1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_branch_prediction.h> 28 #include <rte_mempool.h> 29 #include <rte_mbuf.h> 30 #include <rte_interrupts.h> 31 #include <rte_pci.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_ip.h> 35 #include <rte_tcp.h> 36 #include <rte_udp.h> 37 #include <rte_vxlan.h> 38 #include <rte_sctp.h> 39 #include <rte_gtp.h> 40 #include <rte_prefetch.h> 41 #include <rte_string_fns.h> 42 #include <rte_flow.h> 43 #ifdef RTE_LIB_GRO 44 #include <rte_gro.h> 45 #endif 46 #ifdef RTE_LIB_GSO 47 #include <rte_gso.h> 48 #endif 49 #include <rte_geneve.h> 50 51 #include "testpmd.h" 52 53 #define IP_DEFTTL 64 /* from RFC 1340. */ 54 55 #define GRE_CHECKSUM_PRESENT 0x8000 56 #define GRE_KEY_PRESENT 0x2000 57 #define GRE_SEQUENCE_PRESENT 0x1000 58 #define GRE_EXT_LEN 4 59 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 60 GRE_SEQUENCE_PRESENT) 61 62 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 63 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 64 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 65 #else 66 #define _htons(x) (x) 67 #endif 68 69 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; 70 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; 71 72 /* structure that caches offload info for the current packet */ 73 struct testpmd_offload_info { 74 uint16_t ethertype; 75 #ifdef RTE_LIB_GSO 76 uint8_t gso_enable; 77 #endif 78 uint16_t l2_len; 79 uint16_t l3_len; 80 uint16_t l4_len; 81 uint8_t l4_proto; 82 uint8_t is_tunnel; 83 uint16_t outer_ethertype; 84 uint16_t outer_l2_len; 85 uint16_t outer_l3_len; 86 uint8_t outer_l4_proto; 87 uint16_t tso_segsz; 88 uint16_t tunnel_tso_segsz; 89 uint32_t pkt_len; 90 }; 91 92 /* simplified GRE header */ 93 struct simple_gre_hdr { 94 uint16_t flags; 95 uint16_t proto; 96 } __rte_packed; 97 98 static uint16_t 99 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off, 100 uint16_t ethertype) 101 { 102 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 103 return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 104 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ 105 return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 106 } 107 108 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 109 static void 110 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 111 { 112 struct rte_tcp_hdr *tcp_hdr; 113 114 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); 115 info->l4_proto = ipv4_hdr->next_proto_id; 116 117 /* only fill l4_len for TCP, it's useful for TSO */ 118 if (info->l4_proto == IPPROTO_TCP) { 119 tcp_hdr = (struct rte_tcp_hdr *) 120 ((char *)ipv4_hdr + info->l3_len); 121 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 122 } else if (info->l4_proto == IPPROTO_UDP) 123 info->l4_len = sizeof(struct rte_udp_hdr); 124 else 125 info->l4_len = 0; 126 } 127 128 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 129 static void 130 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 131 { 132 struct rte_tcp_hdr *tcp_hdr; 133 134 info->l3_len = sizeof(struct rte_ipv6_hdr); 135 info->l4_proto = ipv6_hdr->proto; 136 137 /* only fill l4_len for TCP, it's useful for TSO */ 138 if (info->l4_proto == IPPROTO_TCP) { 139 tcp_hdr = (struct rte_tcp_hdr *) 140 ((char *)ipv6_hdr + info->l3_len); 141 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 142 } else if (info->l4_proto == IPPROTO_UDP) 143 info->l4_len = sizeof(struct rte_udp_hdr); 144 else 145 info->l4_len = 0; 146 } 147 148 /* 149 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 150 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN 151 * headers. The l4_len argument is only set in case of TCP (useful for TSO). 152 */ 153 static void 154 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 155 { 156 struct rte_ipv4_hdr *ipv4_hdr; 157 struct rte_ipv6_hdr *ipv6_hdr; 158 struct rte_vlan_hdr *vlan_hdr; 159 160 info->l2_len = sizeof(struct rte_ether_hdr); 161 info->ethertype = eth_hdr->ether_type; 162 163 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || 164 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { 165 vlan_hdr = (struct rte_vlan_hdr *) 166 ((char *)eth_hdr + info->l2_len); 167 info->l2_len += sizeof(struct rte_vlan_hdr); 168 info->ethertype = vlan_hdr->eth_proto; 169 } 170 171 switch (info->ethertype) { 172 case _htons(RTE_ETHER_TYPE_IPV4): 173 ipv4_hdr = (struct rte_ipv4_hdr *) 174 ((char *)eth_hdr + info->l2_len); 175 parse_ipv4(ipv4_hdr, info); 176 break; 177 case _htons(RTE_ETHER_TYPE_IPV6): 178 ipv6_hdr = (struct rte_ipv6_hdr *) 179 ((char *)eth_hdr + info->l2_len); 180 parse_ipv6(ipv6_hdr, info); 181 break; 182 default: 183 info->l4_len = 0; 184 info->l3_len = 0; 185 info->l4_proto = 0; 186 break; 187 } 188 } 189 190 /* Fill in outer layers length */ 191 static void 192 update_tunnel_outer(struct testpmd_offload_info *info) 193 { 194 info->is_tunnel = 1; 195 info->outer_ethertype = info->ethertype; 196 info->outer_l2_len = info->l2_len; 197 info->outer_l3_len = info->l3_len; 198 info->outer_l4_proto = info->l4_proto; 199 } 200 201 /* 202 * Parse a GTP protocol header. 203 * No optional fields and next extension header type. 204 */ 205 static void 206 parse_gtp(struct rte_udp_hdr *udp_hdr, 207 struct testpmd_offload_info *info) 208 { 209 struct rte_ipv4_hdr *ipv4_hdr; 210 struct rte_ipv6_hdr *ipv6_hdr; 211 struct rte_gtp_hdr *gtp_hdr; 212 uint8_t gtp_len = sizeof(*gtp_hdr); 213 uint8_t ip_ver; 214 215 /* Check udp destination port. */ 216 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && 217 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && 218 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) 219 return; 220 221 update_tunnel_outer(info); 222 info->l2_len = 0; 223 224 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + 225 sizeof(struct rte_udp_hdr)); 226 227 /* 228 * Check message type. If message type is 0xff, it is 229 * a GTP data packet. If not, it is a GTP control packet 230 */ 231 if (gtp_hdr->msg_type == 0xff) { 232 ip_ver = *(uint8_t *)((char *)udp_hdr + 233 sizeof(struct rte_udp_hdr) + 234 sizeof(struct rte_gtp_hdr)); 235 ip_ver = (ip_ver) & 0xf0; 236 237 if (ip_ver == RTE_GTP_TYPE_IPV4) { 238 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + 239 gtp_len); 240 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 241 parse_ipv4(ipv4_hdr, info); 242 } else if (ip_ver == RTE_GTP_TYPE_IPV6) { 243 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + 244 gtp_len); 245 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 246 parse_ipv6(ipv6_hdr, info); 247 } 248 } else { 249 info->ethertype = 0; 250 info->l4_len = 0; 251 info->l3_len = 0; 252 info->l4_proto = 0; 253 } 254 255 info->l2_len += RTE_ETHER_GTP_HLEN; 256 } 257 258 /* Parse a vxlan header */ 259 static void 260 parse_vxlan(struct rte_udp_hdr *udp_hdr, 261 struct testpmd_offload_info *info) 262 { 263 struct rte_ether_hdr *eth_hdr; 264 265 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the 266 * default vxlan port (rfc7348) or that the rx offload flag is set 267 * (i40e only currently) 268 */ 269 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT)) 270 return; 271 272 update_tunnel_outer(info); 273 274 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 275 sizeof(struct rte_udp_hdr) + 276 sizeof(struct rte_vxlan_hdr)); 277 278 parse_ethernet(eth_hdr, info); 279 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 280 } 281 282 /* Parse a vxlan-gpe header */ 283 static void 284 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 285 struct testpmd_offload_info *info) 286 { 287 struct rte_ether_hdr *eth_hdr; 288 struct rte_ipv4_hdr *ipv4_hdr; 289 struct rte_ipv6_hdr *ipv6_hdr; 290 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 291 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 292 293 /* Check udp destination port. */ 294 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 295 return; 296 297 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 298 sizeof(struct rte_udp_hdr)); 299 300 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 301 RTE_VXLAN_GPE_TYPE_IPV4) { 302 update_tunnel_outer(info); 303 304 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 305 vxlan_gpe_len); 306 307 parse_ipv4(ipv4_hdr, info); 308 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 309 info->l2_len = 0; 310 311 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 312 update_tunnel_outer(info); 313 314 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 315 vxlan_gpe_len); 316 317 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 318 parse_ipv6(ipv6_hdr, info); 319 info->l2_len = 0; 320 321 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 322 update_tunnel_outer(info); 323 324 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 325 vxlan_gpe_len); 326 327 parse_ethernet(eth_hdr, info); 328 } else 329 return; 330 331 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 332 } 333 334 /* Parse a geneve header */ 335 static void 336 parse_geneve(struct rte_udp_hdr *udp_hdr, 337 struct testpmd_offload_info *info) 338 { 339 struct rte_ether_hdr *eth_hdr; 340 struct rte_ipv4_hdr *ipv4_hdr; 341 struct rte_ipv6_hdr *ipv6_hdr; 342 struct rte_geneve_hdr *geneve_hdr; 343 uint16_t geneve_len; 344 345 /* Check udp destination port. */ 346 if (udp_hdr->dst_port != _htons(geneve_udp_port)) 347 return; 348 349 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + 350 sizeof(struct rte_udp_hdr)); 351 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; 352 if (!geneve_hdr->proto || geneve_hdr->proto == 353 _htons(RTE_ETHER_TYPE_IPV4)) { 354 update_tunnel_outer(info); 355 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + 356 geneve_len); 357 parse_ipv4(ipv4_hdr, info); 358 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 359 info->l2_len = 0; 360 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 361 update_tunnel_outer(info); 362 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + 363 geneve_len); 364 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 365 parse_ipv6(ipv6_hdr, info); 366 info->l2_len = 0; 367 368 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { 369 update_tunnel_outer(info); 370 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + 371 geneve_len); 372 parse_ethernet(eth_hdr, info); 373 } else 374 return; 375 376 info->l2_len += 377 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + 378 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); 379 } 380 381 /* Parse a gre header */ 382 static void 383 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 384 { 385 struct rte_ether_hdr *eth_hdr; 386 struct rte_ipv4_hdr *ipv4_hdr; 387 struct rte_ipv6_hdr *ipv6_hdr; 388 uint8_t gre_len = 0; 389 390 gre_len += sizeof(struct simple_gre_hdr); 391 392 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 393 gre_len += GRE_EXT_LEN; 394 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 395 gre_len += GRE_EXT_LEN; 396 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 397 gre_len += GRE_EXT_LEN; 398 399 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { 400 update_tunnel_outer(info); 401 402 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 403 404 parse_ipv4(ipv4_hdr, info); 405 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 406 info->l2_len = 0; 407 408 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 409 update_tunnel_outer(info); 410 411 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 412 413 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 414 parse_ipv6(ipv6_hdr, info); 415 info->l2_len = 0; 416 417 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 418 update_tunnel_outer(info); 419 420 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 421 422 parse_ethernet(eth_hdr, info); 423 } else 424 return; 425 426 info->l2_len += gre_len; 427 } 428 429 430 /* Parse an encapsulated ip or ipv6 header */ 431 static void 432 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 433 { 434 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 435 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 436 uint8_t ip_version; 437 438 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 439 440 if (ip_version != 4 && ip_version != 6) 441 return; 442 443 info->is_tunnel = 1; 444 info->outer_ethertype = info->ethertype; 445 info->outer_l2_len = info->l2_len; 446 info->outer_l3_len = info->l3_len; 447 448 if (ip_version == 4) { 449 parse_ipv4(ipv4_hdr, info); 450 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 451 } else { 452 parse_ipv6(ipv6_hdr, info); 453 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 454 } 455 info->l2_len = 0; 456 } 457 458 /* if possible, calculate the checksum of a packet in hw or sw, 459 * depending on the testpmd command line configuration */ 460 static uint64_t 461 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 462 uint64_t tx_offloads, struct rte_mbuf *m) 463 { 464 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 465 struct rte_udp_hdr *udp_hdr; 466 struct rte_tcp_hdr *tcp_hdr; 467 struct rte_sctp_hdr *sctp_hdr; 468 uint64_t ol_flags = 0; 469 uint32_t max_pkt_len, tso_segsz = 0; 470 uint16_t l4_off; 471 472 /* ensure packet is large enough to require tso */ 473 if (!info->is_tunnel) { 474 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 475 info->tso_segsz; 476 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 477 tso_segsz = info->tso_segsz; 478 } else { 479 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 480 info->l2_len + info->l3_len + info->l4_len + 481 info->tunnel_tso_segsz; 482 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 483 tso_segsz = info->tunnel_tso_segsz; 484 } 485 486 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 487 ipv4_hdr = l3_hdr; 488 489 ol_flags |= RTE_MBUF_F_TX_IPV4; 490 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 491 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 492 } else { 493 if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) { 494 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 495 } else { 496 ipv4_hdr->hdr_checksum = 0; 497 ipv4_hdr->hdr_checksum = 498 rte_ipv4_cksum(ipv4_hdr); 499 } 500 } 501 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) 502 ol_flags |= RTE_MBUF_F_TX_IPV6; 503 else 504 return 0; /* packet type not supported, nothing to do */ 505 506 if (info->l4_proto == IPPROTO_UDP) { 507 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 508 /* do not recalculate udp cksum if it was 0 */ 509 if (udp_hdr->dgram_cksum != 0) { 510 if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) { 511 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM; 512 } else { 513 if (info->is_tunnel) 514 l4_off = info->l2_len + 515 info->outer_l3_len + 516 info->l2_len + info->l3_len; 517 else 518 l4_off = info->l2_len + info->l3_len; 519 udp_hdr->dgram_cksum = 0; 520 udp_hdr->dgram_cksum = 521 get_udptcp_checksum(m, l3_hdr, l4_off, 522 info->ethertype); 523 } 524 } 525 #ifdef RTE_LIB_GSO 526 if (info->gso_enable) 527 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 528 #endif 529 } else if (info->l4_proto == IPPROTO_TCP) { 530 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 531 if (tso_segsz) 532 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 533 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) { 534 ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM; 535 } else { 536 if (info->is_tunnel) 537 l4_off = info->l2_len + info->outer_l3_len + 538 info->l2_len + info->l3_len; 539 else 540 l4_off = info->l2_len + info->l3_len; 541 tcp_hdr->cksum = 0; 542 tcp_hdr->cksum = 543 get_udptcp_checksum(m, l3_hdr, l4_off, 544 info->ethertype); 545 } 546 #ifdef RTE_LIB_GSO 547 if (info->gso_enable) 548 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 549 #endif 550 } else if (info->l4_proto == IPPROTO_SCTP) { 551 sctp_hdr = (struct rte_sctp_hdr *) 552 ((char *)l3_hdr + info->l3_len); 553 /* sctp payload must be a multiple of 4 to be 554 * offloaded */ 555 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) && 556 ((ipv4_hdr->total_length & 0x3) == 0)) { 557 ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM; 558 } else { 559 sctp_hdr->cksum = 0; 560 /* XXX implement CRC32c, example available in 561 * RFC3309 */ 562 } 563 } 564 565 return ol_flags; 566 } 567 568 /* Calculate the checksum of outer header */ 569 static uint64_t 570 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 571 uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m) 572 { 573 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 574 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 575 struct rte_udp_hdr *udp_hdr; 576 uint64_t ol_flags = 0; 577 578 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 579 ipv4_hdr->hdr_checksum = 0; 580 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4; 581 582 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) 583 ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM; 584 else 585 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 586 } else 587 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6; 588 589 if (info->outer_l4_proto != IPPROTO_UDP) 590 return ol_flags; 591 592 udp_hdr = (struct rte_udp_hdr *) 593 ((char *)outer_l3_hdr + info->outer_l3_len); 594 595 if (tso_enabled) 596 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 597 598 /* Skip SW outer UDP checksum generation if HW supports it */ 599 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) { 600 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 601 udp_hdr->dgram_cksum 602 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 603 else 604 udp_hdr->dgram_cksum 605 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 606 607 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM; 608 return ol_flags; 609 } 610 611 /* outer UDP checksum is done in software. In the other side, for 612 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 613 * set to zero. 614 * 615 * If a packet will be TSOed into small packets by NIC, we cannot 616 * set/calculate a non-zero checksum, because it will be a wrong 617 * value after the packet be split into several small packets. 618 */ 619 if (tso_enabled) 620 udp_hdr->dgram_cksum = 0; 621 622 /* do not recalculate udp cksum if it was 0 */ 623 if (udp_hdr->dgram_cksum != 0) { 624 udp_hdr->dgram_cksum = 0; 625 udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr, 626 info->l2_len + info->outer_l3_len, 627 info->outer_ethertype); 628 } 629 630 return ol_flags; 631 } 632 633 /* 634 * Helper function. 635 * Performs actual copying. 636 * Returns number of segments in the destination mbuf on success, 637 * or negative error code on failure. 638 */ 639 static int 640 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 641 uint16_t seglen[], uint8_t nb_seg) 642 { 643 uint32_t dlen, slen, tlen; 644 uint32_t i, len; 645 const struct rte_mbuf *m; 646 const uint8_t *src; 647 uint8_t *dst; 648 649 dlen = 0; 650 slen = 0; 651 tlen = 0; 652 653 dst = NULL; 654 src = NULL; 655 656 m = ms; 657 i = 0; 658 while (ms != NULL && i != nb_seg) { 659 660 if (slen == 0) { 661 slen = rte_pktmbuf_data_len(ms); 662 src = rte_pktmbuf_mtod(ms, const uint8_t *); 663 } 664 665 if (dlen == 0) { 666 dlen = RTE_MIN(seglen[i], slen); 667 md[i]->data_len = dlen; 668 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 669 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 670 } 671 672 len = RTE_MIN(slen, dlen); 673 memcpy(dst, src, len); 674 tlen += len; 675 slen -= len; 676 dlen -= len; 677 src += len; 678 dst += len; 679 680 if (slen == 0) 681 ms = ms->next; 682 if (dlen == 0) 683 i++; 684 } 685 686 if (ms != NULL) 687 return -ENOBUFS; 688 else if (tlen != m->pkt_len) 689 return -EINVAL; 690 691 md[0]->nb_segs = nb_seg; 692 md[0]->pkt_len = tlen; 693 md[0]->vlan_tci = m->vlan_tci; 694 md[0]->vlan_tci_outer = m->vlan_tci_outer; 695 md[0]->ol_flags = m->ol_flags; 696 md[0]->tx_offload = m->tx_offload; 697 698 return nb_seg; 699 } 700 701 /* 702 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 703 * Copy packet contents and offload information into the new segmented mbuf. 704 */ 705 static struct rte_mbuf * 706 pkt_copy_split(const struct rte_mbuf *pkt) 707 { 708 int32_t n, rc; 709 uint32_t i, len, nb_seg; 710 struct rte_mempool *mp; 711 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 712 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 713 714 mp = current_fwd_lcore()->mbp; 715 716 if (tx_pkt_split == TX_PKT_SPLIT_RND) 717 nb_seg = rte_rand() % tx_pkt_nb_segs + 1; 718 else 719 nb_seg = tx_pkt_nb_segs; 720 721 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 722 723 /* calculate number of segments to use and their length. */ 724 len = 0; 725 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 726 len += seglen[i]; 727 md[i] = NULL; 728 } 729 730 n = pkt->pkt_len - len; 731 732 /* update size of the last segment to fit rest of the packet */ 733 if (n >= 0) { 734 seglen[i - 1] += n; 735 len += n; 736 } 737 738 nb_seg = i; 739 while (i != 0) { 740 p = rte_pktmbuf_alloc(mp); 741 if (p == NULL) { 742 TESTPMD_LOG(ERR, 743 "failed to allocate %u-th of %u mbuf " 744 "from mempool: %s\n", 745 nb_seg - i, nb_seg, mp->name); 746 break; 747 } 748 749 md[--i] = p; 750 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 751 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 752 "expected seglen: %u, " 753 "actual mbuf tailroom: %u\n", 754 mp->name, i, seglen[i], 755 rte_pktmbuf_tailroom(md[i])); 756 break; 757 } 758 } 759 760 /* all mbufs successfully allocated, do copy */ 761 if (i == 0) { 762 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 763 if (rc < 0) 764 TESTPMD_LOG(ERR, 765 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 766 "into %u segments failed with error code: %d\n", 767 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 768 769 /* figure out how many mbufs to free. */ 770 i = RTE_MAX(rc, 0); 771 } 772 773 /* free unused mbufs */ 774 for (; i != nb_seg; i++) { 775 rte_pktmbuf_free_seg(md[i]); 776 md[i] = NULL; 777 } 778 779 return md[0]; 780 } 781 782 /* 783 * Receive a burst of packets, and for each packet: 784 * - parse packet, and try to recognize a supported packet type (1) 785 * - if it's not a supported packet type, don't touch the packet, else: 786 * - reprocess the checksum of all supported layers. This is done in SW 787 * or HW, depending on testpmd command line configuration 788 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 789 * segmentation offload (this implies HW TCP checksum) 790 * Then transmit packets on the output port. 791 * 792 * (1) Supported packets are: 793 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 794 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 795 * UDP|TCP|SCTP 796 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 797 * UDP|TCP|SCTP 798 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 799 * UDP|TCP|SCTP 800 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP 801 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 802 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 803 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 804 * 805 * The testpmd command line for this forward engine sets the flags 806 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 807 * whether a checksum must be calculated in software or in hardware. The 808 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 809 * OUTER_IP is only useful for tunnel packets. 810 */ 811 static void 812 pkt_burst_checksum_forward(struct fwd_stream *fs) 813 { 814 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 815 #ifdef RTE_LIB_GSO 816 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 817 struct rte_gso_ctx *gso_ctx; 818 #endif 819 struct rte_mbuf **tx_pkts_burst; 820 struct rte_port *txp; 821 struct rte_mbuf *m, *p; 822 struct rte_ether_hdr *eth_hdr; 823 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 824 #ifdef RTE_LIB_GRO 825 void **gro_ctx; 826 uint16_t gro_pkts_num; 827 uint8_t gro_enable; 828 #endif 829 uint16_t nb_rx; 830 uint16_t nb_tx; 831 uint16_t nb_prep; 832 uint16_t i; 833 uint64_t rx_ol_flags, tx_ol_flags; 834 uint64_t tx_offloads; 835 uint32_t retry; 836 uint32_t rx_bad_ip_csum; 837 uint32_t rx_bad_l4_csum; 838 uint32_t rx_bad_outer_l4_csum; 839 uint32_t rx_bad_outer_ip_csum; 840 struct testpmd_offload_info info; 841 842 uint64_t start_tsc = 0; 843 844 get_start_cycles(&start_tsc); 845 846 /* receive a burst of packet */ 847 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 848 nb_pkt_per_burst); 849 inc_rx_burst_stats(fs, nb_rx); 850 if (unlikely(nb_rx == 0)) 851 return; 852 853 fs->rx_packets += nb_rx; 854 rx_bad_ip_csum = 0; 855 rx_bad_l4_csum = 0; 856 rx_bad_outer_l4_csum = 0; 857 rx_bad_outer_ip_csum = 0; 858 #ifdef RTE_LIB_GRO 859 gro_enable = gro_ports[fs->rx_port].enable; 860 #endif 861 862 txp = &ports[fs->tx_port]; 863 tx_offloads = txp->dev_conf.txmode.offloads; 864 memset(&info, 0, sizeof(info)); 865 info.tso_segsz = txp->tso_segsz; 866 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 867 #ifdef RTE_LIB_GSO 868 if (gso_ports[fs->tx_port].enable) 869 info.gso_enable = 1; 870 #endif 871 872 for (i = 0; i < nb_rx; i++) { 873 if (likely(i < nb_rx - 1)) 874 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 875 void *)); 876 877 m = pkts_burst[i]; 878 info.is_tunnel = 0; 879 info.pkt_len = rte_pktmbuf_pkt_len(m); 880 tx_ol_flags = m->ol_flags & 881 (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL); 882 rx_ol_flags = m->ol_flags; 883 884 /* Update the L3/L4 checksum error packet statistics */ 885 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD) 886 rx_bad_ip_csum += 1; 887 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD) 888 rx_bad_l4_csum += 1; 889 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD) 890 rx_bad_outer_l4_csum += 1; 891 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) 892 rx_bad_outer_ip_csum += 1; 893 894 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 895 * and inner headers */ 896 897 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 898 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 899 ð_hdr->dst_addr); 900 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, 901 ð_hdr->src_addr); 902 parse_ethernet(eth_hdr, &info); 903 l3_hdr = (char *)eth_hdr + info.l2_len; 904 905 /* check if it's a supported tunnel */ 906 if (txp->parse_tunnel) { 907 if (info.l4_proto == IPPROTO_UDP) { 908 struct rte_udp_hdr *udp_hdr; 909 910 udp_hdr = (struct rte_udp_hdr *) 911 ((char *)l3_hdr + info.l3_len); 912 parse_gtp(udp_hdr, &info); 913 if (info.is_tunnel) { 914 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP; 915 goto tunnel_update; 916 } 917 parse_vxlan_gpe(udp_hdr, &info); 918 if (info.is_tunnel) { 919 tx_ol_flags |= 920 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE; 921 goto tunnel_update; 922 } 923 parse_vxlan(udp_hdr, &info); 924 if (info.is_tunnel) { 925 tx_ol_flags |= 926 RTE_MBUF_F_TX_TUNNEL_VXLAN; 927 goto tunnel_update; 928 } 929 parse_geneve(udp_hdr, &info); 930 if (info.is_tunnel) { 931 tx_ol_flags |= 932 RTE_MBUF_F_TX_TUNNEL_GENEVE; 933 goto tunnel_update; 934 } 935 /* Always keep last. */ 936 if (unlikely(RTE_ETH_IS_TUNNEL_PKT( 937 m->packet_type) != 0)) { 938 TESTPMD_LOG(DEBUG, "Unknown tunnel packet. UDP dst port: %hu", 939 udp_hdr->dst_port); 940 } 941 } else if (info.l4_proto == IPPROTO_GRE) { 942 struct simple_gre_hdr *gre_hdr; 943 944 gre_hdr = (struct simple_gre_hdr *) 945 ((char *)l3_hdr + info.l3_len); 946 parse_gre(gre_hdr, &info); 947 if (info.is_tunnel) 948 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE; 949 } else if (info.l4_proto == IPPROTO_IPIP) { 950 void *encap_ip_hdr; 951 952 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 953 parse_encap_ip(encap_ip_hdr, &info); 954 if (info.is_tunnel) 955 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP; 956 } 957 } 958 959 tunnel_update: 960 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 961 if (info.is_tunnel) { 962 outer_l3_hdr = l3_hdr; 963 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 964 } 965 966 /* step 2: depending on user command line configuration, 967 * recompute checksum either in software or flag the 968 * mbuf to offload the calculation to the NIC. If TSO 969 * is configured, prepare the mbuf for TCP segmentation. */ 970 971 /* process checksums of inner headers first */ 972 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 973 tx_offloads, m); 974 975 /* Then process outer headers if any. Note that the software 976 * checksum will be wrong if one of the inner checksums is 977 * processed in hardware. */ 978 if (info.is_tunnel == 1) { 979 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 980 tx_offloads, 981 !!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG), 982 m); 983 } 984 985 /* step 3: fill the mbuf meta data (flags and header lengths) */ 986 987 m->tx_offload = 0; 988 if (info.is_tunnel == 1) { 989 if (info.tunnel_tso_segsz || 990 (tx_offloads & 991 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 992 (tx_offloads & 993 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) { 994 m->outer_l2_len = info.outer_l2_len; 995 m->outer_l3_len = info.outer_l3_len; 996 m->l2_len = info.l2_len; 997 m->l3_len = info.l3_len; 998 m->l4_len = info.l4_len; 999 m->tso_segsz = info.tunnel_tso_segsz; 1000 } 1001 else { 1002 /* if there is a outer UDP cksum 1003 processed in sw and the inner in hw, 1004 the outer checksum will be wrong as 1005 the payload will be modified by the 1006 hardware */ 1007 m->l2_len = info.outer_l2_len + 1008 info.outer_l3_len + info.l2_len; 1009 m->l3_len = info.l3_len; 1010 m->l4_len = info.l4_len; 1011 } 1012 } else { 1013 /* this is only useful if an offload flag is 1014 * set, but it does not hurt to fill it in any 1015 * case */ 1016 m->l2_len = info.l2_len; 1017 m->l3_len = info.l3_len; 1018 m->l4_len = info.l4_len; 1019 m->tso_segsz = info.tso_segsz; 1020 } 1021 m->ol_flags = tx_ol_flags; 1022 1023 /* Do split & copy for the packet. */ 1024 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 1025 p = pkt_copy_split(m); 1026 if (p != NULL) { 1027 rte_pktmbuf_free(m); 1028 m = p; 1029 pkts_burst[i] = m; 1030 } 1031 } 1032 1033 /* if verbose mode is enabled, dump debug info */ 1034 if (verbose_level > 0) { 1035 char buf[256]; 1036 1037 printf("-----------------\n"); 1038 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 1039 fs->rx_port, m, m->pkt_len, m->nb_segs); 1040 /* dump rx parsed packet info */ 1041 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 1042 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 1043 "l4_proto=%d l4_len=%d flags=%s\n", 1044 info.l2_len, rte_be_to_cpu_16(info.ethertype), 1045 info.l3_len, info.l4_proto, info.l4_len, buf); 1046 if (rx_ol_flags & RTE_MBUF_F_RX_LRO) 1047 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 1048 if (info.is_tunnel == 1) 1049 printf("rx: outer_l2_len=%d outer_ethertype=%x " 1050 "outer_l3_len=%d\n", info.outer_l2_len, 1051 rte_be_to_cpu_16(info.outer_ethertype), 1052 info.outer_l3_len); 1053 /* dump tx packet info */ 1054 if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 1055 RTE_ETH_TX_OFFLOAD_UDP_CKSUM | 1056 RTE_ETH_TX_OFFLOAD_TCP_CKSUM | 1057 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) || 1058 info.tso_segsz != 0) 1059 printf("tx: m->l2_len=%d m->l3_len=%d " 1060 "m->l4_len=%d\n", 1061 m->l2_len, m->l3_len, m->l4_len); 1062 if (info.is_tunnel == 1) { 1063 if ((tx_offloads & 1064 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1065 (tx_offloads & 1066 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) || 1067 (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)) 1068 printf("tx: m->outer_l2_len=%d " 1069 "m->outer_l3_len=%d\n", 1070 m->outer_l2_len, 1071 m->outer_l3_len); 1072 if (info.tunnel_tso_segsz != 0 && 1073 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1074 printf("tx: m->tso_segsz=%d\n", 1075 m->tso_segsz); 1076 } else if (info.tso_segsz != 0 && 1077 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1078 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 1079 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 1080 printf("tx: flags=%s", buf); 1081 printf("\n"); 1082 } 1083 } 1084 1085 #ifdef RTE_LIB_GRO 1086 if (unlikely(gro_enable)) { 1087 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 1088 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 1089 &(gro_ports[fs->rx_port].param)); 1090 } else { 1091 gro_ctx = current_fwd_lcore()->gro_ctx; 1092 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 1093 1094 if (++fs->gro_times >= gro_flush_cycles) { 1095 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 1096 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 1097 gro_pkts_num = MAX_PKT_BURST - nb_rx; 1098 1099 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 1100 RTE_GRO_TCP_IPV4, 1101 &pkts_burst[nb_rx], 1102 gro_pkts_num); 1103 fs->gro_times = 0; 1104 } 1105 } 1106 } 1107 #endif 1108 1109 #ifdef RTE_LIB_GSO 1110 if (gso_ports[fs->tx_port].enable != 0) { 1111 uint16_t nb_segments = 0; 1112 1113 gso_ctx = &(current_fwd_lcore()->gso_ctx); 1114 gso_ctx->gso_size = gso_max_segment_size; 1115 for (i = 0; i < nb_rx; i++) { 1116 int ret; 1117 1118 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 1119 &gso_segments[nb_segments], 1120 GSO_MAX_PKT_BURST - nb_segments); 1121 if (ret >= 1) { 1122 /* pkts_burst[i] can be freed safely here. */ 1123 rte_pktmbuf_free(pkts_burst[i]); 1124 nb_segments += ret; 1125 } else if (ret == 0) { 1126 /* 0 means it can be transmitted directly 1127 * without gso. 1128 */ 1129 gso_segments[nb_segments] = pkts_burst[i]; 1130 nb_segments += 1; 1131 } else { 1132 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 1133 rte_pktmbuf_free(pkts_burst[i]); 1134 } 1135 } 1136 1137 tx_pkts_burst = gso_segments; 1138 nb_rx = nb_segments; 1139 } else 1140 #endif 1141 tx_pkts_burst = pkts_burst; 1142 1143 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 1144 tx_pkts_burst, nb_rx); 1145 if (nb_prep != nb_rx) 1146 fprintf(stderr, 1147 "Preparing packet burst to transmit failed: %s\n", 1148 rte_strerror(rte_errno)); 1149 1150 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 1151 nb_prep); 1152 1153 /* 1154 * Retry if necessary 1155 */ 1156 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 1157 retry = 0; 1158 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 1159 rte_delay_us(burst_tx_delay_time); 1160 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 1161 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 1162 } 1163 } 1164 fs->tx_packets += nb_tx; 1165 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1166 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1167 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1168 fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; 1169 1170 inc_tx_burst_stats(fs, nb_tx); 1171 if (unlikely(nb_tx < nb_rx)) { 1172 fs->fwd_dropped += (nb_rx - nb_tx); 1173 do { 1174 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 1175 } while (++nb_tx < nb_rx); 1176 } 1177 1178 get_end_cycles(fs, start_tsc); 1179 } 1180 1181 struct fwd_engine csum_fwd_engine = { 1182 .fwd_mode_name = "csum", 1183 .port_fwd_begin = NULL, 1184 .port_fwd_end = NULL, 1185 .packet_fwd = pkt_burst_checksum_forward, 1186 }; 1187