1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * Copyright 2014 6WIND S.A. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <stdarg.h> 36 #include <stdio.h> 37 #include <errno.h> 38 #include <stdint.h> 39 #include <unistd.h> 40 #include <inttypes.h> 41 42 #include <sys/queue.h> 43 #include <sys/stat.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_log.h> 48 #include <rte_debug.h> 49 #include <rte_cycles.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_launch.h> 54 #include <rte_eal.h> 55 #include <rte_per_lcore.h> 56 #include <rte_lcore.h> 57 #include <rte_atomic.h> 58 #include <rte_branch_prediction.h> 59 #include <rte_memory.h> 60 #include <rte_mempool.h> 61 #include <rte_mbuf.h> 62 #include <rte_memcpy.h> 63 #include <rte_interrupts.h> 64 #include <rte_pci.h> 65 #include <rte_ether.h> 66 #include <rte_ethdev.h> 67 #include <rte_ip.h> 68 #include <rte_tcp.h> 69 #include <rte_udp.h> 70 #include <rte_sctp.h> 71 #include <rte_prefetch.h> 72 #include <rte_string_fns.h> 73 #include <rte_flow.h> 74 #include "testpmd.h" 75 76 #define IP_DEFTTL 64 /* from RFC 1340. */ 77 #define IP_VERSION 0x40 78 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ 79 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) 80 81 #define GRE_KEY_PRESENT 0x2000 82 #define GRE_KEY_LEN 4 83 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT 84 85 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 86 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 87 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 88 #else 89 #define _htons(x) (x) 90 #endif 91 92 /* structure that caches offload info for the current packet */ 93 struct testpmd_offload_info { 94 uint16_t ethertype; 95 uint16_t l2_len; 96 uint16_t l3_len; 97 uint16_t l4_len; 98 uint8_t l4_proto; 99 uint8_t is_tunnel; 100 uint16_t outer_ethertype; 101 uint16_t outer_l2_len; 102 uint16_t outer_l3_len; 103 uint8_t outer_l4_proto; 104 uint16_t tso_segsz; 105 uint16_t tunnel_tso_segsz; 106 uint32_t pkt_len; 107 }; 108 109 /* simplified GRE header */ 110 struct simple_gre_hdr { 111 uint16_t flags; 112 uint16_t proto; 113 } __attribute__((__packed__)); 114 115 static uint16_t 116 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 117 { 118 if (ethertype == _htons(ETHER_TYPE_IPv4)) 119 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 120 else /* assume ethertype == ETHER_TYPE_IPv6 */ 121 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 122 } 123 124 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 125 static void 126 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 127 { 128 struct tcp_hdr *tcp_hdr; 129 130 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; 131 info->l4_proto = ipv4_hdr->next_proto_id; 132 133 /* only fill l4_len for TCP, it's useful for TSO */ 134 if (info->l4_proto == IPPROTO_TCP) { 135 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len); 136 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 137 } else 138 info->l4_len = 0; 139 } 140 141 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 142 static void 143 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 144 { 145 struct tcp_hdr *tcp_hdr; 146 147 info->l3_len = sizeof(struct ipv6_hdr); 148 info->l4_proto = ipv6_hdr->proto; 149 150 /* only fill l4_len for TCP, it's useful for TSO */ 151 if (info->l4_proto == IPPROTO_TCP) { 152 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len); 153 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 154 } else 155 info->l4_len = 0; 156 } 157 158 /* 159 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 160 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan 161 * header. The l4_len argument is only set in case of TCP (useful for TSO). 162 */ 163 static void 164 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info) 165 { 166 struct ipv4_hdr *ipv4_hdr; 167 struct ipv6_hdr *ipv6_hdr; 168 169 info->l2_len = sizeof(struct ether_hdr); 170 info->ethertype = eth_hdr->ether_type; 171 172 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) { 173 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); 174 175 info->l2_len += sizeof(struct vlan_hdr); 176 info->ethertype = vlan_hdr->eth_proto; 177 } 178 179 switch (info->ethertype) { 180 case _htons(ETHER_TYPE_IPv4): 181 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len); 182 parse_ipv4(ipv4_hdr, info); 183 break; 184 case _htons(ETHER_TYPE_IPv6): 185 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len); 186 parse_ipv6(ipv6_hdr, info); 187 break; 188 default: 189 info->l4_len = 0; 190 info->l3_len = 0; 191 info->l4_proto = 0; 192 break; 193 } 194 } 195 196 /* Parse a vxlan header */ 197 static void 198 parse_vxlan(struct udp_hdr *udp_hdr, 199 struct testpmd_offload_info *info, 200 uint32_t pkt_type) 201 { 202 struct ether_hdr *eth_hdr; 203 204 /* check udp destination port, 4789 is the default vxlan port 205 * (rfc7348) or that the rx offload flag is set (i40e only 206 * currently) */ 207 if (udp_hdr->dst_port != _htons(4789) && 208 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 209 return; 210 211 info->is_tunnel = 1; 212 info->outer_ethertype = info->ethertype; 213 info->outer_l2_len = info->l2_len; 214 info->outer_l3_len = info->l3_len; 215 info->outer_l4_proto = info->l4_proto; 216 217 eth_hdr = (struct ether_hdr *)((char *)udp_hdr + 218 sizeof(struct udp_hdr) + 219 sizeof(struct vxlan_hdr)); 220 221 parse_ethernet(eth_hdr, info); 222 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */ 223 } 224 225 /* Parse a gre header */ 226 static void 227 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 228 { 229 struct ether_hdr *eth_hdr; 230 struct ipv4_hdr *ipv4_hdr; 231 struct ipv6_hdr *ipv6_hdr; 232 uint8_t gre_len = 0; 233 234 /* check which fields are supported */ 235 if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0) 236 return; 237 238 gre_len += sizeof(struct simple_gre_hdr); 239 240 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 241 gre_len += GRE_KEY_LEN; 242 243 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) { 244 info->is_tunnel = 1; 245 info->outer_ethertype = info->ethertype; 246 info->outer_l2_len = info->l2_len; 247 info->outer_l3_len = info->l3_len; 248 info->outer_l4_proto = info->l4_proto; 249 250 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len); 251 252 parse_ipv4(ipv4_hdr, info); 253 info->ethertype = _htons(ETHER_TYPE_IPv4); 254 info->l2_len = 0; 255 256 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) { 257 info->is_tunnel = 1; 258 info->outer_ethertype = info->ethertype; 259 info->outer_l2_len = info->l2_len; 260 info->outer_l3_len = info->l3_len; 261 info->outer_l4_proto = info->l4_proto; 262 263 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len); 264 265 info->ethertype = _htons(ETHER_TYPE_IPv6); 266 parse_ipv6(ipv6_hdr, info); 267 info->l2_len = 0; 268 269 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) { 270 info->is_tunnel = 1; 271 info->outer_ethertype = info->ethertype; 272 info->outer_l2_len = info->l2_len; 273 info->outer_l3_len = info->l3_len; 274 info->outer_l4_proto = info->l4_proto; 275 276 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len); 277 278 parse_ethernet(eth_hdr, info); 279 } else 280 return; 281 282 info->l2_len += gre_len; 283 } 284 285 286 /* Parse an encapsulated ip or ipv6 header */ 287 static void 288 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 289 { 290 struct ipv4_hdr *ipv4_hdr = encap_ip; 291 struct ipv6_hdr *ipv6_hdr = encap_ip; 292 uint8_t ip_version; 293 294 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 295 296 if (ip_version != 4 && ip_version != 6) 297 return; 298 299 info->is_tunnel = 1; 300 info->outer_ethertype = info->ethertype; 301 info->outer_l2_len = info->l2_len; 302 info->outer_l3_len = info->l3_len; 303 304 if (ip_version == 4) { 305 parse_ipv4(ipv4_hdr, info); 306 info->ethertype = _htons(ETHER_TYPE_IPv4); 307 } else { 308 parse_ipv6(ipv6_hdr, info); 309 info->ethertype = _htons(ETHER_TYPE_IPv6); 310 } 311 info->l2_len = 0; 312 } 313 314 /* if possible, calculate the checksum of a packet in hw or sw, 315 * depending on the testpmd command line configuration */ 316 static uint64_t 317 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 318 uint16_t testpmd_ol_flags) 319 { 320 struct ipv4_hdr *ipv4_hdr = l3_hdr; 321 struct udp_hdr *udp_hdr; 322 struct tcp_hdr *tcp_hdr; 323 struct sctp_hdr *sctp_hdr; 324 uint64_t ol_flags = 0; 325 uint32_t max_pkt_len, tso_segsz = 0; 326 327 /* ensure packet is large enough to require tso */ 328 if (!info->is_tunnel) { 329 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 330 info->tso_segsz; 331 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 332 tso_segsz = info->tso_segsz; 333 } else { 334 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 335 info->l2_len + info->l3_len + info->l4_len + 336 info->tunnel_tso_segsz; 337 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 338 tso_segsz = info->tunnel_tso_segsz; 339 } 340 341 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) { 342 ipv4_hdr = l3_hdr; 343 ipv4_hdr->hdr_checksum = 0; 344 345 ol_flags |= PKT_TX_IPV4; 346 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 347 ol_flags |= PKT_TX_IP_CKSUM; 348 } else { 349 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 350 ol_flags |= PKT_TX_IP_CKSUM; 351 else 352 ipv4_hdr->hdr_checksum = 353 rte_ipv4_cksum(ipv4_hdr); 354 } 355 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6)) 356 ol_flags |= PKT_TX_IPV6; 357 else 358 return 0; /* packet type not supported, nothing to do */ 359 360 if (info->l4_proto == IPPROTO_UDP) { 361 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len); 362 /* do not recalculate udp cksum if it was 0 */ 363 if (udp_hdr->dgram_cksum != 0) { 364 udp_hdr->dgram_cksum = 0; 365 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) 366 ol_flags |= PKT_TX_UDP_CKSUM; 367 else { 368 udp_hdr->dgram_cksum = 369 get_udptcp_checksum(l3_hdr, udp_hdr, 370 info->ethertype); 371 } 372 } 373 } else if (info->l4_proto == IPPROTO_TCP) { 374 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len); 375 tcp_hdr->cksum = 0; 376 if (tso_segsz) 377 ol_flags |= PKT_TX_TCP_SEG; 378 else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) 379 ol_flags |= PKT_TX_TCP_CKSUM; 380 else { 381 tcp_hdr->cksum = 382 get_udptcp_checksum(l3_hdr, tcp_hdr, 383 info->ethertype); 384 } 385 } else if (info->l4_proto == IPPROTO_SCTP) { 386 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len); 387 sctp_hdr->cksum = 0; 388 /* sctp payload must be a multiple of 4 to be 389 * offloaded */ 390 if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) && 391 ((ipv4_hdr->total_length & 0x3) == 0)) { 392 ol_flags |= PKT_TX_SCTP_CKSUM; 393 } else { 394 /* XXX implement CRC32c, example available in 395 * RFC3309 */ 396 } 397 } 398 399 return ol_flags; 400 } 401 402 /* Calculate the checksum of outer header */ 403 static uint64_t 404 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 405 uint16_t testpmd_ol_flags, int tso_enabled) 406 { 407 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr; 408 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr; 409 struct udp_hdr *udp_hdr; 410 uint64_t ol_flags = 0; 411 412 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) { 413 ipv4_hdr->hdr_checksum = 0; 414 ol_flags |= PKT_TX_OUTER_IPV4; 415 416 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 417 ol_flags |= PKT_TX_OUTER_IP_CKSUM; 418 else 419 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 420 } else 421 ol_flags |= PKT_TX_OUTER_IPV6; 422 423 if (info->outer_l4_proto != IPPROTO_UDP) 424 return ol_flags; 425 426 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len); 427 428 /* outer UDP checksum is done in software as we have no hardware 429 * supporting it today, and no API for it. In the other side, for 430 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 431 * set to zero. 432 * 433 * If a packet will be TSOed into small packets by NIC, we cannot 434 * set/calculate a non-zero checksum, because it will be a wrong 435 * value after the packet be split into several small packets. 436 */ 437 if (tso_enabled) 438 udp_hdr->dgram_cksum = 0; 439 440 /* do not recalculate udp cksum if it was 0 */ 441 if (udp_hdr->dgram_cksum != 0) { 442 udp_hdr->dgram_cksum = 0; 443 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) 444 udp_hdr->dgram_cksum = 445 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 446 else 447 udp_hdr->dgram_cksum = 448 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 449 } 450 451 return ol_flags; 452 } 453 454 /* 455 * Helper function. 456 * Performs actual copying. 457 * Returns number of segments in the destination mbuf on success, 458 * or negative error code on failure. 459 */ 460 static int 461 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 462 uint16_t seglen[], uint8_t nb_seg) 463 { 464 uint32_t dlen, slen, tlen; 465 uint32_t i, len; 466 const struct rte_mbuf *m; 467 const uint8_t *src; 468 uint8_t *dst; 469 470 dlen = 0; 471 slen = 0; 472 tlen = 0; 473 474 dst = NULL; 475 src = NULL; 476 477 m = ms; 478 i = 0; 479 while (ms != NULL && i != nb_seg) { 480 481 if (slen == 0) { 482 slen = rte_pktmbuf_data_len(ms); 483 src = rte_pktmbuf_mtod(ms, const uint8_t *); 484 } 485 486 if (dlen == 0) { 487 dlen = RTE_MIN(seglen[i], slen); 488 md[i]->data_len = dlen; 489 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 490 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 491 } 492 493 len = RTE_MIN(slen, dlen); 494 memcpy(dst, src, len); 495 tlen += len; 496 slen -= len; 497 dlen -= len; 498 src += len; 499 dst += len; 500 501 if (slen == 0) 502 ms = ms->next; 503 if (dlen == 0) 504 i++; 505 } 506 507 if (ms != NULL) 508 return -ENOBUFS; 509 else if (tlen != m->pkt_len) 510 return -EINVAL; 511 512 md[0]->nb_segs = nb_seg; 513 md[0]->pkt_len = tlen; 514 md[0]->vlan_tci = m->vlan_tci; 515 md[0]->vlan_tci_outer = m->vlan_tci_outer; 516 md[0]->ol_flags = m->ol_flags; 517 md[0]->tx_offload = m->tx_offload; 518 519 return nb_seg; 520 } 521 522 /* 523 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 524 * Copy packet contents and offload information into then new segmented mbuf. 525 */ 526 static struct rte_mbuf * 527 pkt_copy_split(const struct rte_mbuf *pkt) 528 { 529 int32_t n, rc; 530 uint32_t i, len, nb_seg; 531 struct rte_mempool *mp; 532 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 533 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 534 535 mp = current_fwd_lcore()->mbp; 536 537 if (tx_pkt_split == TX_PKT_SPLIT_RND) 538 nb_seg = random() % tx_pkt_nb_segs + 1; 539 else 540 nb_seg = tx_pkt_nb_segs; 541 542 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 543 544 /* calculate number of segments to use and their length. */ 545 len = 0; 546 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 547 len += seglen[i]; 548 md[i] = NULL; 549 } 550 551 n = pkt->pkt_len - len; 552 553 /* update size of the last segment to fit rest of the packet */ 554 if (n >= 0) { 555 seglen[i - 1] += n; 556 len += n; 557 } 558 559 nb_seg = i; 560 while (i != 0) { 561 p = rte_pktmbuf_alloc(mp); 562 if (p == NULL) { 563 RTE_LOG(ERR, USER1, 564 "failed to allocate %u-th of %u mbuf " 565 "from mempool: %s\n", 566 nb_seg - i, nb_seg, mp->name); 567 break; 568 } 569 570 md[--i] = p; 571 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 572 RTE_LOG(ERR, USER1, "mempool %s, %u-th segment: " 573 "expected seglen: %u, " 574 "actual mbuf tailroom: %u\n", 575 mp->name, i, seglen[i], 576 rte_pktmbuf_tailroom(md[i])); 577 break; 578 } 579 } 580 581 /* all mbufs successfully allocated, do copy */ 582 if (i == 0) { 583 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 584 if (rc < 0) 585 RTE_LOG(ERR, USER1, 586 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 587 "into %u segments failed with error code: %d\n", 588 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 589 590 /* figure out how many mbufs to free. */ 591 i = RTE_MAX(rc, 0); 592 } 593 594 /* free unused mbufs */ 595 for (; i != nb_seg; i++) { 596 rte_pktmbuf_free_seg(md[i]); 597 md[i] = NULL; 598 } 599 600 return md[0]; 601 } 602 603 /* 604 * Receive a burst of packets, and for each packet: 605 * - parse packet, and try to recognize a supported packet type (1) 606 * - if it's not a supported packet type, don't touch the packet, else: 607 * - reprocess the checksum of all supported layers. This is done in SW 608 * or HW, depending on testpmd command line configuration 609 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 610 * segmentation offload (this implies HW TCP checksum) 611 * Then transmit packets on the output port. 612 * 613 * (1) Supported packets are: 614 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 615 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 616 * UDP|TCP|SCTP 617 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 618 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 619 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 620 * 621 * The testpmd command line for this forward engine sets the flags 622 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 623 * wether a checksum must be calculated in software or in hardware. The 624 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 625 * OUTER_IP is only useful for tunnel packets. 626 */ 627 static void 628 pkt_burst_checksum_forward(struct fwd_stream *fs) 629 { 630 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 631 struct rte_port *txp; 632 struct rte_mbuf *m, *p; 633 struct ether_hdr *eth_hdr; 634 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 635 uint16_t nb_rx; 636 uint16_t nb_tx; 637 uint16_t nb_prep; 638 uint16_t i; 639 uint64_t rx_ol_flags, tx_ol_flags; 640 uint16_t testpmd_ol_flags; 641 uint32_t retry; 642 uint32_t rx_bad_ip_csum; 643 uint32_t rx_bad_l4_csum; 644 struct testpmd_offload_info info; 645 646 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 647 uint64_t start_tsc; 648 uint64_t end_tsc; 649 uint64_t core_cycles; 650 #endif 651 652 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 653 start_tsc = rte_rdtsc(); 654 #endif 655 656 /* receive a burst of packet */ 657 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 658 nb_pkt_per_burst); 659 if (unlikely(nb_rx == 0)) 660 return; 661 662 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 663 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++; 664 #endif 665 fs->rx_packets += nb_rx; 666 rx_bad_ip_csum = 0; 667 rx_bad_l4_csum = 0; 668 669 txp = &ports[fs->tx_port]; 670 testpmd_ol_flags = txp->tx_ol_flags; 671 memset(&info, 0, sizeof(info)); 672 info.tso_segsz = txp->tso_segsz; 673 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 674 675 for (i = 0; i < nb_rx; i++) { 676 if (likely(i < nb_rx - 1)) 677 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 678 void *)); 679 680 m = pkts_burst[i]; 681 info.is_tunnel = 0; 682 info.pkt_len = rte_pktmbuf_pkt_len(m); 683 tx_ol_flags = 0; 684 rx_ol_flags = m->ol_flags; 685 686 /* Update the L3/L4 checksum error packet statistics */ 687 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD) 688 rx_bad_ip_csum += 1; 689 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD) 690 rx_bad_l4_csum += 1; 691 692 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 693 * and inner headers */ 694 695 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 696 ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 697 ð_hdr->d_addr); 698 ether_addr_copy(&ports[fs->tx_port].eth_addr, 699 ð_hdr->s_addr); 700 parse_ethernet(eth_hdr, &info); 701 l3_hdr = (char *)eth_hdr + info.l2_len; 702 703 /* check if it's a supported tunnel */ 704 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) { 705 if (info.l4_proto == IPPROTO_UDP) { 706 struct udp_hdr *udp_hdr; 707 708 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + 709 info.l3_len); 710 parse_vxlan(udp_hdr, &info, m->packet_type); 711 if (info.is_tunnel) 712 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN; 713 } else if (info.l4_proto == IPPROTO_GRE) { 714 struct simple_gre_hdr *gre_hdr; 715 716 gre_hdr = (struct simple_gre_hdr *) 717 ((char *)l3_hdr + info.l3_len); 718 parse_gre(gre_hdr, &info); 719 if (info.is_tunnel) 720 tx_ol_flags |= PKT_TX_TUNNEL_GRE; 721 } else if (info.l4_proto == IPPROTO_IPIP) { 722 void *encap_ip_hdr; 723 724 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 725 parse_encap_ip(encap_ip_hdr, &info); 726 if (info.is_tunnel) 727 tx_ol_flags |= PKT_TX_TUNNEL_IPIP; 728 } 729 } 730 731 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 732 if (info.is_tunnel) { 733 outer_l3_hdr = l3_hdr; 734 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 735 } 736 737 /* step 2: depending on user command line configuration, 738 * recompute checksum either in software or flag the 739 * mbuf to offload the calculation to the NIC. If TSO 740 * is configured, prepare the mbuf for TCP segmentation. */ 741 742 /* process checksums of inner headers first */ 743 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 744 testpmd_ol_flags); 745 746 /* Then process outer headers if any. Note that the software 747 * checksum will be wrong if one of the inner checksums is 748 * processed in hardware. */ 749 if (info.is_tunnel == 1) { 750 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 751 testpmd_ol_flags, 752 !!(tx_ol_flags & PKT_TX_TCP_SEG)); 753 } 754 755 /* step 3: fill the mbuf meta data (flags and header lengths) */ 756 757 if (info.is_tunnel == 1) { 758 if (info.tunnel_tso_segsz || 759 (testpmd_ol_flags & 760 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) || 761 (tx_ol_flags & PKT_TX_OUTER_IPV6)) { 762 m->outer_l2_len = info.outer_l2_len; 763 m->outer_l3_len = info.outer_l3_len; 764 m->l2_len = info.l2_len; 765 m->l3_len = info.l3_len; 766 m->l4_len = info.l4_len; 767 m->tso_segsz = info.tunnel_tso_segsz; 768 } 769 else { 770 /* if there is a outer UDP cksum 771 processed in sw and the inner in hw, 772 the outer checksum will be wrong as 773 the payload will be modified by the 774 hardware */ 775 m->l2_len = info.outer_l2_len + 776 info.outer_l3_len + info.l2_len; 777 m->l3_len = info.l3_len; 778 m->l4_len = info.l4_len; 779 } 780 } else { 781 /* this is only useful if an offload flag is 782 * set, but it does not hurt to fill it in any 783 * case */ 784 m->l2_len = info.l2_len; 785 m->l3_len = info.l3_len; 786 m->l4_len = info.l4_len; 787 m->tso_segsz = info.tso_segsz; 788 } 789 m->ol_flags = tx_ol_flags; 790 791 /* Do split & copy for the packet. */ 792 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 793 p = pkt_copy_split(m); 794 if (p != NULL) { 795 rte_pktmbuf_free(m); 796 m = p; 797 pkts_burst[i] = m; 798 } 799 } 800 801 /* if verbose mode is enabled, dump debug info */ 802 if (verbose_level > 0) { 803 char buf[256]; 804 805 printf("-----------------\n"); 806 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 807 fs->rx_port, m, m->pkt_len, m->nb_segs); 808 /* dump rx parsed packet info */ 809 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 810 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 811 "l4_proto=%d l4_len=%d flags=%s\n", 812 info.l2_len, rte_be_to_cpu_16(info.ethertype), 813 info.l3_len, info.l4_proto, info.l4_len, buf); 814 if (rx_ol_flags & PKT_RX_LRO) 815 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 816 if (info.is_tunnel == 1) 817 printf("rx: outer_l2_len=%d outer_ethertype=%x " 818 "outer_l3_len=%d\n", info.outer_l2_len, 819 rte_be_to_cpu_16(info.outer_ethertype), 820 info.outer_l3_len); 821 /* dump tx packet info */ 822 if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM | 823 TESTPMD_TX_OFFLOAD_UDP_CKSUM | 824 TESTPMD_TX_OFFLOAD_TCP_CKSUM | 825 TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) || 826 info.tso_segsz != 0) 827 printf("tx: m->l2_len=%d m->l3_len=%d " 828 "m->l4_len=%d\n", 829 m->l2_len, m->l3_len, m->l4_len); 830 if (info.is_tunnel == 1) { 831 if ((testpmd_ol_flags & 832 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) || 833 (tx_ol_flags & PKT_TX_OUTER_IPV6)) 834 printf("tx: m->outer_l2_len=%d " 835 "m->outer_l3_len=%d\n", 836 m->outer_l2_len, 837 m->outer_l3_len); 838 if (info.tunnel_tso_segsz != 0 && 839 (m->ol_flags & PKT_TX_TCP_SEG)) 840 printf("tx: m->tso_segsz=%d\n", 841 m->tso_segsz); 842 } else if (info.tso_segsz != 0 && 843 (m->ol_flags & PKT_TX_TCP_SEG)) 844 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 845 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 846 printf("tx: flags=%s", buf); 847 printf("\n"); 848 } 849 } 850 851 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 852 pkts_burst, nb_rx); 853 if (nb_prep != nb_rx) 854 printf("Preparing packet burst to transmit failed: %s\n", 855 rte_strerror(rte_errno)); 856 857 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, 858 nb_prep); 859 860 /* 861 * Retry if necessary 862 */ 863 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 864 retry = 0; 865 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 866 rte_delay_us(burst_tx_delay_time); 867 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 868 &pkts_burst[nb_tx], nb_rx - nb_tx); 869 } 870 } 871 fs->tx_packets += nb_tx; 872 fs->rx_bad_ip_csum += rx_bad_ip_csum; 873 fs->rx_bad_l4_csum += rx_bad_l4_csum; 874 875 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 876 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++; 877 #endif 878 if (unlikely(nb_tx < nb_rx)) { 879 fs->fwd_dropped += (nb_rx - nb_tx); 880 do { 881 rte_pktmbuf_free(pkts_burst[nb_tx]); 882 } while (++nb_tx < nb_rx); 883 } 884 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 885 end_tsc = rte_rdtsc(); 886 core_cycles = (end_tsc - start_tsc); 887 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles); 888 #endif 889 } 890 891 struct fwd_engine csum_fwd_engine = { 892 .fwd_mode_name = "csum", 893 .port_fwd_begin = NULL, 894 .port_fwd_end = NULL, 895 .packet_fwd = pkt_burst_checksum_forward, 896 }; 897