1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_branch_prediction.h> 28 #include <rte_mempool.h> 29 #include <rte_mbuf.h> 30 #include <rte_interrupts.h> 31 #include <rte_ether.h> 32 #include <rte_ethdev.h> 33 #include <rte_ip.h> 34 #include <rte_tcp.h> 35 #include <rte_udp.h> 36 #include <rte_vxlan.h> 37 #include <rte_sctp.h> 38 #include <rte_gtp.h> 39 #include <rte_prefetch.h> 40 #include <rte_string_fns.h> 41 #include <rte_flow.h> 42 #ifdef RTE_LIB_GRO 43 #include <rte_gro.h> 44 #endif 45 #ifdef RTE_LIB_GSO 46 #include <rte_gso.h> 47 #endif 48 #include <rte_geneve.h> 49 50 #include "testpmd.h" 51 52 #define IP_DEFTTL 64 /* from RFC 1340. */ 53 54 #define GRE_CHECKSUM_PRESENT 0x8000 55 #define GRE_KEY_PRESENT 0x2000 56 #define GRE_SEQUENCE_PRESENT 0x1000 57 #define GRE_EXT_LEN 4 58 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 59 GRE_SEQUENCE_PRESENT) 60 61 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 62 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 63 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 64 #else 65 #define _htons(x) (x) 66 #endif 67 68 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; 69 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; 70 71 /* structure that caches offload info for the current packet */ 72 struct testpmd_offload_info { 73 uint16_t ethertype; 74 #ifdef RTE_LIB_GSO 75 uint8_t gso_enable; 76 #endif 77 uint16_t l2_len; 78 uint16_t l3_len; 79 uint16_t l4_len; 80 uint8_t l4_proto; 81 uint8_t is_tunnel; 82 uint16_t outer_ethertype; 83 uint16_t outer_l2_len; 84 uint16_t outer_l3_len; 85 uint8_t outer_l4_proto; 86 uint16_t tso_segsz; 87 uint16_t tunnel_tso_segsz; 88 uint32_t pkt_len; 89 }; 90 91 /* simplified GRE header */ 92 struct simple_gre_hdr { 93 uint16_t flags; 94 uint16_t proto; 95 } __rte_packed; 96 97 static uint16_t 98 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off, 99 uint16_t ethertype) 100 { 101 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 102 return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 103 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ 104 return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 105 } 106 107 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 108 static void 109 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 110 { 111 struct rte_tcp_hdr *tcp_hdr; 112 113 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); 114 info->l4_proto = ipv4_hdr->next_proto_id; 115 116 /* only fill l4_len for TCP, it's useful for TSO */ 117 if (info->l4_proto == IPPROTO_TCP) { 118 tcp_hdr = (struct rte_tcp_hdr *) 119 ((char *)ipv4_hdr + info->l3_len); 120 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 121 } else if (info->l4_proto == IPPROTO_UDP) 122 info->l4_len = sizeof(struct rte_udp_hdr); 123 else 124 info->l4_len = 0; 125 } 126 127 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 128 static void 129 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 130 { 131 struct rte_tcp_hdr *tcp_hdr; 132 133 info->l3_len = sizeof(struct rte_ipv6_hdr); 134 info->l4_proto = ipv6_hdr->proto; 135 136 /* only fill l4_len for TCP, it's useful for TSO */ 137 if (info->l4_proto == IPPROTO_TCP) { 138 tcp_hdr = (struct rte_tcp_hdr *) 139 ((char *)ipv6_hdr + info->l3_len); 140 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 141 } else if (info->l4_proto == IPPROTO_UDP) 142 info->l4_len = sizeof(struct rte_udp_hdr); 143 else 144 info->l4_len = 0; 145 } 146 147 /* 148 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 149 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN 150 * headers. The l4_len argument is only set in case of TCP (useful for TSO). 151 */ 152 static void 153 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 154 { 155 struct rte_ipv4_hdr *ipv4_hdr; 156 struct rte_ipv6_hdr *ipv6_hdr; 157 struct rte_vlan_hdr *vlan_hdr; 158 159 info->l2_len = sizeof(struct rte_ether_hdr); 160 info->ethertype = eth_hdr->ether_type; 161 162 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || 163 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { 164 vlan_hdr = (struct rte_vlan_hdr *) 165 ((char *)eth_hdr + info->l2_len); 166 info->l2_len += sizeof(struct rte_vlan_hdr); 167 info->ethertype = vlan_hdr->eth_proto; 168 } 169 170 switch (info->ethertype) { 171 case _htons(RTE_ETHER_TYPE_IPV4): 172 ipv4_hdr = (struct rte_ipv4_hdr *) 173 ((char *)eth_hdr + info->l2_len); 174 parse_ipv4(ipv4_hdr, info); 175 break; 176 case _htons(RTE_ETHER_TYPE_IPV6): 177 ipv6_hdr = (struct rte_ipv6_hdr *) 178 ((char *)eth_hdr + info->l2_len); 179 parse_ipv6(ipv6_hdr, info); 180 break; 181 default: 182 info->l4_len = 0; 183 info->l3_len = 0; 184 info->l4_proto = 0; 185 break; 186 } 187 } 188 189 /* Fill in outer layers length */ 190 static void 191 update_tunnel_outer(struct testpmd_offload_info *info) 192 { 193 info->is_tunnel = 1; 194 info->outer_ethertype = info->ethertype; 195 info->outer_l2_len = info->l2_len; 196 info->outer_l3_len = info->l3_len; 197 info->outer_l4_proto = info->l4_proto; 198 } 199 200 /* 201 * Parse a GTP protocol header. 202 * No optional fields and next extension header type. 203 */ 204 static void 205 parse_gtp(struct rte_udp_hdr *udp_hdr, 206 struct testpmd_offload_info *info) 207 { 208 struct rte_ipv4_hdr *ipv4_hdr; 209 struct rte_ipv6_hdr *ipv6_hdr; 210 struct rte_gtp_hdr *gtp_hdr; 211 uint8_t gtp_len = sizeof(*gtp_hdr); 212 uint8_t ip_ver; 213 214 /* Check udp destination port. */ 215 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && 216 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && 217 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) 218 return; 219 220 update_tunnel_outer(info); 221 info->l2_len = 0; 222 223 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + 224 sizeof(struct rte_udp_hdr)); 225 if (gtp_hdr->e || gtp_hdr->s || gtp_hdr->pn) 226 gtp_len += sizeof(struct rte_gtp_hdr_ext_word); 227 /* 228 * Check message type. If message type is 0xff, it is 229 * a GTP data packet. If not, it is a GTP control packet 230 */ 231 if (gtp_hdr->msg_type == 0xff) { 232 ip_ver = *(uint8_t *)((char *)gtp_hdr + gtp_len); 233 ip_ver = (ip_ver) & 0xf0; 234 235 if (ip_ver == RTE_GTP_TYPE_IPV4) { 236 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + 237 gtp_len); 238 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 239 parse_ipv4(ipv4_hdr, info); 240 } else if (ip_ver == RTE_GTP_TYPE_IPV6) { 241 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + 242 gtp_len); 243 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 244 parse_ipv6(ipv6_hdr, info); 245 } 246 } else { 247 info->ethertype = 0; 248 info->l4_len = 0; 249 info->l3_len = 0; 250 info->l4_proto = 0; 251 } 252 253 info->l2_len += gtp_len + sizeof(*udp_hdr); 254 } 255 256 /* Parse a vxlan header */ 257 static void 258 parse_vxlan(struct rte_udp_hdr *udp_hdr, 259 struct testpmd_offload_info *info) 260 { 261 struct rte_ether_hdr *eth_hdr; 262 263 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the 264 * default vxlan port (rfc7348) or that the rx offload flag is set 265 * (i40e only currently) 266 */ 267 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT)) 268 return; 269 270 update_tunnel_outer(info); 271 272 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 273 sizeof(struct rte_udp_hdr) + 274 sizeof(struct rte_vxlan_hdr)); 275 276 parse_ethernet(eth_hdr, info); 277 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 278 } 279 280 /* Parse a vxlan-gpe header */ 281 static void 282 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 283 struct testpmd_offload_info *info) 284 { 285 struct rte_ether_hdr *eth_hdr; 286 struct rte_ipv4_hdr *ipv4_hdr; 287 struct rte_ipv6_hdr *ipv6_hdr; 288 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 289 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 290 291 /* Check udp destination port. */ 292 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 293 return; 294 295 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 296 sizeof(struct rte_udp_hdr)); 297 298 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 299 RTE_VXLAN_GPE_TYPE_IPV4) { 300 update_tunnel_outer(info); 301 302 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 303 vxlan_gpe_len); 304 305 parse_ipv4(ipv4_hdr, info); 306 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 307 info->l2_len = 0; 308 309 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 310 update_tunnel_outer(info); 311 312 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 313 vxlan_gpe_len); 314 315 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 316 parse_ipv6(ipv6_hdr, info); 317 info->l2_len = 0; 318 319 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 320 update_tunnel_outer(info); 321 322 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 323 vxlan_gpe_len); 324 325 parse_ethernet(eth_hdr, info); 326 } else 327 return; 328 329 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 330 } 331 332 /* Parse a geneve header */ 333 static void 334 parse_geneve(struct rte_udp_hdr *udp_hdr, 335 struct testpmd_offload_info *info) 336 { 337 struct rte_ether_hdr *eth_hdr; 338 struct rte_ipv4_hdr *ipv4_hdr; 339 struct rte_ipv6_hdr *ipv6_hdr; 340 struct rte_geneve_hdr *geneve_hdr; 341 uint16_t geneve_len; 342 343 /* Check udp destination port. */ 344 if (udp_hdr->dst_port != _htons(geneve_udp_port)) 345 return; 346 347 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + 348 sizeof(struct rte_udp_hdr)); 349 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; 350 if (!geneve_hdr->proto || geneve_hdr->proto == 351 _htons(RTE_ETHER_TYPE_IPV4)) { 352 update_tunnel_outer(info); 353 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + 354 geneve_len); 355 parse_ipv4(ipv4_hdr, info); 356 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 357 info->l2_len = 0; 358 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 359 update_tunnel_outer(info); 360 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + 361 geneve_len); 362 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 363 parse_ipv6(ipv6_hdr, info); 364 info->l2_len = 0; 365 366 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { 367 update_tunnel_outer(info); 368 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + 369 geneve_len); 370 parse_ethernet(eth_hdr, info); 371 } else 372 return; 373 374 info->l2_len += 375 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + 376 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); 377 } 378 379 /* Parse a gre header */ 380 static void 381 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 382 { 383 struct rte_ether_hdr *eth_hdr; 384 struct rte_ipv4_hdr *ipv4_hdr; 385 struct rte_ipv6_hdr *ipv6_hdr; 386 uint8_t gre_len = 0; 387 388 gre_len += sizeof(struct simple_gre_hdr); 389 390 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 391 gre_len += GRE_EXT_LEN; 392 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 393 gre_len += GRE_EXT_LEN; 394 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 395 gre_len += GRE_EXT_LEN; 396 397 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { 398 update_tunnel_outer(info); 399 400 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 401 402 parse_ipv4(ipv4_hdr, info); 403 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 404 info->l2_len = 0; 405 406 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 407 update_tunnel_outer(info); 408 409 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 410 411 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 412 parse_ipv6(ipv6_hdr, info); 413 info->l2_len = 0; 414 415 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 416 update_tunnel_outer(info); 417 418 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 419 420 parse_ethernet(eth_hdr, info); 421 } else 422 return; 423 424 info->l2_len += gre_len; 425 } 426 427 428 /* Parse an encapsulated ip or ipv6 header */ 429 static void 430 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 431 { 432 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 433 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 434 uint8_t ip_version; 435 436 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 437 438 if (ip_version != 4 && ip_version != 6) 439 return; 440 441 info->is_tunnel = 1; 442 info->outer_ethertype = info->ethertype; 443 info->outer_l2_len = info->l2_len; 444 info->outer_l3_len = info->l3_len; 445 446 if (ip_version == 4) { 447 parse_ipv4(ipv4_hdr, info); 448 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 449 } else { 450 parse_ipv6(ipv6_hdr, info); 451 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 452 } 453 info->l2_len = 0; 454 } 455 456 /* if possible, calculate the checksum of a packet in hw or sw, 457 * depending on the testpmd command line configuration */ 458 static uint64_t 459 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 460 uint64_t tx_offloads, struct rte_mbuf *m) 461 { 462 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 463 struct rte_udp_hdr *udp_hdr; 464 struct rte_tcp_hdr *tcp_hdr; 465 struct rte_sctp_hdr *sctp_hdr; 466 uint64_t ol_flags = 0; 467 uint32_t max_pkt_len, tso_segsz = 0; 468 uint16_t l4_off; 469 470 /* ensure packet is large enough to require tso */ 471 if (!info->is_tunnel) { 472 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 473 info->tso_segsz; 474 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 475 tso_segsz = info->tso_segsz; 476 } else { 477 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 478 info->l2_len + info->l3_len + info->l4_len + 479 info->tunnel_tso_segsz; 480 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 481 tso_segsz = info->tunnel_tso_segsz; 482 } 483 484 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 485 ipv4_hdr = l3_hdr; 486 487 ol_flags |= RTE_MBUF_F_TX_IPV4; 488 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 489 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 490 } else { 491 if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) { 492 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 493 } else { 494 ipv4_hdr->hdr_checksum = 0; 495 ipv4_hdr->hdr_checksum = 496 rte_ipv4_cksum(ipv4_hdr); 497 } 498 } 499 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) 500 ol_flags |= RTE_MBUF_F_TX_IPV6; 501 else 502 return 0; /* packet type not supported, nothing to do */ 503 504 if (info->l4_proto == IPPROTO_UDP) { 505 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 506 /* do not recalculate udp cksum if it was 0 */ 507 if (udp_hdr->dgram_cksum != 0) { 508 if (tso_segsz) 509 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 510 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) { 511 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM; 512 } else { 513 if (info->is_tunnel) 514 l4_off = info->outer_l2_len + 515 info->outer_l3_len + 516 info->l2_len + info->l3_len; 517 else 518 l4_off = info->l2_len + info->l3_len; 519 udp_hdr->dgram_cksum = 0; 520 udp_hdr->dgram_cksum = 521 get_udptcp_checksum(m, l3_hdr, l4_off, 522 info->ethertype); 523 } 524 } 525 #ifdef RTE_LIB_GSO 526 if (info->gso_enable) 527 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 528 #endif 529 } else if (info->l4_proto == IPPROTO_TCP) { 530 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 531 if (tso_segsz) 532 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 533 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) { 534 ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM; 535 } else { 536 if (info->is_tunnel) 537 l4_off = info->outer_l2_len + info->outer_l3_len + 538 info->l2_len + info->l3_len; 539 else 540 l4_off = info->l2_len + info->l3_len; 541 tcp_hdr->cksum = 0; 542 tcp_hdr->cksum = 543 get_udptcp_checksum(m, l3_hdr, l4_off, 544 info->ethertype); 545 } 546 #ifdef RTE_LIB_GSO 547 if (info->gso_enable) 548 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 549 #endif 550 } else if (info->l4_proto == IPPROTO_SCTP) { 551 sctp_hdr = (struct rte_sctp_hdr *) 552 ((char *)l3_hdr + info->l3_len); 553 /* sctp payload must be a multiple of 4 to be 554 * offloaded */ 555 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) && 556 ((ipv4_hdr->total_length & 0x3) == 0)) { 557 ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM; 558 } else { 559 sctp_hdr->cksum = 0; 560 /* XXX implement CRC32c, example available in 561 * RFC3309 */ 562 } 563 } 564 565 return ol_flags; 566 } 567 568 /* Calculate the checksum of outer header */ 569 static uint64_t 570 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 571 uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m) 572 { 573 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 574 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 575 struct rte_udp_hdr *udp_hdr; 576 uint64_t ol_flags = 0; 577 578 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 579 ipv4_hdr->hdr_checksum = 0; 580 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4; 581 582 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) 583 ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM; 584 else 585 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 586 } else 587 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6; 588 589 if (info->outer_l4_proto != IPPROTO_UDP) 590 return ol_flags; 591 592 udp_hdr = (struct rte_udp_hdr *) 593 ((char *)outer_l3_hdr + info->outer_l3_len); 594 595 if (tso_enabled && info->l4_proto == IPPROTO_TCP) 596 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 597 else if (tso_enabled && info->l4_proto == IPPROTO_UDP) 598 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 599 600 /* Skip SW outer UDP checksum generation if HW supports it */ 601 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) { 602 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 603 udp_hdr->dgram_cksum 604 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 605 else 606 udp_hdr->dgram_cksum 607 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 608 609 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM; 610 return ol_flags; 611 } 612 613 /* outer UDP checksum is done in software. In the other side, for 614 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 615 * set to zero. 616 * 617 * If a packet will be TSOed into small packets by NIC, we cannot 618 * set/calculate a non-zero checksum, because it will be a wrong 619 * value after the packet be split into several small packets. 620 */ 621 if (tso_enabled) 622 udp_hdr->dgram_cksum = 0; 623 624 /* do not recalculate udp cksum if it was 0 */ 625 if (udp_hdr->dgram_cksum != 0) { 626 udp_hdr->dgram_cksum = 0; 627 udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr, 628 info->outer_l2_len + info->outer_l3_len, 629 info->outer_ethertype); 630 } 631 632 return ol_flags; 633 } 634 635 /* 636 * Helper function. 637 * Performs actual copying. 638 * Returns number of segments in the destination mbuf on success, 639 * or negative error code on failure. 640 */ 641 static int 642 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 643 uint16_t seglen[], uint8_t nb_seg) 644 { 645 uint32_t dlen, slen, tlen; 646 uint32_t i, len; 647 const struct rte_mbuf *m; 648 const uint8_t *src; 649 uint8_t *dst; 650 651 dlen = 0; 652 slen = 0; 653 tlen = 0; 654 655 dst = NULL; 656 src = NULL; 657 658 m = ms; 659 i = 0; 660 while (ms != NULL && i != nb_seg) { 661 662 if (slen == 0) { 663 slen = rte_pktmbuf_data_len(ms); 664 src = rte_pktmbuf_mtod(ms, const uint8_t *); 665 } 666 667 if (dlen == 0) { 668 dlen = RTE_MIN(seglen[i], slen); 669 md[i]->data_len = dlen; 670 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 671 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 672 } 673 674 len = RTE_MIN(slen, dlen); 675 memcpy(dst, src, len); 676 tlen += len; 677 slen -= len; 678 dlen -= len; 679 src += len; 680 dst += len; 681 682 if (slen == 0) 683 ms = ms->next; 684 if (dlen == 0) 685 i++; 686 } 687 688 if (ms != NULL) 689 return -ENOBUFS; 690 else if (tlen != m->pkt_len) 691 return -EINVAL; 692 693 md[0]->nb_segs = nb_seg; 694 md[0]->pkt_len = tlen; 695 md[0]->vlan_tci = m->vlan_tci; 696 md[0]->vlan_tci_outer = m->vlan_tci_outer; 697 md[0]->ol_flags = m->ol_flags; 698 md[0]->tx_offload = m->tx_offload; 699 700 return nb_seg; 701 } 702 703 /* 704 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 705 * Copy packet contents and offload information into the new segmented mbuf. 706 */ 707 static struct rte_mbuf * 708 pkt_copy_split(const struct rte_mbuf *pkt) 709 { 710 int32_t n, rc; 711 uint32_t i, len, nb_seg; 712 struct rte_mempool *mp; 713 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 714 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 715 716 mp = current_fwd_lcore()->mbp; 717 718 if (tx_pkt_split == TX_PKT_SPLIT_RND) 719 nb_seg = rte_rand() % tx_pkt_nb_segs + 1; 720 else 721 nb_seg = tx_pkt_nb_segs; 722 723 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 724 725 /* calculate number of segments to use and their length. */ 726 len = 0; 727 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 728 len += seglen[i]; 729 md[i] = NULL; 730 } 731 732 n = pkt->pkt_len - len; 733 734 /* update size of the last segment to fit rest of the packet */ 735 if (n >= 0) { 736 seglen[i - 1] += n; 737 len += n; 738 } 739 740 nb_seg = i; 741 while (i != 0) { 742 p = rte_pktmbuf_alloc(mp); 743 if (p == NULL) { 744 TESTPMD_LOG(ERR, 745 "failed to allocate %u-th of %u mbuf " 746 "from mempool: %s\n", 747 nb_seg - i, nb_seg, mp->name); 748 break; 749 } 750 751 md[--i] = p; 752 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 753 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 754 "expected seglen: %u, " 755 "actual mbuf tailroom: %u\n", 756 mp->name, i, seglen[i], 757 rte_pktmbuf_tailroom(md[i])); 758 break; 759 } 760 } 761 762 /* all mbufs successfully allocated, do copy */ 763 if (i == 0) { 764 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 765 if (rc < 0) 766 TESTPMD_LOG(ERR, 767 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 768 "into %u segments failed with error code: %d\n", 769 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 770 771 /* figure out how many mbufs to free. */ 772 i = RTE_MAX(rc, 0); 773 } 774 775 /* free unused mbufs */ 776 for (; i != nb_seg; i++) { 777 rte_pktmbuf_free_seg(md[i]); 778 md[i] = NULL; 779 } 780 781 return md[0]; 782 } 783 784 #if defined(RTE_LIB_GRO) || defined(RTE_LIB_GSO) 785 /* 786 * Re-calculate IP checksum for merged/fragmented packets. 787 */ 788 static void 789 pkts_ip_csum_recalc(struct rte_mbuf **pkts_burst, const uint16_t nb_pkts, uint64_t tx_offloads) 790 { 791 int i; 792 struct rte_ipv4_hdr *ipv4_hdr; 793 for (i = 0; i < nb_pkts; i++) { 794 if ((pkts_burst[i]->ol_flags & RTE_MBUF_F_TX_IPV4) && 795 (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) == 0) { 796 ipv4_hdr = rte_pktmbuf_mtod_offset(pkts_burst[i], 797 struct rte_ipv4_hdr *, 798 pkts_burst[i]->l2_len); 799 ipv4_hdr->hdr_checksum = 0; 800 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 801 } 802 } 803 } 804 #endif 805 806 /* 807 * Receive a burst of packets, and for each packet: 808 * - parse packet, and try to recognize a supported packet type (1) 809 * - if it's not a supported packet type, don't touch the packet, else: 810 * - reprocess the checksum of all supported layers. This is done in SW 811 * or HW, depending on testpmd command line configuration 812 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 813 * segmentation offload (this implies HW TCP checksum) 814 * Then transmit packets on the output port. 815 * 816 * (1) Supported packets are: 817 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 818 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 819 * UDP|TCP|SCTP 820 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 821 * UDP|TCP|SCTP 822 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 823 * UDP|TCP|SCTP 824 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP 825 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 826 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 827 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 828 * 829 * The testpmd command line for this forward engine sets the flags 830 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 831 * whether a checksum must be calculated in software or in hardware. The 832 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 833 * OUTER_IP is only useful for tunnel packets. 834 */ 835 static bool 836 pkt_burst_checksum_forward(struct fwd_stream *fs) 837 { 838 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 839 #ifdef RTE_LIB_GSO 840 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 841 struct rte_gso_ctx *gso_ctx; 842 #endif 843 struct rte_mbuf **tx_pkts_burst; 844 struct rte_port *txp; 845 struct rte_mbuf *m, *p; 846 struct rte_ether_hdr *eth_hdr; 847 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 848 #ifdef RTE_LIB_GRO 849 void **gro_ctx; 850 uint16_t gro_pkts_num; 851 uint8_t gro_enable; 852 #endif 853 uint16_t nb_rx; 854 uint16_t nb_prep; 855 uint16_t i; 856 uint64_t rx_ol_flags, tx_ol_flags; 857 uint64_t tx_offloads; 858 uint32_t rx_bad_ip_csum; 859 uint32_t rx_bad_l4_csum; 860 uint32_t rx_bad_outer_l4_csum; 861 uint32_t rx_bad_outer_ip_csum; 862 struct testpmd_offload_info info; 863 864 /* receive a burst of packet */ 865 nb_rx = common_fwd_stream_receive(fs, pkts_burst, nb_pkt_per_burst); 866 if (unlikely(nb_rx == 0)) 867 return false; 868 869 rx_bad_ip_csum = 0; 870 rx_bad_l4_csum = 0; 871 rx_bad_outer_l4_csum = 0; 872 rx_bad_outer_ip_csum = 0; 873 #ifdef RTE_LIB_GRO 874 gro_enable = gro_ports[fs->rx_port].enable; 875 #endif 876 877 txp = &ports[fs->tx_port]; 878 tx_offloads = txp->dev_conf.txmode.offloads; 879 memset(&info, 0, sizeof(info)); 880 info.tso_segsz = txp->tso_segsz; 881 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 882 #ifdef RTE_LIB_GSO 883 if (gso_ports[fs->tx_port].enable) 884 info.gso_enable = 1; 885 #endif 886 887 for (i = 0; i < nb_rx; i++) { 888 if (likely(i < nb_rx - 1)) 889 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 890 void *)); 891 892 m = pkts_burst[i]; 893 info.is_tunnel = 0; 894 info.pkt_len = rte_pktmbuf_pkt_len(m); 895 tx_ol_flags = m->ol_flags & 896 (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL); 897 rx_ol_flags = m->ol_flags; 898 899 /* Update the L3/L4 checksum error packet statistics */ 900 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD) 901 rx_bad_ip_csum += 1; 902 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD) 903 rx_bad_l4_csum += 1; 904 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD) 905 rx_bad_outer_l4_csum += 1; 906 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) 907 rx_bad_outer_ip_csum += 1; 908 909 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 910 * and inner headers */ 911 912 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 913 if (ports[fs->tx_port].fwd_mac_swap) { 914 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 915 ð_hdr->dst_addr); 916 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, 917 ð_hdr->src_addr); 918 } 919 parse_ethernet(eth_hdr, &info); 920 l3_hdr = (char *)eth_hdr + info.l2_len; 921 922 /* check if it's a supported tunnel */ 923 if (txp->parse_tunnel) { 924 if (info.l4_proto == IPPROTO_UDP) { 925 struct rte_udp_hdr *udp_hdr; 926 927 udp_hdr = (struct rte_udp_hdr *) 928 ((char *)l3_hdr + info.l3_len); 929 parse_gtp(udp_hdr, &info); 930 if (info.is_tunnel) { 931 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP; 932 goto tunnel_update; 933 } 934 parse_vxlan_gpe(udp_hdr, &info); 935 if (info.is_tunnel) { 936 tx_ol_flags |= 937 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE; 938 goto tunnel_update; 939 } 940 parse_vxlan(udp_hdr, &info); 941 if (info.is_tunnel) { 942 tx_ol_flags |= 943 RTE_MBUF_F_TX_TUNNEL_VXLAN; 944 goto tunnel_update; 945 } 946 parse_geneve(udp_hdr, &info); 947 if (info.is_tunnel) { 948 tx_ol_flags |= 949 RTE_MBUF_F_TX_TUNNEL_GENEVE; 950 goto tunnel_update; 951 } 952 /* Always keep last. */ 953 if (unlikely(RTE_ETH_IS_TUNNEL_PKT( 954 m->packet_type) != 0)) { 955 TESTPMD_LOG(DEBUG, "Unknown tunnel packet. UDP dst port: %hu", 956 udp_hdr->dst_port); 957 } 958 } else if (info.l4_proto == IPPROTO_GRE) { 959 struct simple_gre_hdr *gre_hdr; 960 961 gre_hdr = (struct simple_gre_hdr *) 962 ((char *)l3_hdr + info.l3_len); 963 parse_gre(gre_hdr, &info); 964 if (info.is_tunnel) 965 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE; 966 } else if (info.l4_proto == IPPROTO_IPIP) { 967 void *encap_ip_hdr; 968 969 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 970 parse_encap_ip(encap_ip_hdr, &info); 971 if (info.is_tunnel) 972 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP; 973 } 974 } 975 976 tunnel_update: 977 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 978 if (info.is_tunnel) { 979 outer_l3_hdr = l3_hdr; 980 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 981 } 982 983 /* step 2: depending on user command line configuration, 984 * recompute checksum either in software or flag the 985 * mbuf to offload the calculation to the NIC. If TSO 986 * is configured, prepare the mbuf for TCP segmentation. */ 987 988 /* process checksums of inner headers first */ 989 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 990 tx_offloads, m); 991 992 /* Then process outer headers if any. Note that the software 993 * checksum will be wrong if one of the inner checksums is 994 * processed in hardware. */ 995 if (info.is_tunnel == 1) { 996 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 997 tx_offloads, 998 !!(tx_ol_flags & (RTE_MBUF_F_TX_TCP_SEG | 999 RTE_MBUF_F_TX_UDP_SEG)), 1000 m); 1001 } 1002 1003 /* step 3: fill the mbuf meta data (flags and header lengths) */ 1004 1005 m->tx_offload = 0; 1006 if (info.is_tunnel == 1) { 1007 if (info.tunnel_tso_segsz || 1008 (tx_offloads & 1009 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1010 (tx_offloads & 1011 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) { 1012 m->outer_l2_len = info.outer_l2_len; 1013 m->outer_l3_len = info.outer_l3_len; 1014 m->l2_len = info.l2_len; 1015 m->l3_len = info.l3_len; 1016 m->l4_len = info.l4_len; 1017 m->tso_segsz = info.tunnel_tso_segsz; 1018 } 1019 else { 1020 /* if there is a outer UDP cksum 1021 processed in sw and the inner in hw, 1022 the outer checksum will be wrong as 1023 the payload will be modified by the 1024 hardware */ 1025 m->l2_len = info.outer_l2_len + 1026 info.outer_l3_len + info.l2_len; 1027 m->l3_len = info.l3_len; 1028 m->l4_len = info.l4_len; 1029 } 1030 } else { 1031 /* this is only useful if an offload flag is 1032 * set, but it does not hurt to fill it in any 1033 * case */ 1034 m->l2_len = info.l2_len; 1035 m->l3_len = info.l3_len; 1036 m->l4_len = info.l4_len; 1037 m->tso_segsz = info.tso_segsz; 1038 } 1039 m->ol_flags = tx_ol_flags; 1040 1041 /* Do split & copy for the packet. */ 1042 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 1043 p = pkt_copy_split(m); 1044 if (p != NULL) { 1045 rte_pktmbuf_free(m); 1046 m = p; 1047 pkts_burst[i] = m; 1048 } 1049 } 1050 1051 /* if verbose mode is enabled, dump debug info */ 1052 if (verbose_level > 0) { 1053 char buf[256]; 1054 1055 printf("-----------------\n"); 1056 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 1057 fs->rx_port, m, m->pkt_len, m->nb_segs); 1058 /* dump rx parsed packet info */ 1059 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 1060 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 1061 "l4_proto=%d l4_len=%d flags=%s\n", 1062 info.l2_len, rte_be_to_cpu_16(info.ethertype), 1063 info.l3_len, info.l4_proto, info.l4_len, buf); 1064 if (rx_ol_flags & RTE_MBUF_F_RX_LRO) 1065 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 1066 if (info.is_tunnel == 1) 1067 printf("rx: outer_l2_len=%d outer_ethertype=%x " 1068 "outer_l3_len=%d\n", info.outer_l2_len, 1069 rte_be_to_cpu_16(info.outer_ethertype), 1070 info.outer_l3_len); 1071 /* dump tx packet info */ 1072 if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 1073 RTE_ETH_TX_OFFLOAD_UDP_CKSUM | 1074 RTE_ETH_TX_OFFLOAD_TCP_CKSUM | 1075 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) || 1076 info.tso_segsz != 0) 1077 printf("tx: m->l2_len=%d m->l3_len=%d " 1078 "m->l4_len=%d\n", 1079 m->l2_len, m->l3_len, m->l4_len); 1080 if (info.is_tunnel == 1) { 1081 if ((tx_offloads & 1082 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1083 (tx_offloads & 1084 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) || 1085 (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)) 1086 printf("tx: m->outer_l2_len=%d " 1087 "m->outer_l3_len=%d\n", 1088 m->outer_l2_len, 1089 m->outer_l3_len); 1090 if (info.tunnel_tso_segsz != 0 && 1091 (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | 1092 RTE_MBUF_F_TX_UDP_SEG))) 1093 printf("tx: m->tso_segsz=%d\n", 1094 m->tso_segsz); 1095 } else if (info.tso_segsz != 0 && 1096 (m->ol_flags & (RTE_MBUF_F_TX_TCP_SEG | 1097 RTE_MBUF_F_TX_UDP_SEG))) 1098 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 1099 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 1100 printf("tx: flags=%s", buf); 1101 printf("\n"); 1102 } 1103 } 1104 1105 #ifdef RTE_LIB_GRO 1106 if (unlikely(gro_enable)) { 1107 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 1108 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 1109 &(gro_ports[fs->rx_port].param)); 1110 } else { 1111 gro_ctx = current_fwd_lcore()->gro_ctx; 1112 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 1113 1114 if (++fs->gro_times >= gro_flush_cycles) { 1115 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 1116 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 1117 gro_pkts_num = MAX_PKT_BURST - nb_rx; 1118 1119 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 1120 RTE_GRO_TCP_IPV4, 1121 &pkts_burst[nb_rx], 1122 gro_pkts_num); 1123 fs->gro_times = 0; 1124 } 1125 } 1126 1127 pkts_ip_csum_recalc(pkts_burst, nb_rx, tx_offloads); 1128 } 1129 #endif 1130 1131 #ifdef RTE_LIB_GSO 1132 if (gso_ports[fs->tx_port].enable != 0) { 1133 uint16_t nb_segments = 0; 1134 1135 gso_ctx = &(current_fwd_lcore()->gso_ctx); 1136 gso_ctx->gso_size = gso_max_segment_size; 1137 for (i = 0; i < nb_rx; i++) { 1138 int ret; 1139 1140 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 1141 &gso_segments[nb_segments], 1142 GSO_MAX_PKT_BURST - nb_segments); 1143 if (ret >= 1) { 1144 /* pkts_burst[i] can be freed safely here. */ 1145 rte_pktmbuf_free(pkts_burst[i]); 1146 nb_segments += ret; 1147 } else if (ret == 0) { 1148 /* 0 means it can be transmitted directly 1149 * without gso. 1150 */ 1151 gso_segments[nb_segments] = pkts_burst[i]; 1152 nb_segments += 1; 1153 } else { 1154 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 1155 rte_pktmbuf_free(pkts_burst[i]); 1156 } 1157 } 1158 1159 tx_pkts_burst = gso_segments; 1160 nb_rx = nb_segments; 1161 1162 pkts_ip_csum_recalc(tx_pkts_burst, nb_rx, tx_offloads); 1163 } else 1164 #endif 1165 tx_pkts_burst = pkts_burst; 1166 1167 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 1168 tx_pkts_burst, nb_rx); 1169 if (nb_prep != nb_rx) { 1170 fprintf(stderr, 1171 "Preparing packet burst to transmit failed: %s\n", 1172 rte_strerror(rte_errno)); 1173 fs->fwd_dropped += (nb_rx - nb_prep); 1174 rte_pktmbuf_free_bulk(&tx_pkts_burst[nb_prep], nb_rx - nb_prep); 1175 } 1176 1177 common_fwd_stream_transmit(fs, tx_pkts_burst, nb_prep); 1178 1179 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1180 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1181 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1182 fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; 1183 1184 return true; 1185 } 1186 1187 struct fwd_engine csum_fwd_engine = { 1188 .fwd_mode_name = "csum", 1189 .stream_init = common_fwd_stream_init, 1190 .packet_fwd = pkt_burst_checksum_forward, 1191 }; 1192