eth_hdr; 212 213 /* check udp destination port, 4789 is the default vxlan port 214 * (rfc7348) or that the rx offload flag is set (i40e only 215 * currently) */ 216 if (udp_hdr->dst_port != _htons(4789) && 217 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 218 return; 219 220 info->is_tunnel = 1; 221 info->outer_ethertype = info->ethertype; 222 info->outer_l2_len = info->l2_len; 223 info->outer_l3_len = info->l3_len; 224 info->outer_l4_proto = info->l4_proto; 225 226 eth_hdr = (struct ether_hdr *)((char *)udp_hdr + 227 sizeof(struct udp_hdr) + 228 sizeof(struct vxlan_hdr)); 229 230 parse_ethernet(eth_hdr, info); 231 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */ 232 } 233 234 /* Parse a gre header */ 235 static void 236 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 237 { 238 struct ether_hdr *eth_hdr; 239 struct ipv4_hdr *ipv4_hdr; 240 struct ipv6_hdr *ipv6_hdr; 241 uint8_t gre_len = 0; 242 243 /* check which fields are supported */ 244 if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0) 245 return; 246 247 gre_len += sizeof(struct simple_gre_hdr); 248 249 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 250 gre_len += GRE_KEY_LEN; 251 252 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) { 253 info->is_tunnel = 1; 254 info->outer_ethertype = info->ethertype; 255 info->outer_l2_len = info->l2_len; 256 info->outer_l3_len = info->l3_len; 257 info->outer_l4_proto = info->l4_proto; 258 259 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len); 260 261 parse_ipv4(ipv4_hdr, info); 262 info->ethertype = _htons(ETHER_TYPE_IPv4); 263 info->l2_len = 0; 264 265 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) { 266 info->is_tunnel = 1; 267 info->outer_ethertype = info->ethertype; 268 info->outer_l2_len = info->l2_len; 269 info->outer_l3_len = info->l3_len; 270 info->outer_l4_proto = info->l4_proto; 271 272 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len); 273 274 info->ethertype = _htons(ETHER_TYPE_IPv6); 275 parse_ipv6(ipv6_hdr, info); 276 info->l2_len = 0; 277 278 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) { 279 info->is_tunnel = 1; 280 info->outer_ethertype = info->ethertype; 281 info->outer_l2_len = info->l2_len; 282 info->outer_l3_len = info->l3_len; 283 info->outer_l4_proto = info->l4_proto; 284 285 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len); 286 287 parse_ethernet(eth_hdr, info); 288 } else 289 return; 290 291 info->l2_len += gre_len; 292 } 293 294 295 /* Parse an encapsulated ip or ipv6 header */ 296 static void 297 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 298 { 299 struct ipv4_hdr *ipv4_hdr = encap_ip; 300 struct ipv6_hdr *ipv6_hdr = encap_ip; 301 uint8_t ip_version; 302 303 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 304 305 if (ip_version != 4 && ip_version != 6) 306 return; 307 308 info->is_tunnel = 1; 309 info->outer_ethertype = info->ethertype; 310 info->outer_l2_len = info->l2_len; 311 info->outer_l3_len = info->l3_len; 312 313 if (ip_version == 4) { 314 parse_ipv4(ipv4_hdr, info); 315 info->ethertype = _htons(ETHER_TYPE_IPv4); 316 } else { 317 parse_ipv6(ipv6_hdr, info); 318 info->ethertype = _htons(ETHER_TYPE_IPv6); 319 } 320 info->l2_len = 0; 321 } 322 323 /* if possible, calculate the checksum of a packet in hw or sw, 324 * depending on the testpmd command line configuration */ 325 static uint64_t 326 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 327 uint16_t testpmd_ol_flags) 328 { 329 struct ipv4_hdr *ipv4_hdr = l3_hdr; 330 struct udp_hdr *udp_hdr; 331 struct tcp_hdr *tcp_hdr; 332 struct sctp_hdr *sctp_hdr; 333 uint64_t ol_flags = 0; 334 uint32_t max_pkt_len, tso_segsz = 0; 335 336 /* ensure packet is large enough to require tso */ 337 if (!info->is_tunnel) { 338 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 339 info->tso_segsz; 340 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 341 tso_segsz = info->tso_segsz; 342 } else { 343 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 344 info->l2_len + info->l3_len + info->l4_len + 345 info->tunnel_tso_segsz; 346 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 347 tso_segsz = info->tunnel_tso_segsz; 348 } 349 350 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) { 351 ipv4_hdr = l3_hdr; 352 ipv4_hdr->hdr_checksum = 0; 353 354 ol_flags |= PKT_TX_IPV4; 355 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 356 ol_flags |= PKT_TX_IP_CKSUM; 357 } else { 358 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 359 ol_flags |= PKT_TX_IP_CKSUM; 360 else 361 ipv4_hdr->hdr_checksum = 362 rte_ipv4_cksum(ipv4_hdr); 363 } 364 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6)) 365 ol_flags |= PKT_TX_IPV6; 366 else 367 return 0; /* packet type not supported, nothing to do */ 368 369 if (info->l4_proto == IPPROTO_UDP) { 370 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len); 371 /* do not recalculate udp cksum if it was 0 */ 372 if (udp_hdr->dgram_cksum != 0) { 373 udp_hdr->dgram_cksum = 0; 374 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) { 375 ol_flags |= PKT_TX_UDP_CKSUM; 376 udp_hdr->dgram_cksum = get_psd_sum(l3_hdr, 377 info->ethertype, ol_flags); 378 } else { 379 udp_hdr->dgram_cksum = 380 get_udptcp_checksum(l3_hdr, udp_hdr, 381 info->ethertype); 382 } 383 } 384 } else if (info->l4_proto == IPPROTO_TCP) { 385 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len); 386 tcp_hdr->cksum = 0; 387 if (tso_segsz) { 388 ol_flags |= PKT_TX_TCP_SEG; 389 tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype, 390 ol_flags); 391 } else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) { 392 ol_flags |= PKT_TX_TCP_CKSUM; 393 tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype, 394 ol_flags); 395 } else { 396 tcp_hdr->cksum = 397 get_udptcp_checksum(l3_hdr, tcp_hdr, 398 info->ethertype); 399 } 400 } else if (info->l4_proto == IPPROTO_SCTP) { 401 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len); 402 sctp_hdr->cksum = 0; 403 /* sctp payload must be a multiple of 4 to be 404 * offloaded */ 405 if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) && 406 ((ipv4_hdr->total_length & 0x3) == 0)) { 407 ol_flags |= PKT_TX_SCTP_CKSUM; 408 } else { 409 /* XXX implement CRC32c, example available in 410 * RFC3309 */ 411 } 412 } 413 414 return ol_flags; 415 } 416 417 /* Calculate the checksum of outer header */ 418 static uint64_t 419 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 420 uint16_t testpmd_ol_flags, int tso_enabled) 421 { 422 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr; 423 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr; 424 struct udp_hdr *udp_hdr; 425 uint64_t ol_flags = 0; 426 427 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) { 428 ipv4_hdr->hdr_checksum = 0; 429 ol_flags |= PKT_TX_OUTER_IPV4; 430 431 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 432 ol_flags |= PKT_TX_OUTER_IP_CKSUM; 433 else 434 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 435 } else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 436 ol_flags |= PKT_TX_OUTER_IPV6; 437 438 if (info->outer_l4_proto != IPPROTO_UDP) 439 return ol_flags; 440 441 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len); 442 443 /* outer UDP checksum is done in software as we have no hardware 444 * supporting it today, and no API for it. In the other side, for 445 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 446 * set to zero. 447 * 448 * If a packet will be TSOed into small packets by NIC, we cannot 449 * set/calculate a non-zero checksum, because it will be a wrong 450 * value after the packet be split into several small packets. 451 */ 452 if (tso_enabled) 453 udp_hdr->dgram_cksum = 0; 454 455 /* do not recalculate udp cksum if it was 0 */ 456 if (udp_hdr->dgram_cksum != 0) { 457 udp_hdr->dgram_cksum = 0; 458 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) 459 udp_hdr->dgram_cksum = 460 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 461 else 462 udp_hdr->dgram_cksum = 463 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 464 } 465 466 return ol_flags; 467 } 468 469 /* 470 * Helper function. 471 * Performs actual copying. 472 * Returns number of segments in the destination mbuf on success, 473 * or negative error code on failure. 474 */ 475 static int 476 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 477 uint16_t seglen[], uint8_t nb_seg) 478 { 479 uint32_t dlen, slen, tlen; 480 uint32_t i, len; 481 const struct rte_mbuf *m; 482 const uint8_t *src; 483 uint8_t *dst; 484 485 dlen = 0; 486 slen = 0; 487 tlen = 0; 488 489 dst = NULL; 490 src = NULL; 491 492 m = ms; 493 i = 0; 494 while (ms != NULL && i != nb_seg) { 495 496 if (slen == 0) { 497 slen = rte_pktmbuf_data_len(ms); 498 src = rte_pktmbuf_mtod(ms, const uint8_t *); 499 } 500 501 if (dlen == 0) { 502 dlen = RTE_MIN(seglen[i], slen); 503 md[i]->data_len = dlen; 504 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 505 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 506 } 507 508 len = RTE_MIN(slen, dlen); 509 memcpy(dst, src, len); 510 tlen += len; 511 slen -= len; 512 dlen -= len; 513 src += len; 514 dst += len; 515 516 if (slen == 0) 517 ms = ms->next; 518 if (dlen == 0) 519 i++; 520 } 521 522 if (ms != NULL) 523 return -ENOBUFS; 524 else if (tlen != m->pkt_len) 525 return -EINVAL; 526 527 md[0]->nb_segs = nb_seg; 528 md[0]->pkt_len = tlen; 529 md[0]->vlan_tci = m->vlan_tci; 530 md[0]->vlan_tci_outer = m->vlan_tci_outer; 531 md[0]->ol_flags = m->ol_flags; 532 md[0]->tx_offload = m->tx_offload; 533 534 return nb_seg; 535 } 536 537 /* 538 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 539 * Copy packet contents and offload information into then new segmented mbuf. 540 */ 541 static struct rte_mbuf * 542 pkt_copy_split(const struct rte_mbuf *pkt) 543 { 544 int32_t n, rc; 545 uint32_t i, len, nb_seg; 546 struct rte_mempool *mp; 547 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 548 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 549 550 mp = current_fwd_lcore()->mbp; 551 552 if (tx_pkt_split == TX_PKT_SPLIT_RND) 553 nb_seg = random() % tx_pkt_nb_segs + 1; 554 else 555 nb_seg = tx_pkt_nb_segs; 556 557 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 558 559 /* calculate number of segments to use and their length. */ 560 len = 0; 561 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 562 len += seglen[i]; 563 md[i] = NULL; 564 } 565 566 n = pkt->pkt_len - len; 567 568 /* update size of the last segment to fit rest of the packet */ 569 if (n >= 0) { 570 seglen[i - 1] += n; 571 len += n; 572 } 573 574 nb_seg = i; 575 while (i != 0) { 576 p = rte_pktmbuf_alloc(mp); 577 if (p == NULL) { 578 RTE_LOG(ERR, USER1, 579 "failed to allocate %u-th of %u mbuf " 580 "from mempool: %s\n", 581 nb_seg - i, nb_seg, mp->name); 582 break; 583 } 584 585 md[--i] = p; 586 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 587 RTE_LOG(ERR, USER1, "mempool %s, %u-th segment: " 588 "expected seglen: %u, " 589 "actual mbuf tailroom: %u\n", 590 mp->name, i, seglen[i], 591 rte_pktmbuf_tailroom(md[i])); 592 break; 593 } 594 } 595 596 /* all mbufs successfully allocated, do copy */ 597 if (i == 0) { 598 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 599 if (rc < 0) 600 RTE_LOG(ERR, USER1, 601 "mbuf_copy_split for %p(len=%u, nb_seg=%hhu) " 602 "into %u segments failed with error code: %d\n", 603 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 604 605 /* figure out how many mbufs to free. */ 606 i = RTE_MAX(rc, 0); 607 } 608 609 /* free unused mbufs */ 610 for (; i != nb_seg; i++) { 611 rte_pktmbuf_free_seg(md[i]); 612 md[i] = NULL; 613 } 614 615 return md[0]; 616 } 617 618 /* 619 * Receive a burst of packets, and for each packet: 620 * - parse packet, and try to recognize a supported packet type (1) 621 * - if it's not a supported packet type, don't touch the packet, else: 622 * - reprocess the checksum of all supported layers. This is done in SW 623 * or HW, depending on testpmd command line configuration 624 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 625 * segmentation offload (this implies HW TCP checksum) 626 * Then transmit packets on the output port. 627 * 628 * (1) Supported packets are: 629 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 630 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 631 * UDP|TCP|SCTP 632 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 633 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 634 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 635 * 636 * The testpmd command line for this forward engine sets the flags 637 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 638 * wether a checksum must be calculated in software or in hardware. The 639 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 640 * OUTER_IP is only useful for tunnel packets. 641 */ 642 static void 643 pkt_burst_checksum_forward(struct fwd_stream *fs) 644 { 645 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 646 struct rte_port *txp; 647 struct rte_mbuf *m, *p; 648 struct ether_hdr *eth_hdr; 649 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 650 uint16_t nb_rx; 651 uint16_t nb_tx; 652 uint16_t i; 653 uint64_t rx_ol_flags, tx_ol_flags; 654 uint16_t testpmd_ol_flags; 655 uint32_t retry; 656 uint32_t rx_bad_ip_csum; 657 uint32_t rx_bad_l4_csum; 658 struct testpmd_offload_info info; 659 660 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 661 uint64_t start_tsc; 662 uint64_t end_tsc; 663 uint64_t core_cycles; 664 #endif 665 666 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 667 start_tsc = rte_rdtsc(); 668 #endif 669 670 /* receive a burst of packet */ 671 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 672 nb_pkt_per_burst); 673 if (unlikely(nb_rx == 0)) 674 return; 675 676 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 677 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++; 678 #endif 679 fs->rx_packets += nb_rx; 680 rx_bad_ip_csum = 0; 681 rx_bad_l4_csum = 0; 682 683 txp = &ports[fs->tx_port]; 684 testpmd_ol_flags = txp->tx_ol_flags; 685 memset(&info, 0, sizeof(info)); 686 info.tso_segsz = txp->tso_segsz; 687 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 688 689 for (i = 0; i < nb_rx; i++) { 690 if (likely(i < nb_rx - 1)) 691 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 692 void *)); 693 694 m = pkts_burst[i]; 695 info.is_tunnel = 0; 696 info.pkt_len = rte_pktmbuf_pkt_len(m); 697 tx_ol_flags = 0; 698 rx_ol_flags = m->ol_flags; 699 700 /* Update the L3/L4 checksum error packet statistics */ 701 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD) 702 rx_bad_ip_csum += 1; 703 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD) 704 rx_bad_l4_csum += 1; 705 706 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 707 * and inner headers */ 708 709 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 710 ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 711 ð_hdr->d_addr); 712 ether_addr_copy(&ports[fs->tx_port].eth_addr, 713 ð_hdr->s_addr); 714 parse_ethernet(eth_hdr, &info); 715 l3_hdr = (char *)eth_hdr + info.l2_len; 716 717 /* check if it's a supported tunnel */ 718 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) { 719 if (info.l4_proto == IPPROTO_UDP) { 720 struct udp_hdr *udp_hdr; 721 722 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + 723 info.l3_len); 724 parse_vxlan(udp_hdr, &info, m->packet_type); 725 if (info.is_tunnel) 726 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN; 727 } else if (info.l4_proto == IPPROTO_GRE) { 728 struct simple_gre_hdr *gre_hdr; 729 730 gre_hdr = (struct simple_gre_hdr *) 731 ((char *)l3_hdr + info.l3_len); 732 parse_gre(gre_hdr, &info); 733 if (info.is_tunnel) 734 tx_ol_flags |= PKT_TX_TUNNEL_GRE; 735 } else if (info.l4_proto == IPPROTO_IPIP) { 736 void *encap_ip_hdr; 737 738 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 739 parse_encap_ip(encap_ip_hdr, &info); 740 if (info.is_tunnel) 741 tx_ol_flags |= PKT_TX_TUNNEL_IPIP; 742 } 743 } 744 745 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 746 if (info.is_tunnel) { 747 outer_l3_hdr = l3_hdr; 748 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 749 } 750 751 /* step 2: depending on user command line configuration, 752 * recompute checksum either in software or flag the 753 * mbuf to offload the calculation to the NIC. If TSO 754 * is configured, prepare the mbuf for TCP segmentation. */ 755 756 /* process checksums of inner headers first */ 757 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 758 testpmd_ol_flags); 759 760 /* Then process outer headers if any. Note that the software 761 * checksum will be wrong if one of the inner checksums is 762 * processed in hardware. */ 763 if (info.is_tunnel == 1) { 764 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 765 testpmd_ol_flags, 766 !!(tx_ol_flags & PKT_TX_TCP_SEG)); 767 } 768 769 /* step 3: fill the mbuf meta data (flags and header lengths) */ 770 771 if (info.is_tunnel == 1) { 772 if (info.tunnel_tso_segsz || 773 testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) { 774 m->outer_l2_len = info.outer_l2_len; 775 m->outer_l3_len = info.outer_l3_len; 776 m->l2_len = info.l2_len; 777 m->l3_len = info.l3_len; 778 m->l4_len = info.l4_len; 779 m->tso_segsz = info.tunnel_tso_segsz; 780 } 781 else { 782 /* if there is a outer UDP cksum 783 processed in sw and the inner in hw, 784 the outer checksum will be wrong as 785 the payload will be modified by the 786 hardware */ 787 m->l2_len = info.outer_l2_len + 788 info.outer_l3_len + info.l2_len; 789 m->l3_len = info.l3_len; 790 m->l4_len = info.l4_len; 791 } 792 } else { 793 /* this is only useful if an offload flag is 794 * set, but it does not hurt to fill it in any 795 * case */ 796 m->l2_len = info.l2_len; 797 m->l3_len = info.l3_len; 798 m->l4_len = info.l4_len; 799 m->tso_segsz = info.tso_segsz; 800 } 801 m->ol_flags = tx_ol_flags; 802 803 /* Do split & copy for the packet. */ 804 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 805 p = pkt_copy_split(m); 806 if (p != NULL) { 807 rte_pktmbuf_free(m); 808 m = p; 809 pkts_burst[i] = m; 810 } 811 } 812 813 /* if verbose mode is enabled, dump debug info */ 814 if (verbose_level > 0) { 815 char buf[256]; 816 817 printf("-----------------\n"); 818 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%hhu:\n", 819 fs->rx_port, m, m->pkt_len, m->nb_segs); 820 /* dump rx parsed packet info */ 821 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 822 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 823 "l4_proto=%d l4_len=%d flags=%s\n", 824 info.l2_len, rte_be_to_cpu_16(info.ethertype), 825 info.l3_len, info.l4_proto, info.l4_len, buf); 826 if (rx_ol_flags & PKT_RX_LRO) 827 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 828 if (info.is_tunnel == 1) 829 printf("rx: outer_l2_len=%d outer_ethertype=%x " 830 "outer_l3_len=%d\n", info.outer_l2_len, 831 rte_be_to_cpu_16(info.outer_ethertype), 832 info.outer_l3_len); 833 /* dump tx packet info */ 834 if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM | 835 TESTPMD_TX_OFFLOAD_UDP_CKSUM | 836 TESTPMD_TX_OFFLOAD_TCP_CKSUM | 837 TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) || 838 info.tso_segsz != 0) 839 printf("tx: m->l2_len=%d m->l3_len=%d " 840 "m->l4_len=%d\n", 841 m->l2_len, m->l3_len, m->l4_len); 842 if (info.is_tunnel == 1) { 843 if (testpmd_ol_flags & 844 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 845 printf("tx: m->outer_l2_len=%d " 846 "m->outer_l3_len=%d\n", 847 m->outer_l2_len, 848 m->outer_l3_len); 849 if (info.tunnel_tso_segsz != 0 && 850 (m->ol_flags & PKT_TX_TCP_SEG)) 851 printf("tx: m->tso_segsz=%d\n", 852 m->tso_segsz); 853 } else if (info.tso_segsz != 0 && 854 (m->ol_flags & PKT_TX_TCP_SEG)) 855 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 856 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 857 printf("tx: flags=%s", buf); 858 printf("\n"); 859 } 860 } 861 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx); 862 /* 863 * Retry if necessary 864 */ 865 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 866 retry = 0; 867 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 868 rte_delay_us(burst_tx_delay_time); 869 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 870 &pkts_burst[nb_tx], nb_rx - nb_tx); 871 } 872 } 873 fs->tx_packets += nb_tx; 874 fs->rx_bad_ip_csum += rx_bad_ip_csum; 875 fs->rx_bad_l4_csum += rx_bad_l4_csum; 876 877 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 878 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++; 879 #endif 880 if (unlikely(nb_tx < nb_rx)) { 881 fs->fwd_dropped += (nb_rx - nb_tx); 882 do { 883 rte_pktmbuf_free(pkts_burst[nb_tx]); 884 } while (++nb_tx < nb_rx); 885 } 886 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 887 end_tsc = rte_rdtsc(); 888 core_cycles = (end_tsc - start_tsc); 889 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles); 890 #endif 891 } 892 893 struct fwd_engine csum_fwd_engine = { 894 .fwd_mode_name = "csum", 895 .port_fwd_begin = NULL, 896 .port_fwd_end = NULL, 897 .packet_fwd = pkt_burst_checksum_forward, 898 }; 899