xref: /dpdk/app/test-pmd/csumonly.c (revision 97b914f4e715565d53d38ac6e04815b9be5e58a9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_branch_prediction.h>
28 #include <rte_mempool.h>
29 #include <rte_mbuf.h>
30 #include <rte_interrupts.h>
31 #include <rte_pci.h>
32 #include <rte_ether.h>
33 #include <rte_ethdev.h>
34 #include <rte_ip.h>
35 #include <rte_tcp.h>
36 #include <rte_udp.h>
37 #include <rte_vxlan.h>
38 #include <rte_sctp.h>
39 #include <rte_gtp.h>
40 #include <rte_prefetch.h>
41 #include <rte_string_fns.h>
42 #include <rte_flow.h>
43 #ifdef RTE_LIB_GRO
44 #include <rte_gro.h>
45 #endif
46 #ifdef RTE_LIB_GSO
47 #include <rte_gso.h>
48 #endif
49 #include <rte_geneve.h>
50 
51 #include "testpmd.h"
52 
53 #define IP_DEFTTL  64   /* from RFC 1340. */
54 
55 #define GRE_CHECKSUM_PRESENT	0x8000
56 #define GRE_KEY_PRESENT		0x2000
57 #define GRE_SEQUENCE_PRESENT	0x1000
58 #define GRE_EXT_LEN		4
59 #define GRE_SUPPORTED_FIELDS	(GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
60 				 GRE_SEQUENCE_PRESENT)
61 
62 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
63 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
64 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
65 #else
66 #define _htons(x) (x)
67 #endif
68 
69 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT;
70 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT;
71 
72 /* structure that caches offload info for the current packet */
73 struct testpmd_offload_info {
74 	uint16_t ethertype;
75 #ifdef RTE_LIB_GSO
76 	uint8_t gso_enable;
77 #endif
78 	uint16_t l2_len;
79 	uint16_t l3_len;
80 	uint16_t l4_len;
81 	uint8_t l4_proto;
82 	uint8_t is_tunnel;
83 	uint16_t outer_ethertype;
84 	uint16_t outer_l2_len;
85 	uint16_t outer_l3_len;
86 	uint8_t outer_l4_proto;
87 	uint16_t tso_segsz;
88 	uint16_t tunnel_tso_segsz;
89 	uint32_t pkt_len;
90 };
91 
92 /* simplified GRE header */
93 struct simple_gre_hdr {
94 	uint16_t flags;
95 	uint16_t proto;
96 } __rte_packed;
97 
98 static uint16_t
99 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off,
100 		    uint16_t ethertype)
101 {
102 	if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
103 		return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off);
104 	else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
105 		return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off);
106 }
107 
108 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
109 static void
110 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
111 {
112 	struct rte_tcp_hdr *tcp_hdr;
113 
114 	info->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
115 	info->l4_proto = ipv4_hdr->next_proto_id;
116 
117 	/* only fill l4_len for TCP, it's useful for TSO */
118 	if (info->l4_proto == IPPROTO_TCP) {
119 		tcp_hdr = (struct rte_tcp_hdr *)
120 			((char *)ipv4_hdr + info->l3_len);
121 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
122 	} else if (info->l4_proto == IPPROTO_UDP)
123 		info->l4_len = sizeof(struct rte_udp_hdr);
124 	else
125 		info->l4_len = 0;
126 }
127 
128 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
129 static void
130 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
131 {
132 	struct rte_tcp_hdr *tcp_hdr;
133 
134 	info->l3_len = sizeof(struct rte_ipv6_hdr);
135 	info->l4_proto = ipv6_hdr->proto;
136 
137 	/* only fill l4_len for TCP, it's useful for TSO */
138 	if (info->l4_proto == IPPROTO_TCP) {
139 		tcp_hdr = (struct rte_tcp_hdr *)
140 			((char *)ipv6_hdr + info->l3_len);
141 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
142 	} else if (info->l4_proto == IPPROTO_UDP)
143 		info->l4_len = sizeof(struct rte_udp_hdr);
144 	else
145 		info->l4_len = 0;
146 }
147 
148 /*
149  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
150  * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
151  * headers. The l4_len argument is only set in case of TCP (useful for TSO).
152  */
153 static void
154 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
155 {
156 	struct rte_ipv4_hdr *ipv4_hdr;
157 	struct rte_ipv6_hdr *ipv6_hdr;
158 	struct rte_vlan_hdr *vlan_hdr;
159 
160 	info->l2_len = sizeof(struct rte_ether_hdr);
161 	info->ethertype = eth_hdr->ether_type;
162 
163 	while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
164 	       info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
165 		vlan_hdr = (struct rte_vlan_hdr *)
166 			((char *)eth_hdr + info->l2_len);
167 		info->l2_len  += sizeof(struct rte_vlan_hdr);
168 		info->ethertype = vlan_hdr->eth_proto;
169 	}
170 
171 	switch (info->ethertype) {
172 	case _htons(RTE_ETHER_TYPE_IPV4):
173 		ipv4_hdr = (struct rte_ipv4_hdr *)
174 			((char *)eth_hdr + info->l2_len);
175 		parse_ipv4(ipv4_hdr, info);
176 		break;
177 	case _htons(RTE_ETHER_TYPE_IPV6):
178 		ipv6_hdr = (struct rte_ipv6_hdr *)
179 			((char *)eth_hdr + info->l2_len);
180 		parse_ipv6(ipv6_hdr, info);
181 		break;
182 	default:
183 		info->l4_len = 0;
184 		info->l3_len = 0;
185 		info->l4_proto = 0;
186 		break;
187 	}
188 }
189 
190 /* Fill in outer layers length */
191 static void
192 update_tunnel_outer(struct testpmd_offload_info *info)
193 {
194 	info->is_tunnel = 1;
195 	info->outer_ethertype = info->ethertype;
196 	info->outer_l2_len = info->l2_len;
197 	info->outer_l3_len = info->l3_len;
198 	info->outer_l4_proto = info->l4_proto;
199 }
200 
201 /*
202  * Parse a GTP protocol header.
203  * No optional fields and next extension header type.
204  */
205 static void
206 parse_gtp(struct rte_udp_hdr *udp_hdr,
207 	  struct testpmd_offload_info *info)
208 {
209 	struct rte_ipv4_hdr *ipv4_hdr;
210 	struct rte_ipv6_hdr *ipv6_hdr;
211 	struct rte_gtp_hdr *gtp_hdr;
212 	uint8_t gtp_len = sizeof(*gtp_hdr);
213 	uint8_t ip_ver;
214 
215 	/* Check udp destination port. */
216 	if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
217 	    udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
218 	    udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
219 		return;
220 
221 	update_tunnel_outer(info);
222 	info->l2_len = 0;
223 
224 	gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
225 		  sizeof(struct rte_udp_hdr));
226 	if (gtp_hdr->e || gtp_hdr->s || gtp_hdr->pn)
227 		gtp_len += sizeof(struct rte_gtp_hdr_ext_word);
228 	/*
229 	 * Check message type. If message type is 0xff, it is
230 	 * a GTP data packet. If not, it is a GTP control packet
231 	 */
232 	if (gtp_hdr->msg_type == 0xff) {
233 		ip_ver = *(uint8_t *)((char *)gtp_hdr + gtp_len);
234 		ip_ver = (ip_ver) & 0xf0;
235 
236 		if (ip_ver == RTE_GTP_TYPE_IPV4) {
237 			ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
238 				   gtp_len);
239 			info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
240 			parse_ipv4(ipv4_hdr, info);
241 		} else if (ip_ver == RTE_GTP_TYPE_IPV6) {
242 			ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
243 				   gtp_len);
244 			info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
245 			parse_ipv6(ipv6_hdr, info);
246 		}
247 	} else {
248 		info->ethertype = 0;
249 		info->l4_len = 0;
250 		info->l3_len = 0;
251 		info->l4_proto = 0;
252 	}
253 
254 	info->l2_len += RTE_ETHER_GTP_HLEN;
255 }
256 
257 /* Parse a vxlan header */
258 static void
259 parse_vxlan(struct rte_udp_hdr *udp_hdr,
260 	    struct testpmd_offload_info *info)
261 {
262 	struct rte_ether_hdr *eth_hdr;
263 
264 	/* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the
265 	 * default vxlan port (rfc7348) or that the rx offload flag is set
266 	 * (i40e only currently)
267 	 */
268 	if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT))
269 		return;
270 
271 	update_tunnel_outer(info);
272 
273 	eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
274 		sizeof(struct rte_udp_hdr) +
275 		sizeof(struct rte_vxlan_hdr));
276 
277 	parse_ethernet(eth_hdr, info);
278 	info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
279 }
280 
281 /* Parse a vxlan-gpe header */
282 static void
283 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
284 	    struct testpmd_offload_info *info)
285 {
286 	struct rte_ether_hdr *eth_hdr;
287 	struct rte_ipv4_hdr *ipv4_hdr;
288 	struct rte_ipv6_hdr *ipv6_hdr;
289 	struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
290 	uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
291 
292 	/* Check udp destination port. */
293 	if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
294 		return;
295 
296 	vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
297 				sizeof(struct rte_udp_hdr));
298 
299 	if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
300 	    RTE_VXLAN_GPE_TYPE_IPV4) {
301 		update_tunnel_outer(info);
302 
303 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
304 			   vxlan_gpe_len);
305 
306 		parse_ipv4(ipv4_hdr, info);
307 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
308 		info->l2_len = 0;
309 
310 	} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
311 		update_tunnel_outer(info);
312 
313 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
314 			   vxlan_gpe_len);
315 
316 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
317 		parse_ipv6(ipv6_hdr, info);
318 		info->l2_len = 0;
319 
320 	} else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
321 		update_tunnel_outer(info);
322 
323 		eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
324 			  vxlan_gpe_len);
325 
326 		parse_ethernet(eth_hdr, info);
327 	} else
328 		return;
329 
330 	info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
331 }
332 
333 /* Parse a geneve header */
334 static void
335 parse_geneve(struct rte_udp_hdr *udp_hdr,
336 	    struct testpmd_offload_info *info)
337 {
338 	struct rte_ether_hdr *eth_hdr;
339 	struct rte_ipv4_hdr *ipv4_hdr;
340 	struct rte_ipv6_hdr *ipv6_hdr;
341 	struct rte_geneve_hdr *geneve_hdr;
342 	uint16_t geneve_len;
343 
344 	/* Check udp destination port. */
345 	if (udp_hdr->dst_port != _htons(geneve_udp_port))
346 		return;
347 
348 	geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr +
349 				sizeof(struct rte_udp_hdr));
350 	geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4;
351 	if (!geneve_hdr->proto || geneve_hdr->proto ==
352 	    _htons(RTE_ETHER_TYPE_IPV4)) {
353 		update_tunnel_outer(info);
354 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr +
355 			   geneve_len);
356 		parse_ipv4(ipv4_hdr, info);
357 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
358 		info->l2_len = 0;
359 	} else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
360 		update_tunnel_outer(info);
361 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr +
362 			   geneve_len);
363 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
364 		parse_ipv6(ipv6_hdr, info);
365 		info->l2_len = 0;
366 
367 	} else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) {
368 		update_tunnel_outer(info);
369 		eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr +
370 			  geneve_len);
371 		parse_ethernet(eth_hdr, info);
372 	} else
373 		return;
374 
375 	info->l2_len +=
376 		(sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) +
377 		((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4);
378 }
379 
380 /* Parse a gre header */
381 static void
382 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
383 {
384 	struct rte_ether_hdr *eth_hdr;
385 	struct rte_ipv4_hdr *ipv4_hdr;
386 	struct rte_ipv6_hdr *ipv6_hdr;
387 	uint8_t gre_len = 0;
388 
389 	gre_len += sizeof(struct simple_gre_hdr);
390 
391 	if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
392 		gre_len += GRE_EXT_LEN;
393 	if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
394 		gre_len += GRE_EXT_LEN;
395 	if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
396 		gre_len += GRE_EXT_LEN;
397 
398 	if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
399 		update_tunnel_outer(info);
400 
401 		ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
402 
403 		parse_ipv4(ipv4_hdr, info);
404 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
405 		info->l2_len = 0;
406 
407 	} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
408 		update_tunnel_outer(info);
409 
410 		ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
411 
412 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
413 		parse_ipv6(ipv6_hdr, info);
414 		info->l2_len = 0;
415 
416 	} else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
417 		update_tunnel_outer(info);
418 
419 		eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
420 
421 		parse_ethernet(eth_hdr, info);
422 	} else
423 		return;
424 
425 	info->l2_len += gre_len;
426 }
427 
428 
429 /* Parse an encapsulated ip or ipv6 header */
430 static void
431 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
432 {
433 	struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
434 	struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
435 	uint8_t ip_version;
436 
437 	ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
438 
439 	if (ip_version != 4 && ip_version != 6)
440 		return;
441 
442 	info->is_tunnel = 1;
443 	info->outer_ethertype = info->ethertype;
444 	info->outer_l2_len = info->l2_len;
445 	info->outer_l3_len = info->l3_len;
446 
447 	if (ip_version == 4) {
448 		parse_ipv4(ipv4_hdr, info);
449 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
450 	} else {
451 		parse_ipv6(ipv6_hdr, info);
452 		info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
453 	}
454 	info->l2_len = 0;
455 }
456 
457 /* if possible, calculate the checksum of a packet in hw or sw,
458  * depending on the testpmd command line configuration */
459 static uint64_t
460 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
461 	uint64_t tx_offloads, struct rte_mbuf *m)
462 {
463 	struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
464 	struct rte_udp_hdr *udp_hdr;
465 	struct rte_tcp_hdr *tcp_hdr;
466 	struct rte_sctp_hdr *sctp_hdr;
467 	uint64_t ol_flags = 0;
468 	uint32_t max_pkt_len, tso_segsz = 0;
469 	uint16_t l4_off;
470 
471 	/* ensure packet is large enough to require tso */
472 	if (!info->is_tunnel) {
473 		max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
474 			info->tso_segsz;
475 		if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
476 			tso_segsz = info->tso_segsz;
477 	} else {
478 		max_pkt_len = info->outer_l2_len + info->outer_l3_len +
479 			info->l2_len + info->l3_len + info->l4_len +
480 			info->tunnel_tso_segsz;
481 		if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
482 			tso_segsz = info->tunnel_tso_segsz;
483 	}
484 
485 	if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
486 		ipv4_hdr = l3_hdr;
487 
488 		ol_flags |= RTE_MBUF_F_TX_IPV4;
489 		if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
490 			ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
491 		} else {
492 			if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) {
493 				ol_flags |= RTE_MBUF_F_TX_IP_CKSUM;
494 			} else {
495 				ipv4_hdr->hdr_checksum = 0;
496 				ipv4_hdr->hdr_checksum =
497 					rte_ipv4_cksum(ipv4_hdr);
498 			}
499 		}
500 	} else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
501 		ol_flags |= RTE_MBUF_F_TX_IPV6;
502 	else
503 		return 0; /* packet type not supported, nothing to do */
504 
505 	if (info->l4_proto == IPPROTO_UDP) {
506 		udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
507 		/* do not recalculate udp cksum if it was 0 */
508 		if (udp_hdr->dgram_cksum != 0) {
509 			if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) {
510 				ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM;
511 			} else {
512 				if (info->is_tunnel)
513 					l4_off = info->outer_l2_len +
514 						 info->outer_l3_len +
515 						 info->l2_len + info->l3_len;
516 				else
517 					l4_off = info->l2_len +	info->l3_len;
518 				udp_hdr->dgram_cksum = 0;
519 				udp_hdr->dgram_cksum =
520 					get_udptcp_checksum(m, l3_hdr, l4_off,
521 						info->ethertype);
522 			}
523 		}
524 #ifdef RTE_LIB_GSO
525 		if (info->gso_enable)
526 			ol_flags |= RTE_MBUF_F_TX_UDP_SEG;
527 #endif
528 	} else if (info->l4_proto == IPPROTO_TCP) {
529 		tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
530 		if (tso_segsz)
531 			ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
532 		else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) {
533 			ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
534 		} else {
535 			if (info->is_tunnel)
536 				l4_off = info->outer_l2_len + info->outer_l3_len +
537 					 info->l2_len + info->l3_len;
538 			else
539 				l4_off = info->l2_len + info->l3_len;
540 			tcp_hdr->cksum = 0;
541 			tcp_hdr->cksum =
542 				get_udptcp_checksum(m, l3_hdr, l4_off,
543 					info->ethertype);
544 		}
545 #ifdef RTE_LIB_GSO
546 		if (info->gso_enable)
547 			ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
548 #endif
549 	} else if (info->l4_proto == IPPROTO_SCTP) {
550 		sctp_hdr = (struct rte_sctp_hdr *)
551 			((char *)l3_hdr + info->l3_len);
552 		/* sctp payload must be a multiple of 4 to be
553 		 * offloaded */
554 		if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) &&
555 			((ipv4_hdr->total_length & 0x3) == 0)) {
556 			ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM;
557 		} else {
558 			sctp_hdr->cksum = 0;
559 			/* XXX implement CRC32c, example available in
560 			 * RFC3309 */
561 		}
562 	}
563 
564 	return ol_flags;
565 }
566 
567 /* Calculate the checksum of outer header */
568 static uint64_t
569 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
570 	uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m)
571 {
572 	struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
573 	struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
574 	struct rte_udp_hdr *udp_hdr;
575 	uint64_t ol_flags = 0;
576 
577 	if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
578 		ipv4_hdr->hdr_checksum = 0;
579 		ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4;
580 
581 		if (tx_offloads	& RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM)
582 			ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM;
583 		else
584 			ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
585 	} else
586 		ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6;
587 
588 	if (info->outer_l4_proto != IPPROTO_UDP)
589 		return ol_flags;
590 
591 	udp_hdr = (struct rte_udp_hdr *)
592 		((char *)outer_l3_hdr + info->outer_l3_len);
593 
594 	if (tso_enabled)
595 		ol_flags |= RTE_MBUF_F_TX_TCP_SEG;
596 
597 	/* Skip SW outer UDP checksum generation if HW supports it */
598 	if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) {
599 		if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
600 			udp_hdr->dgram_cksum
601 				= rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
602 		else
603 			udp_hdr->dgram_cksum
604 				= rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
605 
606 		ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM;
607 		return ol_flags;
608 	}
609 
610 	/* outer UDP checksum is done in software. In the other side, for
611 	 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
612 	 * set to zero.
613 	 *
614 	 * If a packet will be TSOed into small packets by NIC, we cannot
615 	 * set/calculate a non-zero checksum, because it will be a wrong
616 	 * value after the packet be split into several small packets.
617 	 */
618 	if (tso_enabled)
619 		udp_hdr->dgram_cksum = 0;
620 
621 	/* do not recalculate udp cksum if it was 0 */
622 	if (udp_hdr->dgram_cksum != 0) {
623 		udp_hdr->dgram_cksum = 0;
624 		udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr,
625 					info->outer_l2_len + info->outer_l3_len,
626 					info->outer_ethertype);
627 	}
628 
629 	return ol_flags;
630 }
631 
632 /*
633  * Helper function.
634  * Performs actual copying.
635  * Returns number of segments in the destination mbuf on success,
636  * or negative error code on failure.
637  */
638 static int
639 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
640 	uint16_t seglen[], uint8_t nb_seg)
641 {
642 	uint32_t dlen, slen, tlen;
643 	uint32_t i, len;
644 	const struct rte_mbuf *m;
645 	const uint8_t *src;
646 	uint8_t *dst;
647 
648 	dlen = 0;
649 	slen = 0;
650 	tlen = 0;
651 
652 	dst = NULL;
653 	src = NULL;
654 
655 	m = ms;
656 	i = 0;
657 	while (ms != NULL && i != nb_seg) {
658 
659 		if (slen == 0) {
660 			slen = rte_pktmbuf_data_len(ms);
661 			src = rte_pktmbuf_mtod(ms, const uint8_t *);
662 		}
663 
664 		if (dlen == 0) {
665 			dlen = RTE_MIN(seglen[i], slen);
666 			md[i]->data_len = dlen;
667 			md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
668 			dst = rte_pktmbuf_mtod(md[i], uint8_t *);
669 		}
670 
671 		len = RTE_MIN(slen, dlen);
672 		memcpy(dst, src, len);
673 		tlen += len;
674 		slen -= len;
675 		dlen -= len;
676 		src += len;
677 		dst += len;
678 
679 		if (slen == 0)
680 			ms = ms->next;
681 		if (dlen == 0)
682 			i++;
683 	}
684 
685 	if (ms != NULL)
686 		return -ENOBUFS;
687 	else if (tlen != m->pkt_len)
688 		return -EINVAL;
689 
690 	md[0]->nb_segs = nb_seg;
691 	md[0]->pkt_len = tlen;
692 	md[0]->vlan_tci = m->vlan_tci;
693 	md[0]->vlan_tci_outer = m->vlan_tci_outer;
694 	md[0]->ol_flags = m->ol_flags;
695 	md[0]->tx_offload = m->tx_offload;
696 
697 	return nb_seg;
698 }
699 
700 /*
701  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
702  * Copy packet contents and offload information into the new segmented mbuf.
703  */
704 static struct rte_mbuf *
705 pkt_copy_split(const struct rte_mbuf *pkt)
706 {
707 	int32_t n, rc;
708 	uint32_t i, len, nb_seg;
709 	struct rte_mempool *mp;
710 	uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
711 	struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
712 
713 	mp = current_fwd_lcore()->mbp;
714 
715 	if (tx_pkt_split == TX_PKT_SPLIT_RND)
716 		nb_seg = rte_rand() % tx_pkt_nb_segs + 1;
717 	else
718 		nb_seg = tx_pkt_nb_segs;
719 
720 	memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
721 
722 	/* calculate number of segments to use and their length. */
723 	len = 0;
724 	for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
725 		len += seglen[i];
726 		md[i] = NULL;
727 	}
728 
729 	n = pkt->pkt_len - len;
730 
731 	/* update size of the last segment to fit rest of the packet */
732 	if (n >= 0) {
733 		seglen[i - 1] += n;
734 		len += n;
735 	}
736 
737 	nb_seg = i;
738 	while (i != 0) {
739 		p = rte_pktmbuf_alloc(mp);
740 		if (p == NULL) {
741 			TESTPMD_LOG(ERR,
742 				"failed to allocate %u-th of %u mbuf "
743 				"from mempool: %s\n",
744 				nb_seg - i, nb_seg, mp->name);
745 			break;
746 		}
747 
748 		md[--i] = p;
749 		if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
750 			TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
751 				"expected seglen: %u, "
752 				"actual mbuf tailroom: %u\n",
753 				mp->name, i, seglen[i],
754 				rte_pktmbuf_tailroom(md[i]));
755 			break;
756 		}
757 	}
758 
759 	/* all mbufs successfully allocated, do copy */
760 	if (i == 0) {
761 		rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
762 		if (rc < 0)
763 			TESTPMD_LOG(ERR,
764 				"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
765 				"into %u segments failed with error code: %d\n",
766 				pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
767 
768 		/* figure out how many mbufs to free. */
769 		i = RTE_MAX(rc, 0);
770 	}
771 
772 	/* free unused mbufs */
773 	for (; i != nb_seg; i++) {
774 		rte_pktmbuf_free_seg(md[i]);
775 		md[i] = NULL;
776 	}
777 
778 	return md[0];
779 }
780 
781 /*
782  * Receive a burst of packets, and for each packet:
783  *  - parse packet, and try to recognize a supported packet type (1)
784  *  - if it's not a supported packet type, don't touch the packet, else:
785  *  - reprocess the checksum of all supported layers. This is done in SW
786  *    or HW, depending on testpmd command line configuration
787  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
788  *    segmentation offload (this implies HW TCP checksum)
789  * Then transmit packets on the output port.
790  *
791  * (1) Supported packets are:
792  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
793  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
794  *           UDP|TCP|SCTP
795  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
796  *           UDP|TCP|SCTP
797  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
798  *           UDP|TCP|SCTP
799  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
800  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
801  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
802  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
803  *
804  * The testpmd command line for this forward engine sets the flags
805  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
806  * whether a checksum must be calculated in software or in hardware. The
807  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
808  * OUTER_IP is only useful for tunnel packets.
809  */
810 static void
811 pkt_burst_checksum_forward(struct fwd_stream *fs)
812 {
813 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
814 #ifdef RTE_LIB_GSO
815 	struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
816 	struct rte_gso_ctx *gso_ctx;
817 #endif
818 	struct rte_mbuf **tx_pkts_burst;
819 	struct rte_port *txp;
820 	struct rte_mbuf *m, *p;
821 	struct rte_ether_hdr *eth_hdr;
822 	void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
823 #ifdef RTE_LIB_GRO
824 	void **gro_ctx;
825 	uint16_t gro_pkts_num;
826 	uint8_t gro_enable;
827 #endif
828 	uint16_t nb_rx;
829 	uint16_t nb_tx;
830 	uint16_t nb_prep;
831 	uint16_t i;
832 	uint64_t rx_ol_flags, tx_ol_flags;
833 	uint64_t tx_offloads;
834 	uint32_t retry;
835 	uint32_t rx_bad_ip_csum;
836 	uint32_t rx_bad_l4_csum;
837 	uint32_t rx_bad_outer_l4_csum;
838 	uint32_t rx_bad_outer_ip_csum;
839 	struct testpmd_offload_info info;
840 
841 	uint64_t start_tsc = 0;
842 
843 	get_start_cycles(&start_tsc);
844 
845 	/* receive a burst of packet */
846 	nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
847 				 nb_pkt_per_burst);
848 	inc_rx_burst_stats(fs, nb_rx);
849 	if (unlikely(nb_rx == 0))
850 		return;
851 
852 	fs->rx_packets += nb_rx;
853 	rx_bad_ip_csum = 0;
854 	rx_bad_l4_csum = 0;
855 	rx_bad_outer_l4_csum = 0;
856 	rx_bad_outer_ip_csum = 0;
857 #ifdef RTE_LIB_GRO
858 	gro_enable = gro_ports[fs->rx_port].enable;
859 #endif
860 
861 	txp = &ports[fs->tx_port];
862 	tx_offloads = txp->dev_conf.txmode.offloads;
863 	memset(&info, 0, sizeof(info));
864 	info.tso_segsz = txp->tso_segsz;
865 	info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
866 #ifdef RTE_LIB_GSO
867 	if (gso_ports[fs->tx_port].enable)
868 		info.gso_enable = 1;
869 #endif
870 
871 	for (i = 0; i < nb_rx; i++) {
872 		if (likely(i < nb_rx - 1))
873 			rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
874 						       void *));
875 
876 		m = pkts_burst[i];
877 		info.is_tunnel = 0;
878 		info.pkt_len = rte_pktmbuf_pkt_len(m);
879 		tx_ol_flags = m->ol_flags &
880 			      (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL);
881 		rx_ol_flags = m->ol_flags;
882 
883 		/* Update the L3/L4 checksum error packet statistics */
884 		if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD)
885 			rx_bad_ip_csum += 1;
886 		if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD)
887 			rx_bad_l4_csum += 1;
888 		if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD)
889 			rx_bad_outer_l4_csum += 1;
890 		if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD)
891 			rx_bad_outer_ip_csum += 1;
892 
893 		/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
894 		 * and inner headers */
895 
896 		eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
897 		rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
898 				&eth_hdr->dst_addr);
899 		rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
900 				&eth_hdr->src_addr);
901 		parse_ethernet(eth_hdr, &info);
902 		l3_hdr = (char *)eth_hdr + info.l2_len;
903 
904 		/* check if it's a supported tunnel */
905 		if (txp->parse_tunnel) {
906 			if (info.l4_proto == IPPROTO_UDP) {
907 				struct rte_udp_hdr *udp_hdr;
908 
909 				udp_hdr = (struct rte_udp_hdr *)
910 					((char *)l3_hdr + info.l3_len);
911 				parse_gtp(udp_hdr, &info);
912 				if (info.is_tunnel) {
913 					tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP;
914 					goto tunnel_update;
915 				}
916 				parse_vxlan_gpe(udp_hdr, &info);
917 				if (info.is_tunnel) {
918 					tx_ol_flags |=
919 						RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE;
920 					goto tunnel_update;
921 				}
922 				parse_vxlan(udp_hdr, &info);
923 				if (info.is_tunnel) {
924 					tx_ol_flags |=
925 						RTE_MBUF_F_TX_TUNNEL_VXLAN;
926 					goto tunnel_update;
927 				}
928 				parse_geneve(udp_hdr, &info);
929 				if (info.is_tunnel) {
930 					tx_ol_flags |=
931 						RTE_MBUF_F_TX_TUNNEL_GENEVE;
932 					goto tunnel_update;
933 				}
934 				/* Always keep last. */
935 				if (unlikely(RTE_ETH_IS_TUNNEL_PKT(
936 							m->packet_type) != 0)) {
937 					TESTPMD_LOG(DEBUG, "Unknown tunnel packet. UDP dst port: %hu",
938 						udp_hdr->dst_port);
939 				}
940 			} else if (info.l4_proto == IPPROTO_GRE) {
941 				struct simple_gre_hdr *gre_hdr;
942 
943 				gre_hdr = (struct simple_gre_hdr *)
944 					((char *)l3_hdr + info.l3_len);
945 				parse_gre(gre_hdr, &info);
946 				if (info.is_tunnel)
947 					tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE;
948 			} else if (info.l4_proto == IPPROTO_IPIP) {
949 				void *encap_ip_hdr;
950 
951 				encap_ip_hdr = (char *)l3_hdr + info.l3_len;
952 				parse_encap_ip(encap_ip_hdr, &info);
953 				if (info.is_tunnel)
954 					tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP;
955 			}
956 		}
957 
958 tunnel_update:
959 		/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
960 		if (info.is_tunnel) {
961 			outer_l3_hdr = l3_hdr;
962 			l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
963 		}
964 
965 		/* step 2: depending on user command line configuration,
966 		 * recompute checksum either in software or flag the
967 		 * mbuf to offload the calculation to the NIC. If TSO
968 		 * is configured, prepare the mbuf for TCP segmentation. */
969 
970 		/* process checksums of inner headers first */
971 		tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
972 			tx_offloads, m);
973 
974 		/* Then process outer headers if any. Note that the software
975 		 * checksum will be wrong if one of the inner checksums is
976 		 * processed in hardware. */
977 		if (info.is_tunnel == 1) {
978 			tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
979 					tx_offloads,
980 					!!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG),
981 					m);
982 		}
983 
984 		/* step 3: fill the mbuf meta data (flags and header lengths) */
985 
986 		m->tx_offload = 0;
987 		if (info.is_tunnel == 1) {
988 			if (info.tunnel_tso_segsz ||
989 			    (tx_offloads &
990 			     RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
991 			    (tx_offloads &
992 			     RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) {
993 				m->outer_l2_len = info.outer_l2_len;
994 				m->outer_l3_len = info.outer_l3_len;
995 				m->l2_len = info.l2_len;
996 				m->l3_len = info.l3_len;
997 				m->l4_len = info.l4_len;
998 				m->tso_segsz = info.tunnel_tso_segsz;
999 			}
1000 			else {
1001 				/* if there is a outer UDP cksum
1002 				   processed in sw and the inner in hw,
1003 				   the outer checksum will be wrong as
1004 				   the payload will be modified by the
1005 				   hardware */
1006 				m->l2_len = info.outer_l2_len +
1007 					info.outer_l3_len + info.l2_len;
1008 				m->l3_len = info.l3_len;
1009 				m->l4_len = info.l4_len;
1010 			}
1011 		} else {
1012 			/* this is only useful if an offload flag is
1013 			 * set, but it does not hurt to fill it in any
1014 			 * case */
1015 			m->l2_len = info.l2_len;
1016 			m->l3_len = info.l3_len;
1017 			m->l4_len = info.l4_len;
1018 			m->tso_segsz = info.tso_segsz;
1019 		}
1020 		m->ol_flags = tx_ol_flags;
1021 
1022 		/* Do split & copy for the packet. */
1023 		if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
1024 			p = pkt_copy_split(m);
1025 			if (p != NULL) {
1026 				rte_pktmbuf_free(m);
1027 				m = p;
1028 				pkts_burst[i] = m;
1029 			}
1030 		}
1031 
1032 		/* if verbose mode is enabled, dump debug info */
1033 		if (verbose_level > 0) {
1034 			char buf[256];
1035 
1036 			printf("-----------------\n");
1037 			printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
1038 				fs->rx_port, m, m->pkt_len, m->nb_segs);
1039 			/* dump rx parsed packet info */
1040 			rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
1041 			printf("rx: l2_len=%d ethertype=%x l3_len=%d "
1042 				"l4_proto=%d l4_len=%d flags=%s\n",
1043 				info.l2_len, rte_be_to_cpu_16(info.ethertype),
1044 				info.l3_len, info.l4_proto, info.l4_len, buf);
1045 			if (rx_ol_flags & RTE_MBUF_F_RX_LRO)
1046 				printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
1047 			if (info.is_tunnel == 1)
1048 				printf("rx: outer_l2_len=%d outer_ethertype=%x "
1049 					"outer_l3_len=%d\n", info.outer_l2_len,
1050 					rte_be_to_cpu_16(info.outer_ethertype),
1051 					info.outer_l3_len);
1052 			/* dump tx packet info */
1053 			if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1054 					    RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1055 					    RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
1056 					    RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) ||
1057 				info.tso_segsz != 0)
1058 				printf("tx: m->l2_len=%d m->l3_len=%d "
1059 					"m->l4_len=%d\n",
1060 					m->l2_len, m->l3_len, m->l4_len);
1061 			if (info.is_tunnel == 1) {
1062 				if ((tx_offloads &
1063 				    RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1064 				    (tx_offloads &
1065 				    RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1066 				    (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6))
1067 					printf("tx: m->outer_l2_len=%d "
1068 						"m->outer_l3_len=%d\n",
1069 						m->outer_l2_len,
1070 						m->outer_l3_len);
1071 				if (info.tunnel_tso_segsz != 0 &&
1072 						(m->ol_flags & RTE_MBUF_F_TX_TCP_SEG))
1073 					printf("tx: m->tso_segsz=%d\n",
1074 						m->tso_segsz);
1075 			} else if (info.tso_segsz != 0 &&
1076 					(m->ol_flags & RTE_MBUF_F_TX_TCP_SEG))
1077 				printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1078 			rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1079 			printf("tx: flags=%s", buf);
1080 			printf("\n");
1081 		}
1082 	}
1083 
1084 #ifdef RTE_LIB_GRO
1085 	if (unlikely(gro_enable)) {
1086 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1087 			nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1088 					&(gro_ports[fs->rx_port].param));
1089 		} else {
1090 			gro_ctx = current_fwd_lcore()->gro_ctx;
1091 			nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1092 
1093 			if (++fs->gro_times >= gro_flush_cycles) {
1094 				gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1095 				if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1096 					gro_pkts_num = MAX_PKT_BURST - nb_rx;
1097 
1098 				nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1099 						RTE_GRO_TCP_IPV4,
1100 						&pkts_burst[nb_rx],
1101 						gro_pkts_num);
1102 				fs->gro_times = 0;
1103 			}
1104 		}
1105 	}
1106 #endif
1107 
1108 #ifdef RTE_LIB_GSO
1109 	if (gso_ports[fs->tx_port].enable != 0) {
1110 		uint16_t nb_segments = 0;
1111 
1112 		gso_ctx = &(current_fwd_lcore()->gso_ctx);
1113 		gso_ctx->gso_size = gso_max_segment_size;
1114 		for (i = 0; i < nb_rx; i++) {
1115 			int ret;
1116 
1117 			ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1118 					&gso_segments[nb_segments],
1119 					GSO_MAX_PKT_BURST - nb_segments);
1120 			if (ret >= 1) {
1121 				/* pkts_burst[i] can be freed safely here. */
1122 				rte_pktmbuf_free(pkts_burst[i]);
1123 				nb_segments += ret;
1124 			} else if (ret == 0) {
1125 				/* 0 means it can be transmitted directly
1126 				 * without gso.
1127 				 */
1128 				gso_segments[nb_segments] = pkts_burst[i];
1129 				nb_segments += 1;
1130 			} else {
1131 				TESTPMD_LOG(DEBUG, "Unable to segment packet");
1132 				rte_pktmbuf_free(pkts_burst[i]);
1133 			}
1134 		}
1135 
1136 		tx_pkts_burst = gso_segments;
1137 		nb_rx = nb_segments;
1138 	} else
1139 #endif
1140 		tx_pkts_burst = pkts_burst;
1141 
1142 	nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1143 			tx_pkts_burst, nb_rx);
1144 	if (nb_prep != nb_rx)
1145 		fprintf(stderr,
1146 			"Preparing packet burst to transmit failed: %s\n",
1147 			rte_strerror(rte_errno));
1148 
1149 	nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1150 			nb_prep);
1151 
1152 	/*
1153 	 * Retry if necessary
1154 	 */
1155 	if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1156 		retry = 0;
1157 		while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1158 			rte_delay_us(burst_tx_delay_time);
1159 			nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1160 					&tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1161 		}
1162 	}
1163 	fs->tx_packets += nb_tx;
1164 	fs->rx_bad_ip_csum += rx_bad_ip_csum;
1165 	fs->rx_bad_l4_csum += rx_bad_l4_csum;
1166 	fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1167 	fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum;
1168 
1169 	inc_tx_burst_stats(fs, nb_tx);
1170 	if (unlikely(nb_tx < nb_rx)) {
1171 		fs->fwd_dropped += (nb_rx - nb_tx);
1172 		do {
1173 			rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1174 		} while (++nb_tx < nb_rx);
1175 	}
1176 
1177 	get_end_cycles(fs, start_tsc);
1178 }
1179 
1180 struct fwd_engine csum_fwd_engine = {
1181 	.fwd_mode_name  = "csum",
1182 	.port_fwd_begin = NULL,
1183 	.port_fwd_end   = NULL,
1184 	.packet_fwd     = pkt_burst_checksum_forward,
1185 };
1186