xref: /dpdk/app/test-pmd/csumonly.c (revision 5ecb687a5698d2d8ec1f3b3b5a7a16bceca3e29c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5 
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12 
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15 
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_sctp.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
41 #include <rte_flow.h>
42 #include <rte_gro.h>
43 #include <rte_gso.h>
44 
45 #include "testpmd.h"
46 
47 #define IP_DEFTTL  64   /* from RFC 1340. */
48 #define IP_VERSION 0x40
49 #define IP_HDRLEN  0x05 /* default IP header length == five 32-bits words. */
50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
51 
52 #define GRE_CHECKSUM_PRESENT	0x8000
53 #define GRE_KEY_PRESENT		0x2000
54 #define GRE_SEQUENCE_PRESENT	0x1000
55 #define GRE_EXT_LEN		4
56 #define GRE_SUPPORTED_FIELDS	(GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
57 				 GRE_SEQUENCE_PRESENT)
58 
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
62 #else
63 #define _htons(x) (x)
64 #endif
65 
66 uint16_t vxlan_gpe_udp_port = 4790;
67 
68 /* structure that caches offload info for the current packet */
69 struct testpmd_offload_info {
70 	uint16_t ethertype;
71 	uint8_t gso_enable;
72 	uint16_t l2_len;
73 	uint16_t l3_len;
74 	uint16_t l4_len;
75 	uint8_t l4_proto;
76 	uint8_t is_tunnel;
77 	uint16_t outer_ethertype;
78 	uint16_t outer_l2_len;
79 	uint16_t outer_l3_len;
80 	uint8_t outer_l4_proto;
81 	uint16_t tso_segsz;
82 	uint16_t tunnel_tso_segsz;
83 	uint32_t pkt_len;
84 };
85 
86 /* simplified GRE header */
87 struct simple_gre_hdr {
88 	uint16_t flags;
89 	uint16_t proto;
90 } __attribute__((__packed__));
91 
92 static uint16_t
93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
94 {
95 	if (ethertype == _htons(ETHER_TYPE_IPv4))
96 		return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
97 	else /* assume ethertype == ETHER_TYPE_IPv6 */
98 		return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
99 }
100 
101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
102 static void
103 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
104 {
105 	struct tcp_hdr *tcp_hdr;
106 
107 	info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
108 	info->l4_proto = ipv4_hdr->next_proto_id;
109 
110 	/* only fill l4_len for TCP, it's useful for TSO */
111 	if (info->l4_proto == IPPROTO_TCP) {
112 		tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
113 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
114 	} else if (info->l4_proto == IPPROTO_UDP)
115 		info->l4_len = sizeof(struct udp_hdr);
116 	else
117 		info->l4_len = 0;
118 }
119 
120 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
121 static void
122 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
123 {
124 	struct tcp_hdr *tcp_hdr;
125 
126 	info->l3_len = sizeof(struct ipv6_hdr);
127 	info->l4_proto = ipv6_hdr->proto;
128 
129 	/* only fill l4_len for TCP, it's useful for TSO */
130 	if (info->l4_proto == IPPROTO_TCP) {
131 		tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
132 		info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
133 	} else if (info->l4_proto == IPPROTO_UDP)
134 		info->l4_len = sizeof(struct udp_hdr);
135 	else
136 		info->l4_len = 0;
137 }
138 
139 /*
140  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
141  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
142  * header. The l4_len argument is only set in case of TCP (useful for TSO).
143  */
144 static void
145 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
146 {
147 	struct ipv4_hdr *ipv4_hdr;
148 	struct ipv6_hdr *ipv6_hdr;
149 
150 	info->l2_len = sizeof(struct ether_hdr);
151 	info->ethertype = eth_hdr->ether_type;
152 
153 	if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
154 		struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
155 
156 		info->l2_len  += sizeof(struct vlan_hdr);
157 		info->ethertype = vlan_hdr->eth_proto;
158 	}
159 
160 	switch (info->ethertype) {
161 	case _htons(ETHER_TYPE_IPv4):
162 		ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
163 		parse_ipv4(ipv4_hdr, info);
164 		break;
165 	case _htons(ETHER_TYPE_IPv6):
166 		ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
167 		parse_ipv6(ipv6_hdr, info);
168 		break;
169 	default:
170 		info->l4_len = 0;
171 		info->l3_len = 0;
172 		info->l4_proto = 0;
173 		break;
174 	}
175 }
176 
177 /* Parse a vxlan header */
178 static void
179 parse_vxlan(struct udp_hdr *udp_hdr,
180 	    struct testpmd_offload_info *info,
181 	    uint32_t pkt_type)
182 {
183 	struct ether_hdr *eth_hdr;
184 
185 	/* check udp destination port, 4789 is the default vxlan port
186 	 * (rfc7348) or that the rx offload flag is set (i40e only
187 	 * currently) */
188 	if (udp_hdr->dst_port != _htons(4789) &&
189 		RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
190 		return;
191 
192 	info->is_tunnel = 1;
193 	info->outer_ethertype = info->ethertype;
194 	info->outer_l2_len = info->l2_len;
195 	info->outer_l3_len = info->l3_len;
196 	info->outer_l4_proto = info->l4_proto;
197 
198 	eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
199 		sizeof(struct udp_hdr) +
200 		sizeof(struct vxlan_hdr));
201 
202 	parse_ethernet(eth_hdr, info);
203 	info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
204 }
205 
206 /* Parse a vxlan-gpe header */
207 static void
208 parse_vxlan_gpe(struct udp_hdr *udp_hdr,
209 	    struct testpmd_offload_info *info)
210 {
211 	struct ether_hdr *eth_hdr;
212 	struct ipv4_hdr *ipv4_hdr;
213 	struct ipv6_hdr *ipv6_hdr;
214 	struct vxlan_gpe_hdr *vxlan_gpe_hdr;
215 	uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
216 
217 	/* Check udp destination port. */
218 	if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
219 		return;
220 
221 	vxlan_gpe_hdr = (struct vxlan_gpe_hdr *)((char *)udp_hdr +
222 				sizeof(struct udp_hdr));
223 
224 	if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
225 	    VXLAN_GPE_TYPE_IPV4) {
226 		info->is_tunnel = 1;
227 		info->outer_ethertype = info->ethertype;
228 		info->outer_l2_len = info->l2_len;
229 		info->outer_l3_len = info->l3_len;
230 		info->outer_l4_proto = info->l4_proto;
231 
232 		ipv4_hdr = (struct ipv4_hdr *)((char *)vxlan_gpe_hdr +
233 			   vxlan_gpe_len);
234 
235 		parse_ipv4(ipv4_hdr, info);
236 		info->ethertype = _htons(ETHER_TYPE_IPv4);
237 		info->l2_len = 0;
238 
239 	} else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_IPV6) {
240 		info->is_tunnel = 1;
241 		info->outer_ethertype = info->ethertype;
242 		info->outer_l2_len = info->l2_len;
243 		info->outer_l3_len = info->l3_len;
244 		info->outer_l4_proto = info->l4_proto;
245 
246 		ipv6_hdr = (struct ipv6_hdr *)((char *)vxlan_gpe_hdr +
247 			   vxlan_gpe_len);
248 
249 		info->ethertype = _htons(ETHER_TYPE_IPv6);
250 		parse_ipv6(ipv6_hdr, info);
251 		info->l2_len = 0;
252 
253 	} else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_ETH) {
254 		info->is_tunnel = 1;
255 		info->outer_ethertype = info->ethertype;
256 		info->outer_l2_len = info->l2_len;
257 		info->outer_l3_len = info->l3_len;
258 		info->outer_l4_proto = info->l4_proto;
259 
260 		eth_hdr = (struct ether_hdr *)((char *)vxlan_gpe_hdr +
261 			  vxlan_gpe_len);
262 
263 		parse_ethernet(eth_hdr, info);
264 	} else
265 		return;
266 
267 	info->l2_len += ETHER_VXLAN_GPE_HLEN;
268 }
269 
270 /* Parse a gre header */
271 static void
272 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
273 {
274 	struct ether_hdr *eth_hdr;
275 	struct ipv4_hdr *ipv4_hdr;
276 	struct ipv6_hdr *ipv6_hdr;
277 	uint8_t gre_len = 0;
278 
279 	gre_len += sizeof(struct simple_gre_hdr);
280 
281 	if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
282 		gre_len += GRE_EXT_LEN;
283 	if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
284 		gre_len += GRE_EXT_LEN;
285 	if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
286 		gre_len += GRE_EXT_LEN;
287 
288 	if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
289 		info->is_tunnel = 1;
290 		info->outer_ethertype = info->ethertype;
291 		info->outer_l2_len = info->l2_len;
292 		info->outer_l3_len = info->l3_len;
293 		info->outer_l4_proto = info->l4_proto;
294 
295 		ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
296 
297 		parse_ipv4(ipv4_hdr, info);
298 		info->ethertype = _htons(ETHER_TYPE_IPv4);
299 		info->l2_len = 0;
300 
301 	} else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
302 		info->is_tunnel = 1;
303 		info->outer_ethertype = info->ethertype;
304 		info->outer_l2_len = info->l2_len;
305 		info->outer_l3_len = info->l3_len;
306 		info->outer_l4_proto = info->l4_proto;
307 
308 		ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
309 
310 		info->ethertype = _htons(ETHER_TYPE_IPv6);
311 		parse_ipv6(ipv6_hdr, info);
312 		info->l2_len = 0;
313 
314 	} else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
315 		info->is_tunnel = 1;
316 		info->outer_ethertype = info->ethertype;
317 		info->outer_l2_len = info->l2_len;
318 		info->outer_l3_len = info->l3_len;
319 		info->outer_l4_proto = info->l4_proto;
320 
321 		eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
322 
323 		parse_ethernet(eth_hdr, info);
324 	} else
325 		return;
326 
327 	info->l2_len += gre_len;
328 }
329 
330 
331 /* Parse an encapsulated ip or ipv6 header */
332 static void
333 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
334 {
335 	struct ipv4_hdr *ipv4_hdr = encap_ip;
336 	struct ipv6_hdr *ipv6_hdr = encap_ip;
337 	uint8_t ip_version;
338 
339 	ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
340 
341 	if (ip_version != 4 && ip_version != 6)
342 		return;
343 
344 	info->is_tunnel = 1;
345 	info->outer_ethertype = info->ethertype;
346 	info->outer_l2_len = info->l2_len;
347 	info->outer_l3_len = info->l3_len;
348 
349 	if (ip_version == 4) {
350 		parse_ipv4(ipv4_hdr, info);
351 		info->ethertype = _htons(ETHER_TYPE_IPv4);
352 	} else {
353 		parse_ipv6(ipv6_hdr, info);
354 		info->ethertype = _htons(ETHER_TYPE_IPv6);
355 	}
356 	info->l2_len = 0;
357 }
358 
359 /* if possible, calculate the checksum of a packet in hw or sw,
360  * depending on the testpmd command line configuration */
361 static uint64_t
362 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
363 	uint64_t tx_offloads)
364 {
365 	struct ipv4_hdr *ipv4_hdr = l3_hdr;
366 	struct udp_hdr *udp_hdr;
367 	struct tcp_hdr *tcp_hdr;
368 	struct sctp_hdr *sctp_hdr;
369 	uint64_t ol_flags = 0;
370 	uint32_t max_pkt_len, tso_segsz = 0;
371 
372 	/* ensure packet is large enough to require tso */
373 	if (!info->is_tunnel) {
374 		max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
375 			info->tso_segsz;
376 		if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
377 			tso_segsz = info->tso_segsz;
378 	} else {
379 		max_pkt_len = info->outer_l2_len + info->outer_l3_len +
380 			info->l2_len + info->l3_len + info->l4_len +
381 			info->tunnel_tso_segsz;
382 		if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
383 			tso_segsz = info->tunnel_tso_segsz;
384 	}
385 
386 	if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
387 		ipv4_hdr = l3_hdr;
388 		ipv4_hdr->hdr_checksum = 0;
389 
390 		ol_flags |= PKT_TX_IPV4;
391 		if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
392 			ol_flags |= PKT_TX_IP_CKSUM;
393 		} else {
394 			if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
395 				ol_flags |= PKT_TX_IP_CKSUM;
396 			else
397 				ipv4_hdr->hdr_checksum =
398 					rte_ipv4_cksum(ipv4_hdr);
399 		}
400 	} else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
401 		ol_flags |= PKT_TX_IPV6;
402 	else
403 		return 0; /* packet type not supported, nothing to do */
404 
405 	if (info->l4_proto == IPPROTO_UDP) {
406 		udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
407 		/* do not recalculate udp cksum if it was 0 */
408 		if (udp_hdr->dgram_cksum != 0) {
409 			udp_hdr->dgram_cksum = 0;
410 			if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
411 				ol_flags |= PKT_TX_UDP_CKSUM;
412 			else {
413 				udp_hdr->dgram_cksum =
414 					get_udptcp_checksum(l3_hdr, udp_hdr,
415 						info->ethertype);
416 			}
417 		}
418 		if (info->gso_enable)
419 			ol_flags |= PKT_TX_UDP_SEG;
420 	} else if (info->l4_proto == IPPROTO_TCP) {
421 		tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
422 		tcp_hdr->cksum = 0;
423 		if (tso_segsz)
424 			ol_flags |= PKT_TX_TCP_SEG;
425 		else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
426 			ol_flags |= PKT_TX_TCP_CKSUM;
427 		else {
428 			tcp_hdr->cksum =
429 				get_udptcp_checksum(l3_hdr, tcp_hdr,
430 					info->ethertype);
431 		}
432 		if (info->gso_enable)
433 			ol_flags |= PKT_TX_TCP_SEG;
434 	} else if (info->l4_proto == IPPROTO_SCTP) {
435 		sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
436 		sctp_hdr->cksum = 0;
437 		/* sctp payload must be a multiple of 4 to be
438 		 * offloaded */
439 		if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
440 			((ipv4_hdr->total_length & 0x3) == 0)) {
441 			ol_flags |= PKT_TX_SCTP_CKSUM;
442 		} else {
443 			/* XXX implement CRC32c, example available in
444 			 * RFC3309 */
445 		}
446 	}
447 
448 	return ol_flags;
449 }
450 
451 /* Calculate the checksum of outer header */
452 static uint64_t
453 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
454 	uint64_t tx_offloads, int tso_enabled)
455 {
456 	struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
457 	struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
458 	struct udp_hdr *udp_hdr;
459 	uint64_t ol_flags = 0;
460 
461 	if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
462 		ipv4_hdr->hdr_checksum = 0;
463 		ol_flags |= PKT_TX_OUTER_IPV4;
464 
465 		if (tx_offloads	& DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
466 			ol_flags |= PKT_TX_OUTER_IP_CKSUM;
467 		else
468 			ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
469 	} else
470 		ol_flags |= PKT_TX_OUTER_IPV6;
471 
472 	if (info->outer_l4_proto != IPPROTO_UDP)
473 		return ol_flags;
474 
475 	/* Skip SW outer UDP checksum generation if HW supports it */
476 	if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
477 		ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
478 		return ol_flags;
479 	}
480 
481 	udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
482 
483 	/* outer UDP checksum is done in software. In the other side, for
484 	 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
485 	 * set to zero.
486 	 *
487 	 * If a packet will be TSOed into small packets by NIC, we cannot
488 	 * set/calculate a non-zero checksum, because it will be a wrong
489 	 * value after the packet be split into several small packets.
490 	 */
491 	if (tso_enabled)
492 		udp_hdr->dgram_cksum = 0;
493 
494 	/* do not recalculate udp cksum if it was 0 */
495 	if (udp_hdr->dgram_cksum != 0) {
496 		udp_hdr->dgram_cksum = 0;
497 		if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
498 			udp_hdr->dgram_cksum =
499 				rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
500 		else
501 			udp_hdr->dgram_cksum =
502 				rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
503 	}
504 
505 	return ol_flags;
506 }
507 
508 /*
509  * Helper function.
510  * Performs actual copying.
511  * Returns number of segments in the destination mbuf on success,
512  * or negative error code on failure.
513  */
514 static int
515 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
516 	uint16_t seglen[], uint8_t nb_seg)
517 {
518 	uint32_t dlen, slen, tlen;
519 	uint32_t i, len;
520 	const struct rte_mbuf *m;
521 	const uint8_t *src;
522 	uint8_t *dst;
523 
524 	dlen = 0;
525 	slen = 0;
526 	tlen = 0;
527 
528 	dst = NULL;
529 	src = NULL;
530 
531 	m = ms;
532 	i = 0;
533 	while (ms != NULL && i != nb_seg) {
534 
535 		if (slen == 0) {
536 			slen = rte_pktmbuf_data_len(ms);
537 			src = rte_pktmbuf_mtod(ms, const uint8_t *);
538 		}
539 
540 		if (dlen == 0) {
541 			dlen = RTE_MIN(seglen[i], slen);
542 			md[i]->data_len = dlen;
543 			md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
544 			dst = rte_pktmbuf_mtod(md[i], uint8_t *);
545 		}
546 
547 		len = RTE_MIN(slen, dlen);
548 		memcpy(dst, src, len);
549 		tlen += len;
550 		slen -= len;
551 		dlen -= len;
552 		src += len;
553 		dst += len;
554 
555 		if (slen == 0)
556 			ms = ms->next;
557 		if (dlen == 0)
558 			i++;
559 	}
560 
561 	if (ms != NULL)
562 		return -ENOBUFS;
563 	else if (tlen != m->pkt_len)
564 		return -EINVAL;
565 
566 	md[0]->nb_segs = nb_seg;
567 	md[0]->pkt_len = tlen;
568 	md[0]->vlan_tci = m->vlan_tci;
569 	md[0]->vlan_tci_outer = m->vlan_tci_outer;
570 	md[0]->ol_flags = m->ol_flags;
571 	md[0]->tx_offload = m->tx_offload;
572 
573 	return nb_seg;
574 }
575 
576 /*
577  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
578  * Copy packet contents and offload information into the new segmented mbuf.
579  */
580 static struct rte_mbuf *
581 pkt_copy_split(const struct rte_mbuf *pkt)
582 {
583 	int32_t n, rc;
584 	uint32_t i, len, nb_seg;
585 	struct rte_mempool *mp;
586 	uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
587 	struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
588 
589 	mp = current_fwd_lcore()->mbp;
590 
591 	if (tx_pkt_split == TX_PKT_SPLIT_RND)
592 		nb_seg = random() % tx_pkt_nb_segs + 1;
593 	else
594 		nb_seg = tx_pkt_nb_segs;
595 
596 	memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
597 
598 	/* calculate number of segments to use and their length. */
599 	len = 0;
600 	for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
601 		len += seglen[i];
602 		md[i] = NULL;
603 	}
604 
605 	n = pkt->pkt_len - len;
606 
607 	/* update size of the last segment to fit rest of the packet */
608 	if (n >= 0) {
609 		seglen[i - 1] += n;
610 		len += n;
611 	}
612 
613 	nb_seg = i;
614 	while (i != 0) {
615 		p = rte_pktmbuf_alloc(mp);
616 		if (p == NULL) {
617 			TESTPMD_LOG(ERR,
618 				"failed to allocate %u-th of %u mbuf "
619 				"from mempool: %s\n",
620 				nb_seg - i, nb_seg, mp->name);
621 			break;
622 		}
623 
624 		md[--i] = p;
625 		if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
626 			TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
627 				"expected seglen: %u, "
628 				"actual mbuf tailroom: %u\n",
629 				mp->name, i, seglen[i],
630 				rte_pktmbuf_tailroom(md[i]));
631 			break;
632 		}
633 	}
634 
635 	/* all mbufs successfully allocated, do copy */
636 	if (i == 0) {
637 		rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
638 		if (rc < 0)
639 			TESTPMD_LOG(ERR,
640 				"mbuf_copy_split for %p(len=%u, nb_seg=%u) "
641 				"into %u segments failed with error code: %d\n",
642 				pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
643 
644 		/* figure out how many mbufs to free. */
645 		i = RTE_MAX(rc, 0);
646 	}
647 
648 	/* free unused mbufs */
649 	for (; i != nb_seg; i++) {
650 		rte_pktmbuf_free_seg(md[i]);
651 		md[i] = NULL;
652 	}
653 
654 	return md[0];
655 }
656 
657 /*
658  * Receive a burst of packets, and for each packet:
659  *  - parse packet, and try to recognize a supported packet type (1)
660  *  - if it's not a supported packet type, don't touch the packet, else:
661  *  - reprocess the checksum of all supported layers. This is done in SW
662  *    or HW, depending on testpmd command line configuration
663  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
664  *    segmentation offload (this implies HW TCP checksum)
665  * Then transmit packets on the output port.
666  *
667  * (1) Supported packets are:
668  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
669  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
670  *           UDP|TCP|SCTP
671  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
672  *           UDP|TCP|SCTP
673  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
674  *           UDP|TCP|SCTP
675  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
676  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
677  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
678  *
679  * The testpmd command line for this forward engine sets the flags
680  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
681  * wether a checksum must be calculated in software or in hardware. The
682  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
683  * OUTER_IP is only useful for tunnel packets.
684  */
685 static void
686 pkt_burst_checksum_forward(struct fwd_stream *fs)
687 {
688 	struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
689 	struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
690 	struct rte_gso_ctx *gso_ctx;
691 	struct rte_mbuf **tx_pkts_burst;
692 	struct rte_port *txp;
693 	struct rte_mbuf *m, *p;
694 	struct ether_hdr *eth_hdr;
695 	void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
696 	void **gro_ctx;
697 	uint16_t gro_pkts_num;
698 	uint8_t gro_enable;
699 	uint16_t nb_rx;
700 	uint16_t nb_tx;
701 	uint16_t nb_prep;
702 	uint16_t i;
703 	uint64_t rx_ol_flags, tx_ol_flags;
704 	uint64_t tx_offloads;
705 	uint32_t retry;
706 	uint32_t rx_bad_ip_csum;
707 	uint32_t rx_bad_l4_csum;
708 	uint32_t rx_bad_outer_l4_csum;
709 	struct testpmd_offload_info info;
710 	uint16_t nb_segments = 0;
711 	int ret;
712 
713 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
714 	uint64_t start_tsc;
715 	uint64_t end_tsc;
716 	uint64_t core_cycles;
717 #endif
718 
719 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
720 	start_tsc = rte_rdtsc();
721 #endif
722 
723 	/* receive a burst of packet */
724 	nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
725 				 nb_pkt_per_burst);
726 	if (unlikely(nb_rx == 0))
727 		return;
728 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
729 	fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
730 #endif
731 	fs->rx_packets += nb_rx;
732 	rx_bad_ip_csum = 0;
733 	rx_bad_l4_csum = 0;
734 	rx_bad_outer_l4_csum = 0;
735 	gro_enable = gro_ports[fs->rx_port].enable;
736 
737 	txp = &ports[fs->tx_port];
738 	tx_offloads = txp->dev_conf.txmode.offloads;
739 	memset(&info, 0, sizeof(info));
740 	info.tso_segsz = txp->tso_segsz;
741 	info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
742 	if (gso_ports[fs->tx_port].enable)
743 		info.gso_enable = 1;
744 
745 	for (i = 0; i < nb_rx; i++) {
746 		if (likely(i < nb_rx - 1))
747 			rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
748 						       void *));
749 
750 		m = pkts_burst[i];
751 		info.is_tunnel = 0;
752 		info.pkt_len = rte_pktmbuf_pkt_len(m);
753 		tx_ol_flags = m->ol_flags &
754 			      (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
755 		rx_ol_flags = m->ol_flags;
756 
757 		/* Update the L3/L4 checksum error packet statistics */
758 		if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
759 			rx_bad_ip_csum += 1;
760 		if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
761 			rx_bad_l4_csum += 1;
762 		if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
763 			rx_bad_outer_l4_csum += 1;
764 
765 		/* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
766 		 * and inner headers */
767 
768 		eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
769 		ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
770 				&eth_hdr->d_addr);
771 		ether_addr_copy(&ports[fs->tx_port].eth_addr,
772 				&eth_hdr->s_addr);
773 		parse_ethernet(eth_hdr, &info);
774 		l3_hdr = (char *)eth_hdr + info.l2_len;
775 
776 		/* check if it's a supported tunnel */
777 		if (txp->parse_tunnel) {
778 			if (info.l4_proto == IPPROTO_UDP) {
779 				struct udp_hdr *udp_hdr;
780 
781 				udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
782 					info.l3_len);
783 				parse_vxlan_gpe(udp_hdr, &info);
784 				if (info.is_tunnel) {
785 					tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE;
786 				} else {
787 					parse_vxlan(udp_hdr, &info,
788 						    m->packet_type);
789 					if (info.is_tunnel)
790 						tx_ol_flags |=
791 							PKT_TX_TUNNEL_VXLAN;
792 				}
793 			} else if (info.l4_proto == IPPROTO_GRE) {
794 				struct simple_gre_hdr *gre_hdr;
795 
796 				gre_hdr = (struct simple_gre_hdr *)
797 					((char *)l3_hdr + info.l3_len);
798 				parse_gre(gre_hdr, &info);
799 				if (info.is_tunnel)
800 					tx_ol_flags |= PKT_TX_TUNNEL_GRE;
801 			} else if (info.l4_proto == IPPROTO_IPIP) {
802 				void *encap_ip_hdr;
803 
804 				encap_ip_hdr = (char *)l3_hdr + info.l3_len;
805 				parse_encap_ip(encap_ip_hdr, &info);
806 				if (info.is_tunnel)
807 					tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
808 			}
809 		}
810 
811 		/* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
812 		if (info.is_tunnel) {
813 			outer_l3_hdr = l3_hdr;
814 			l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
815 		}
816 
817 		/* step 2: depending on user command line configuration,
818 		 * recompute checksum either in software or flag the
819 		 * mbuf to offload the calculation to the NIC. If TSO
820 		 * is configured, prepare the mbuf for TCP segmentation. */
821 
822 		/* process checksums of inner headers first */
823 		tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
824 			tx_offloads);
825 
826 		/* Then process outer headers if any. Note that the software
827 		 * checksum will be wrong if one of the inner checksums is
828 		 * processed in hardware. */
829 		if (info.is_tunnel == 1) {
830 			tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
831 					tx_offloads,
832 					!!(tx_ol_flags & PKT_TX_TCP_SEG));
833 		}
834 
835 		/* step 3: fill the mbuf meta data (flags and header lengths) */
836 
837 		m->tx_offload = 0;
838 		if (info.is_tunnel == 1) {
839 			if (info.tunnel_tso_segsz ||
840 			    (tx_offloads &
841 			     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
842 			    (tx_offloads &
843 			     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
844 			    (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
845 				m->outer_l2_len = info.outer_l2_len;
846 				m->outer_l3_len = info.outer_l3_len;
847 				m->l2_len = info.l2_len;
848 				m->l3_len = info.l3_len;
849 				m->l4_len = info.l4_len;
850 				m->tso_segsz = info.tunnel_tso_segsz;
851 			}
852 			else {
853 				/* if there is a outer UDP cksum
854 				   processed in sw and the inner in hw,
855 				   the outer checksum will be wrong as
856 				   the payload will be modified by the
857 				   hardware */
858 				m->l2_len = info.outer_l2_len +
859 					info.outer_l3_len + info.l2_len;
860 				m->l3_len = info.l3_len;
861 				m->l4_len = info.l4_len;
862 			}
863 		} else {
864 			/* this is only useful if an offload flag is
865 			 * set, but it does not hurt to fill it in any
866 			 * case */
867 			m->l2_len = info.l2_len;
868 			m->l3_len = info.l3_len;
869 			m->l4_len = info.l4_len;
870 			m->tso_segsz = info.tso_segsz;
871 		}
872 		m->ol_flags = tx_ol_flags;
873 
874 		/* Do split & copy for the packet. */
875 		if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
876 			p = pkt_copy_split(m);
877 			if (p != NULL) {
878 				rte_pktmbuf_free(m);
879 				m = p;
880 				pkts_burst[i] = m;
881 			}
882 		}
883 
884 		/* if verbose mode is enabled, dump debug info */
885 		if (verbose_level > 0) {
886 			char buf[256];
887 
888 			printf("-----------------\n");
889 			printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
890 				fs->rx_port, m, m->pkt_len, m->nb_segs);
891 			/* dump rx parsed packet info */
892 			rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
893 			printf("rx: l2_len=%d ethertype=%x l3_len=%d "
894 				"l4_proto=%d l4_len=%d flags=%s\n",
895 				info.l2_len, rte_be_to_cpu_16(info.ethertype),
896 				info.l3_len, info.l4_proto, info.l4_len, buf);
897 			if (rx_ol_flags & PKT_RX_LRO)
898 				printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
899 			if (info.is_tunnel == 1)
900 				printf("rx: outer_l2_len=%d outer_ethertype=%x "
901 					"outer_l3_len=%d\n", info.outer_l2_len,
902 					rte_be_to_cpu_16(info.outer_ethertype),
903 					info.outer_l3_len);
904 			/* dump tx packet info */
905 			if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
906 					    DEV_TX_OFFLOAD_UDP_CKSUM |
907 					    DEV_TX_OFFLOAD_TCP_CKSUM |
908 					    DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
909 				info.tso_segsz != 0)
910 				printf("tx: m->l2_len=%d m->l3_len=%d "
911 					"m->l4_len=%d\n",
912 					m->l2_len, m->l3_len, m->l4_len);
913 			if (info.is_tunnel == 1) {
914 				if ((tx_offloads &
915 				    DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
916 				    (tx_offloads &
917 				    DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
918 				    (tx_ol_flags & PKT_TX_OUTER_IPV6))
919 					printf("tx: m->outer_l2_len=%d "
920 						"m->outer_l3_len=%d\n",
921 						m->outer_l2_len,
922 						m->outer_l3_len);
923 				if (info.tunnel_tso_segsz != 0 &&
924 						(m->ol_flags & PKT_TX_TCP_SEG))
925 					printf("tx: m->tso_segsz=%d\n",
926 						m->tso_segsz);
927 			} else if (info.tso_segsz != 0 &&
928 					(m->ol_flags & PKT_TX_TCP_SEG))
929 				printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
930 			rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
931 			printf("tx: flags=%s", buf);
932 			printf("\n");
933 		}
934 	}
935 
936 	if (unlikely(gro_enable)) {
937 		if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
938 			nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
939 					&(gro_ports[fs->rx_port].param));
940 		} else {
941 			gro_ctx = current_fwd_lcore()->gro_ctx;
942 			nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
943 
944 			if (++fs->gro_times >= gro_flush_cycles) {
945 				gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
946 				if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
947 					gro_pkts_num = MAX_PKT_BURST - nb_rx;
948 
949 				nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
950 						RTE_GRO_TCP_IPV4,
951 						&pkts_burst[nb_rx],
952 						gro_pkts_num);
953 				fs->gro_times = 0;
954 			}
955 		}
956 	}
957 
958 	if (gso_ports[fs->tx_port].enable == 0)
959 		tx_pkts_burst = pkts_burst;
960 	else {
961 		gso_ctx = &(current_fwd_lcore()->gso_ctx);
962 		gso_ctx->gso_size = gso_max_segment_size;
963 		for (i = 0; i < nb_rx; i++) {
964 			ret = rte_gso_segment(pkts_burst[i], gso_ctx,
965 					&gso_segments[nb_segments],
966 					GSO_MAX_PKT_BURST - nb_segments);
967 			if (ret >= 0)
968 				nb_segments += ret;
969 			else {
970 				TESTPMD_LOG(DEBUG, "Unable to segment packet");
971 				rte_pktmbuf_free(pkts_burst[i]);
972 			}
973 		}
974 
975 		tx_pkts_burst = gso_segments;
976 		nb_rx = nb_segments;
977 	}
978 
979 	nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
980 			tx_pkts_burst, nb_rx);
981 	if (nb_prep != nb_rx)
982 		printf("Preparing packet burst to transmit failed: %s\n",
983 				rte_strerror(rte_errno));
984 
985 	nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
986 			nb_prep);
987 
988 	/*
989 	 * Retry if necessary
990 	 */
991 	if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
992 		retry = 0;
993 		while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
994 			rte_delay_us(burst_tx_delay_time);
995 			nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
996 					&tx_pkts_burst[nb_tx], nb_rx - nb_tx);
997 		}
998 	}
999 	fs->tx_packets += nb_tx;
1000 	fs->rx_bad_ip_csum += rx_bad_ip_csum;
1001 	fs->rx_bad_l4_csum += rx_bad_l4_csum;
1002 	fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1003 
1004 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1005 	fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1006 #endif
1007 	if (unlikely(nb_tx < nb_rx)) {
1008 		fs->fwd_dropped += (nb_rx - nb_tx);
1009 		do {
1010 			rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1011 		} while (++nb_tx < nb_rx);
1012 	}
1013 
1014 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1015 	end_tsc = rte_rdtsc();
1016 	core_cycles = (end_tsc - start_tsc);
1017 	fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1018 #endif
1019 }
1020 
1021 struct fwd_engine csum_fwd_engine = {
1022 	.fwd_mode_name  = "csum",
1023 	.port_fwd_begin = NULL,
1024 	.port_fwd_end   = NULL,
1025 	.packet_fwd     = pkt_burst_checksum_forward,
1026 };
1027