1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_branch_prediction.h> 28 #include <rte_mempool.h> 29 #include <rte_mbuf.h> 30 #include <rte_interrupts.h> 31 #include <rte_pci.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_ip.h> 35 #include <rte_tcp.h> 36 #include <rte_udp.h> 37 #include <rte_vxlan.h> 38 #include <rte_sctp.h> 39 #include <rte_gtp.h> 40 #include <rte_prefetch.h> 41 #include <rte_string_fns.h> 42 #include <rte_flow.h> 43 #ifdef RTE_LIB_GRO 44 #include <rte_gro.h> 45 #endif 46 #ifdef RTE_LIB_GSO 47 #include <rte_gso.h> 48 #endif 49 #include <rte_geneve.h> 50 51 #include "testpmd.h" 52 53 #define IP_DEFTTL 64 /* from RFC 1340. */ 54 55 #define GRE_CHECKSUM_PRESENT 0x8000 56 #define GRE_KEY_PRESENT 0x2000 57 #define GRE_SEQUENCE_PRESENT 0x1000 58 #define GRE_EXT_LEN 4 59 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 60 GRE_SEQUENCE_PRESENT) 61 62 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 63 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 64 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 65 #else 66 #define _htons(x) (x) 67 #endif 68 69 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; 70 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; 71 72 /* structure that caches offload info for the current packet */ 73 struct testpmd_offload_info { 74 uint16_t ethertype; 75 #ifdef RTE_LIB_GSO 76 uint8_t gso_enable; 77 #endif 78 uint16_t l2_len; 79 uint16_t l3_len; 80 uint16_t l4_len; 81 uint8_t l4_proto; 82 uint8_t is_tunnel; 83 uint16_t outer_ethertype; 84 uint16_t outer_l2_len; 85 uint16_t outer_l3_len; 86 uint8_t outer_l4_proto; 87 uint16_t tso_segsz; 88 uint16_t tunnel_tso_segsz; 89 uint32_t pkt_len; 90 }; 91 92 /* simplified GRE header */ 93 struct simple_gre_hdr { 94 uint16_t flags; 95 uint16_t proto; 96 } __rte_packed; 97 98 static uint16_t 99 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off, 100 uint16_t ethertype) 101 { 102 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 103 return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 104 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ 105 return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 106 } 107 108 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 109 static void 110 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 111 { 112 struct rte_tcp_hdr *tcp_hdr; 113 114 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); 115 info->l4_proto = ipv4_hdr->next_proto_id; 116 117 /* only fill l4_len for TCP, it's useful for TSO */ 118 if (info->l4_proto == IPPROTO_TCP) { 119 tcp_hdr = (struct rte_tcp_hdr *) 120 ((char *)ipv4_hdr + info->l3_len); 121 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 122 } else if (info->l4_proto == IPPROTO_UDP) 123 info->l4_len = sizeof(struct rte_udp_hdr); 124 else 125 info->l4_len = 0; 126 } 127 128 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 129 static void 130 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 131 { 132 struct rte_tcp_hdr *tcp_hdr; 133 134 info->l3_len = sizeof(struct rte_ipv6_hdr); 135 info->l4_proto = ipv6_hdr->proto; 136 137 /* only fill l4_len for TCP, it's useful for TSO */ 138 if (info->l4_proto == IPPROTO_TCP) { 139 tcp_hdr = (struct rte_tcp_hdr *) 140 ((char *)ipv6_hdr + info->l3_len); 141 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 142 } else if (info->l4_proto == IPPROTO_UDP) 143 info->l4_len = sizeof(struct rte_udp_hdr); 144 else 145 info->l4_len = 0; 146 } 147 148 /* 149 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 150 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN 151 * headers. The l4_len argument is only set in case of TCP (useful for TSO). 152 */ 153 static void 154 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 155 { 156 struct rte_ipv4_hdr *ipv4_hdr; 157 struct rte_ipv6_hdr *ipv6_hdr; 158 struct rte_vlan_hdr *vlan_hdr; 159 160 info->l2_len = sizeof(struct rte_ether_hdr); 161 info->ethertype = eth_hdr->ether_type; 162 163 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || 164 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { 165 vlan_hdr = (struct rte_vlan_hdr *) 166 ((char *)eth_hdr + info->l2_len); 167 info->l2_len += sizeof(struct rte_vlan_hdr); 168 info->ethertype = vlan_hdr->eth_proto; 169 } 170 171 switch (info->ethertype) { 172 case _htons(RTE_ETHER_TYPE_IPV4): 173 ipv4_hdr = (struct rte_ipv4_hdr *) 174 ((char *)eth_hdr + info->l2_len); 175 parse_ipv4(ipv4_hdr, info); 176 break; 177 case _htons(RTE_ETHER_TYPE_IPV6): 178 ipv6_hdr = (struct rte_ipv6_hdr *) 179 ((char *)eth_hdr + info->l2_len); 180 parse_ipv6(ipv6_hdr, info); 181 break; 182 default: 183 info->l4_len = 0; 184 info->l3_len = 0; 185 info->l4_proto = 0; 186 break; 187 } 188 } 189 190 /* Fill in outer layers length */ 191 static void 192 update_tunnel_outer(struct testpmd_offload_info *info) 193 { 194 info->is_tunnel = 1; 195 info->outer_ethertype = info->ethertype; 196 info->outer_l2_len = info->l2_len; 197 info->outer_l3_len = info->l3_len; 198 info->outer_l4_proto = info->l4_proto; 199 } 200 201 /* 202 * Parse a GTP protocol header. 203 * No optional fields and next extension header type. 204 */ 205 static void 206 parse_gtp(struct rte_udp_hdr *udp_hdr, 207 struct testpmd_offload_info *info) 208 { 209 struct rte_ipv4_hdr *ipv4_hdr; 210 struct rte_ipv6_hdr *ipv6_hdr; 211 struct rte_gtp_hdr *gtp_hdr; 212 uint8_t gtp_len = sizeof(*gtp_hdr); 213 uint8_t ip_ver; 214 215 /* Check udp destination port. */ 216 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && 217 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && 218 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) 219 return; 220 221 update_tunnel_outer(info); 222 info->l2_len = 0; 223 224 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + 225 sizeof(struct rte_udp_hdr)); 226 if (gtp_hdr->e || gtp_hdr->s || gtp_hdr->pn) 227 gtp_len += sizeof(struct rte_gtp_hdr_ext_word); 228 /* 229 * Check message type. If message type is 0xff, it is 230 * a GTP data packet. If not, it is a GTP control packet 231 */ 232 if (gtp_hdr->msg_type == 0xff) { 233 ip_ver = *(uint8_t *)((char *)gtp_hdr + gtp_len); 234 ip_ver = (ip_ver) & 0xf0; 235 236 if (ip_ver == RTE_GTP_TYPE_IPV4) { 237 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + 238 gtp_len); 239 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 240 parse_ipv4(ipv4_hdr, info); 241 } else if (ip_ver == RTE_GTP_TYPE_IPV6) { 242 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + 243 gtp_len); 244 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 245 parse_ipv6(ipv6_hdr, info); 246 } 247 } else { 248 info->ethertype = 0; 249 info->l4_len = 0; 250 info->l3_len = 0; 251 info->l4_proto = 0; 252 } 253 254 info->l2_len += RTE_ETHER_GTP_HLEN; 255 } 256 257 /* Parse a vxlan header */ 258 static void 259 parse_vxlan(struct rte_udp_hdr *udp_hdr, 260 struct testpmd_offload_info *info) 261 { 262 struct rte_ether_hdr *eth_hdr; 263 264 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the 265 * default vxlan port (rfc7348) or that the rx offload flag is set 266 * (i40e only currently) 267 */ 268 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT)) 269 return; 270 271 update_tunnel_outer(info); 272 273 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 274 sizeof(struct rte_udp_hdr) + 275 sizeof(struct rte_vxlan_hdr)); 276 277 parse_ethernet(eth_hdr, info); 278 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 279 } 280 281 /* Parse a vxlan-gpe header */ 282 static void 283 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 284 struct testpmd_offload_info *info) 285 { 286 struct rte_ether_hdr *eth_hdr; 287 struct rte_ipv4_hdr *ipv4_hdr; 288 struct rte_ipv6_hdr *ipv6_hdr; 289 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 290 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 291 292 /* Check udp destination port. */ 293 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 294 return; 295 296 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 297 sizeof(struct rte_udp_hdr)); 298 299 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 300 RTE_VXLAN_GPE_TYPE_IPV4) { 301 update_tunnel_outer(info); 302 303 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 304 vxlan_gpe_len); 305 306 parse_ipv4(ipv4_hdr, info); 307 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 308 info->l2_len = 0; 309 310 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 311 update_tunnel_outer(info); 312 313 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 314 vxlan_gpe_len); 315 316 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 317 parse_ipv6(ipv6_hdr, info); 318 info->l2_len = 0; 319 320 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 321 update_tunnel_outer(info); 322 323 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 324 vxlan_gpe_len); 325 326 parse_ethernet(eth_hdr, info); 327 } else 328 return; 329 330 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 331 } 332 333 /* Parse a geneve header */ 334 static void 335 parse_geneve(struct rte_udp_hdr *udp_hdr, 336 struct testpmd_offload_info *info) 337 { 338 struct rte_ether_hdr *eth_hdr; 339 struct rte_ipv4_hdr *ipv4_hdr; 340 struct rte_ipv6_hdr *ipv6_hdr; 341 struct rte_geneve_hdr *geneve_hdr; 342 uint16_t geneve_len; 343 344 /* Check udp destination port. */ 345 if (udp_hdr->dst_port != _htons(geneve_udp_port)) 346 return; 347 348 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + 349 sizeof(struct rte_udp_hdr)); 350 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; 351 if (!geneve_hdr->proto || geneve_hdr->proto == 352 _htons(RTE_ETHER_TYPE_IPV4)) { 353 update_tunnel_outer(info); 354 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + 355 geneve_len); 356 parse_ipv4(ipv4_hdr, info); 357 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 358 info->l2_len = 0; 359 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 360 update_tunnel_outer(info); 361 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + 362 geneve_len); 363 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 364 parse_ipv6(ipv6_hdr, info); 365 info->l2_len = 0; 366 367 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { 368 update_tunnel_outer(info); 369 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + 370 geneve_len); 371 parse_ethernet(eth_hdr, info); 372 } else 373 return; 374 375 info->l2_len += 376 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + 377 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); 378 } 379 380 /* Parse a gre header */ 381 static void 382 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 383 { 384 struct rte_ether_hdr *eth_hdr; 385 struct rte_ipv4_hdr *ipv4_hdr; 386 struct rte_ipv6_hdr *ipv6_hdr; 387 uint8_t gre_len = 0; 388 389 gre_len += sizeof(struct simple_gre_hdr); 390 391 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 392 gre_len += GRE_EXT_LEN; 393 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 394 gre_len += GRE_EXT_LEN; 395 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 396 gre_len += GRE_EXT_LEN; 397 398 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { 399 update_tunnel_outer(info); 400 401 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 402 403 parse_ipv4(ipv4_hdr, info); 404 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 405 info->l2_len = 0; 406 407 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 408 update_tunnel_outer(info); 409 410 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 411 412 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 413 parse_ipv6(ipv6_hdr, info); 414 info->l2_len = 0; 415 416 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 417 update_tunnel_outer(info); 418 419 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 420 421 parse_ethernet(eth_hdr, info); 422 } else 423 return; 424 425 info->l2_len += gre_len; 426 } 427 428 429 /* Parse an encapsulated ip or ipv6 header */ 430 static void 431 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 432 { 433 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 434 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 435 uint8_t ip_version; 436 437 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 438 439 if (ip_version != 4 && ip_version != 6) 440 return; 441 442 info->is_tunnel = 1; 443 info->outer_ethertype = info->ethertype; 444 info->outer_l2_len = info->l2_len; 445 info->outer_l3_len = info->l3_len; 446 447 if (ip_version == 4) { 448 parse_ipv4(ipv4_hdr, info); 449 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 450 } else { 451 parse_ipv6(ipv6_hdr, info); 452 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 453 } 454 info->l2_len = 0; 455 } 456 457 /* if possible, calculate the checksum of a packet in hw or sw, 458 * depending on the testpmd command line configuration */ 459 static uint64_t 460 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 461 uint64_t tx_offloads, struct rte_mbuf *m) 462 { 463 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 464 struct rte_udp_hdr *udp_hdr; 465 struct rte_tcp_hdr *tcp_hdr; 466 struct rte_sctp_hdr *sctp_hdr; 467 uint64_t ol_flags = 0; 468 uint32_t max_pkt_len, tso_segsz = 0; 469 uint16_t l4_off; 470 471 /* ensure packet is large enough to require tso */ 472 if (!info->is_tunnel) { 473 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 474 info->tso_segsz; 475 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 476 tso_segsz = info->tso_segsz; 477 } else { 478 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 479 info->l2_len + info->l3_len + info->l4_len + 480 info->tunnel_tso_segsz; 481 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 482 tso_segsz = info->tunnel_tso_segsz; 483 } 484 485 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 486 ipv4_hdr = l3_hdr; 487 488 ol_flags |= RTE_MBUF_F_TX_IPV4; 489 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 490 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 491 } else { 492 if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) { 493 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 494 } else { 495 ipv4_hdr->hdr_checksum = 0; 496 ipv4_hdr->hdr_checksum = 497 rte_ipv4_cksum(ipv4_hdr); 498 } 499 } 500 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) 501 ol_flags |= RTE_MBUF_F_TX_IPV6; 502 else 503 return 0; /* packet type not supported, nothing to do */ 504 505 if (info->l4_proto == IPPROTO_UDP) { 506 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 507 /* do not recalculate udp cksum if it was 0 */ 508 if (udp_hdr->dgram_cksum != 0) { 509 if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) { 510 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM; 511 } else { 512 if (info->is_tunnel) 513 l4_off = info->outer_l2_len + 514 info->outer_l3_len + 515 info->l2_len + info->l3_len; 516 else 517 l4_off = info->l2_len + info->l3_len; 518 udp_hdr->dgram_cksum = 0; 519 udp_hdr->dgram_cksum = 520 get_udptcp_checksum(m, l3_hdr, l4_off, 521 info->ethertype); 522 } 523 } 524 #ifdef RTE_LIB_GSO 525 if (info->gso_enable) 526 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 527 #endif 528 } else if (info->l4_proto == IPPROTO_TCP) { 529 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 530 if (tso_segsz) 531 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 532 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) { 533 ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM; 534 } else { 535 if (info->is_tunnel) 536 l4_off = info->outer_l2_len + info->outer_l3_len + 537 info->l2_len + info->l3_len; 538 else 539 l4_off = info->l2_len + info->l3_len; 540 tcp_hdr->cksum = 0; 541 tcp_hdr->cksum = 542 get_udptcp_checksum(m, l3_hdr, l4_off, 543 info->ethertype); 544 } 545 #ifdef RTE_LIB_GSO 546 if (info->gso_enable) 547 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 548 #endif 549 } else if (info->l4_proto == IPPROTO_SCTP) { 550 sctp_hdr = (struct rte_sctp_hdr *) 551 ((char *)l3_hdr + info->l3_len); 552 /* sctp payload must be a multiple of 4 to be 553 * offloaded */ 554 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) && 555 ((ipv4_hdr->total_length & 0x3) == 0)) { 556 ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM; 557 } else { 558 sctp_hdr->cksum = 0; 559 /* XXX implement CRC32c, example available in 560 * RFC3309 */ 561 } 562 } 563 564 return ol_flags; 565 } 566 567 /* Calculate the checksum of outer header */ 568 static uint64_t 569 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 570 uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m) 571 { 572 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 573 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 574 struct rte_udp_hdr *udp_hdr; 575 uint64_t ol_flags = 0; 576 577 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 578 ipv4_hdr->hdr_checksum = 0; 579 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4; 580 581 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) 582 ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM; 583 else 584 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 585 } else 586 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6; 587 588 if (info->outer_l4_proto != IPPROTO_UDP) 589 return ol_flags; 590 591 udp_hdr = (struct rte_udp_hdr *) 592 ((char *)outer_l3_hdr + info->outer_l3_len); 593 594 if (tso_enabled) 595 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 596 597 /* Skip SW outer UDP checksum generation if HW supports it */ 598 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) { 599 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 600 udp_hdr->dgram_cksum 601 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 602 else 603 udp_hdr->dgram_cksum 604 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 605 606 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM; 607 return ol_flags; 608 } 609 610 /* outer UDP checksum is done in software. In the other side, for 611 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 612 * set to zero. 613 * 614 * If a packet will be TSOed into small packets by NIC, we cannot 615 * set/calculate a non-zero checksum, because it will be a wrong 616 * value after the packet be split into several small packets. 617 */ 618 if (tso_enabled) 619 udp_hdr->dgram_cksum = 0; 620 621 /* do not recalculate udp cksum if it was 0 */ 622 if (udp_hdr->dgram_cksum != 0) { 623 udp_hdr->dgram_cksum = 0; 624 udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr, 625 info->outer_l2_len + info->outer_l3_len, 626 info->outer_ethertype); 627 } 628 629 return ol_flags; 630 } 631 632 /* 633 * Helper function. 634 * Performs actual copying. 635 * Returns number of segments in the destination mbuf on success, 636 * or negative error code on failure. 637 */ 638 static int 639 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 640 uint16_t seglen[], uint8_t nb_seg) 641 { 642 uint32_t dlen, slen, tlen; 643 uint32_t i, len; 644 const struct rte_mbuf *m; 645 const uint8_t *src; 646 uint8_t *dst; 647 648 dlen = 0; 649 slen = 0; 650 tlen = 0; 651 652 dst = NULL; 653 src = NULL; 654 655 m = ms; 656 i = 0; 657 while (ms != NULL && i != nb_seg) { 658 659 if (slen == 0) { 660 slen = rte_pktmbuf_data_len(ms); 661 src = rte_pktmbuf_mtod(ms, const uint8_t *); 662 } 663 664 if (dlen == 0) { 665 dlen = RTE_MIN(seglen[i], slen); 666 md[i]->data_len = dlen; 667 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 668 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 669 } 670 671 len = RTE_MIN(slen, dlen); 672 memcpy(dst, src, len); 673 tlen += len; 674 slen -= len; 675 dlen -= len; 676 src += len; 677 dst += len; 678 679 if (slen == 0) 680 ms = ms->next; 681 if (dlen == 0) 682 i++; 683 } 684 685 if (ms != NULL) 686 return -ENOBUFS; 687 else if (tlen != m->pkt_len) 688 return -EINVAL; 689 690 md[0]->nb_segs = nb_seg; 691 md[0]->pkt_len = tlen; 692 md[0]->vlan_tci = m->vlan_tci; 693 md[0]->vlan_tci_outer = m->vlan_tci_outer; 694 md[0]->ol_flags = m->ol_flags; 695 md[0]->tx_offload = m->tx_offload; 696 697 return nb_seg; 698 } 699 700 /* 701 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 702 * Copy packet contents and offload information into the new segmented mbuf. 703 */ 704 static struct rte_mbuf * 705 pkt_copy_split(const struct rte_mbuf *pkt) 706 { 707 int32_t n, rc; 708 uint32_t i, len, nb_seg; 709 struct rte_mempool *mp; 710 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 711 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 712 713 mp = current_fwd_lcore()->mbp; 714 715 if (tx_pkt_split == TX_PKT_SPLIT_RND) 716 nb_seg = rte_rand() % tx_pkt_nb_segs + 1; 717 else 718 nb_seg = tx_pkt_nb_segs; 719 720 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 721 722 /* calculate number of segments to use and their length. */ 723 len = 0; 724 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 725 len += seglen[i]; 726 md[i] = NULL; 727 } 728 729 n = pkt->pkt_len - len; 730 731 /* update size of the last segment to fit rest of the packet */ 732 if (n >= 0) { 733 seglen[i - 1] += n; 734 len += n; 735 } 736 737 nb_seg = i; 738 while (i != 0) { 739 p = rte_pktmbuf_alloc(mp); 740 if (p == NULL) { 741 TESTPMD_LOG(ERR, 742 "failed to allocate %u-th of %u mbuf " 743 "from mempool: %s\n", 744 nb_seg - i, nb_seg, mp->name); 745 break; 746 } 747 748 md[--i] = p; 749 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 750 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 751 "expected seglen: %u, " 752 "actual mbuf tailroom: %u\n", 753 mp->name, i, seglen[i], 754 rte_pktmbuf_tailroom(md[i])); 755 break; 756 } 757 } 758 759 /* all mbufs successfully allocated, do copy */ 760 if (i == 0) { 761 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 762 if (rc < 0) 763 TESTPMD_LOG(ERR, 764 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 765 "into %u segments failed with error code: %d\n", 766 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 767 768 /* figure out how many mbufs to free. */ 769 i = RTE_MAX(rc, 0); 770 } 771 772 /* free unused mbufs */ 773 for (; i != nb_seg; i++) { 774 rte_pktmbuf_free_seg(md[i]); 775 md[i] = NULL; 776 } 777 778 return md[0]; 779 } 780 781 #if defined(RTE_LIB_GRO) || defined(RTE_LIB_GSO) 782 /* 783 * Re-calculate IP checksum for merged/fragmented packets. 784 */ 785 static void 786 pkts_ip_csum_recalc(struct rte_mbuf **pkts_burst, const uint16_t nb_pkts, uint64_t tx_offloads) 787 { 788 int i; 789 struct rte_ipv4_hdr *ipv4_hdr; 790 for (i = 0; i < nb_pkts; i++) { 791 if ((pkts_burst[i]->ol_flags & RTE_MBUF_F_TX_IPV4) && 792 (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) == 0) { 793 ipv4_hdr = rte_pktmbuf_mtod_offset(pkts_burst[i], 794 struct rte_ipv4_hdr *, 795 pkts_burst[i]->l2_len); 796 ipv4_hdr->hdr_checksum = 0; 797 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 798 } 799 } 800 } 801 #endif 802 803 /* 804 * Receive a burst of packets, and for each packet: 805 * - parse packet, and try to recognize a supported packet type (1) 806 * - if it's not a supported packet type, don't touch the packet, else: 807 * - reprocess the checksum of all supported layers. This is done in SW 808 * or HW, depending on testpmd command line configuration 809 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 810 * segmentation offload (this implies HW TCP checksum) 811 * Then transmit packets on the output port. 812 * 813 * (1) Supported packets are: 814 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 815 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 816 * UDP|TCP|SCTP 817 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 818 * UDP|TCP|SCTP 819 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 820 * UDP|TCP|SCTP 821 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP 822 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 823 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 824 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 825 * 826 * The testpmd command line for this forward engine sets the flags 827 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 828 * whether a checksum must be calculated in software or in hardware. The 829 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 830 * OUTER_IP is only useful for tunnel packets. 831 */ 832 static void 833 pkt_burst_checksum_forward(struct fwd_stream *fs) 834 { 835 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 836 #ifdef RTE_LIB_GSO 837 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 838 struct rte_gso_ctx *gso_ctx; 839 #endif 840 struct rte_mbuf **tx_pkts_burst; 841 struct rte_port *txp; 842 struct rte_mbuf *m, *p; 843 struct rte_ether_hdr *eth_hdr; 844 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 845 #ifdef RTE_LIB_GRO 846 void **gro_ctx; 847 uint16_t gro_pkts_num; 848 uint8_t gro_enable; 849 #endif 850 uint16_t nb_rx; 851 uint16_t nb_tx; 852 uint16_t nb_prep; 853 uint16_t i; 854 uint64_t rx_ol_flags, tx_ol_flags; 855 uint64_t tx_offloads; 856 uint32_t retry; 857 uint32_t rx_bad_ip_csum; 858 uint32_t rx_bad_l4_csum; 859 uint32_t rx_bad_outer_l4_csum; 860 uint32_t rx_bad_outer_ip_csum; 861 struct testpmd_offload_info info; 862 863 uint64_t start_tsc = 0; 864 865 get_start_cycles(&start_tsc); 866 867 /* receive a burst of packet */ 868 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 869 nb_pkt_per_burst); 870 inc_rx_burst_stats(fs, nb_rx); 871 if (unlikely(nb_rx == 0)) 872 return; 873 874 fs->rx_packets += nb_rx; 875 rx_bad_ip_csum = 0; 876 rx_bad_l4_csum = 0; 877 rx_bad_outer_l4_csum = 0; 878 rx_bad_outer_ip_csum = 0; 879 #ifdef RTE_LIB_GRO 880 gro_enable = gro_ports[fs->rx_port].enable; 881 #endif 882 883 txp = &ports[fs->tx_port]; 884 tx_offloads = txp->dev_conf.txmode.offloads; 885 memset(&info, 0, sizeof(info)); 886 info.tso_segsz = txp->tso_segsz; 887 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 888 #ifdef RTE_LIB_GSO 889 if (gso_ports[fs->tx_port].enable) 890 info.gso_enable = 1; 891 #endif 892 893 for (i = 0; i < nb_rx; i++) { 894 if (likely(i < nb_rx - 1)) 895 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 896 void *)); 897 898 m = pkts_burst[i]; 899 info.is_tunnel = 0; 900 info.pkt_len = rte_pktmbuf_pkt_len(m); 901 tx_ol_flags = m->ol_flags & 902 (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL); 903 rx_ol_flags = m->ol_flags; 904 905 /* Update the L3/L4 checksum error packet statistics */ 906 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD) 907 rx_bad_ip_csum += 1; 908 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD) 909 rx_bad_l4_csum += 1; 910 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD) 911 rx_bad_outer_l4_csum += 1; 912 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) 913 rx_bad_outer_ip_csum += 1; 914 915 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 916 * and inner headers */ 917 918 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 919 parse_ethernet(eth_hdr, &info); 920 l3_hdr = (char *)eth_hdr + info.l2_len; 921 922 /* check if it's a supported tunnel */ 923 if (txp->parse_tunnel) { 924 if (info.l4_proto == IPPROTO_UDP) { 925 struct rte_udp_hdr *udp_hdr; 926 927 udp_hdr = (struct rte_udp_hdr *) 928 ((char *)l3_hdr + info.l3_len); 929 parse_gtp(udp_hdr, &info); 930 if (info.is_tunnel) { 931 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP; 932 goto tunnel_update; 933 } 934 parse_vxlan_gpe(udp_hdr, &info); 935 if (info.is_tunnel) { 936 tx_ol_flags |= 937 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE; 938 goto tunnel_update; 939 } 940 parse_vxlan(udp_hdr, &info); 941 if (info.is_tunnel) { 942 tx_ol_flags |= 943 RTE_MBUF_F_TX_TUNNEL_VXLAN; 944 goto tunnel_update; 945 } 946 parse_geneve(udp_hdr, &info); 947 if (info.is_tunnel) { 948 tx_ol_flags |= 949 RTE_MBUF_F_TX_TUNNEL_GENEVE; 950 goto tunnel_update; 951 } 952 /* Always keep last. */ 953 if (unlikely(RTE_ETH_IS_TUNNEL_PKT( 954 m->packet_type) != 0)) { 955 TESTPMD_LOG(DEBUG, "Unknown tunnel packet. UDP dst port: %hu", 956 udp_hdr->dst_port); 957 } 958 } else if (info.l4_proto == IPPROTO_GRE) { 959 struct simple_gre_hdr *gre_hdr; 960 961 gre_hdr = (struct simple_gre_hdr *) 962 ((char *)l3_hdr + info.l3_len); 963 parse_gre(gre_hdr, &info); 964 if (info.is_tunnel) 965 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE; 966 } else if (info.l4_proto == IPPROTO_IPIP) { 967 void *encap_ip_hdr; 968 969 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 970 parse_encap_ip(encap_ip_hdr, &info); 971 if (info.is_tunnel) 972 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP; 973 } 974 } 975 976 tunnel_update: 977 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 978 if (info.is_tunnel) { 979 outer_l3_hdr = l3_hdr; 980 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 981 } 982 983 /* step 2: depending on user command line configuration, 984 * recompute checksum either in software or flag the 985 * mbuf to offload the calculation to the NIC. If TSO 986 * is configured, prepare the mbuf for TCP segmentation. */ 987 988 /* process checksums of inner headers first */ 989 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 990 tx_offloads, m); 991 992 /* Then process outer headers if any. Note that the software 993 * checksum will be wrong if one of the inner checksums is 994 * processed in hardware. */ 995 if (info.is_tunnel == 1) { 996 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 997 tx_offloads, 998 !!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG), 999 m); 1000 } 1001 1002 /* step 3: fill the mbuf meta data (flags and header lengths) */ 1003 1004 m->tx_offload = 0; 1005 if (info.is_tunnel == 1) { 1006 if (info.tunnel_tso_segsz || 1007 (tx_offloads & 1008 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1009 (tx_offloads & 1010 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) { 1011 m->outer_l2_len = info.outer_l2_len; 1012 m->outer_l3_len = info.outer_l3_len; 1013 m->l2_len = info.l2_len; 1014 m->l3_len = info.l3_len; 1015 m->l4_len = info.l4_len; 1016 m->tso_segsz = info.tunnel_tso_segsz; 1017 } 1018 else { 1019 /* if there is a outer UDP cksum 1020 processed in sw and the inner in hw, 1021 the outer checksum will be wrong as 1022 the payload will be modified by the 1023 hardware */ 1024 m->l2_len = info.outer_l2_len + 1025 info.outer_l3_len + info.l2_len; 1026 m->l3_len = info.l3_len; 1027 m->l4_len = info.l4_len; 1028 } 1029 } else { 1030 /* this is only useful if an offload flag is 1031 * set, but it does not hurt to fill it in any 1032 * case */ 1033 m->l2_len = info.l2_len; 1034 m->l3_len = info.l3_len; 1035 m->l4_len = info.l4_len; 1036 m->tso_segsz = info.tso_segsz; 1037 } 1038 m->ol_flags = tx_ol_flags; 1039 1040 /* Do split & copy for the packet. */ 1041 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 1042 p = pkt_copy_split(m); 1043 if (p != NULL) { 1044 rte_pktmbuf_free(m); 1045 m = p; 1046 pkts_burst[i] = m; 1047 } 1048 } 1049 1050 /* if verbose mode is enabled, dump debug info */ 1051 if (verbose_level > 0) { 1052 char buf[256]; 1053 1054 printf("-----------------\n"); 1055 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 1056 fs->rx_port, m, m->pkt_len, m->nb_segs); 1057 /* dump rx parsed packet info */ 1058 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 1059 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 1060 "l4_proto=%d l4_len=%d flags=%s\n", 1061 info.l2_len, rte_be_to_cpu_16(info.ethertype), 1062 info.l3_len, info.l4_proto, info.l4_len, buf); 1063 if (rx_ol_flags & RTE_MBUF_F_RX_LRO) 1064 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 1065 if (info.is_tunnel == 1) 1066 printf("rx: outer_l2_len=%d outer_ethertype=%x " 1067 "outer_l3_len=%d\n", info.outer_l2_len, 1068 rte_be_to_cpu_16(info.outer_ethertype), 1069 info.outer_l3_len); 1070 /* dump tx packet info */ 1071 if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 1072 RTE_ETH_TX_OFFLOAD_UDP_CKSUM | 1073 RTE_ETH_TX_OFFLOAD_TCP_CKSUM | 1074 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) || 1075 info.tso_segsz != 0) 1076 printf("tx: m->l2_len=%d m->l3_len=%d " 1077 "m->l4_len=%d\n", 1078 m->l2_len, m->l3_len, m->l4_len); 1079 if (info.is_tunnel == 1) { 1080 if ((tx_offloads & 1081 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1082 (tx_offloads & 1083 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) || 1084 (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)) 1085 printf("tx: m->outer_l2_len=%d " 1086 "m->outer_l3_len=%d\n", 1087 m->outer_l2_len, 1088 m->outer_l3_len); 1089 if (info.tunnel_tso_segsz != 0 && 1090 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1091 printf("tx: m->tso_segsz=%d\n", 1092 m->tso_segsz); 1093 } else if (info.tso_segsz != 0 && 1094 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1095 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 1096 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 1097 printf("tx: flags=%s", buf); 1098 printf("\n"); 1099 } 1100 } 1101 1102 #ifdef RTE_LIB_GRO 1103 if (unlikely(gro_enable)) { 1104 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 1105 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 1106 &(gro_ports[fs->rx_port].param)); 1107 } else { 1108 gro_ctx = current_fwd_lcore()->gro_ctx; 1109 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 1110 1111 if (++fs->gro_times >= gro_flush_cycles) { 1112 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 1113 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 1114 gro_pkts_num = MAX_PKT_BURST - nb_rx; 1115 1116 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 1117 RTE_GRO_TCP_IPV4, 1118 &pkts_burst[nb_rx], 1119 gro_pkts_num); 1120 fs->gro_times = 0; 1121 } 1122 } 1123 1124 pkts_ip_csum_recalc(pkts_burst, nb_rx, tx_offloads); 1125 } 1126 #endif 1127 1128 #ifdef RTE_LIB_GSO 1129 if (gso_ports[fs->tx_port].enable != 0) { 1130 uint16_t nb_segments = 0; 1131 1132 gso_ctx = &(current_fwd_lcore()->gso_ctx); 1133 gso_ctx->gso_size = gso_max_segment_size; 1134 for (i = 0; i < nb_rx; i++) { 1135 int ret; 1136 1137 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 1138 &gso_segments[nb_segments], 1139 GSO_MAX_PKT_BURST - nb_segments); 1140 if (ret >= 1) { 1141 /* pkts_burst[i] can be freed safely here. */ 1142 rte_pktmbuf_free(pkts_burst[i]); 1143 nb_segments += ret; 1144 } else if (ret == 0) { 1145 /* 0 means it can be transmitted directly 1146 * without gso. 1147 */ 1148 gso_segments[nb_segments] = pkts_burst[i]; 1149 nb_segments += 1; 1150 } else { 1151 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 1152 rte_pktmbuf_free(pkts_burst[i]); 1153 } 1154 } 1155 1156 tx_pkts_burst = gso_segments; 1157 nb_rx = nb_segments; 1158 1159 pkts_ip_csum_recalc(tx_pkts_burst, nb_rx, tx_offloads); 1160 } else 1161 #endif 1162 tx_pkts_burst = pkts_burst; 1163 1164 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 1165 tx_pkts_burst, nb_rx); 1166 if (nb_prep != nb_rx) 1167 fprintf(stderr, 1168 "Preparing packet burst to transmit failed: %s\n", 1169 rte_strerror(rte_errno)); 1170 1171 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 1172 nb_prep); 1173 1174 /* 1175 * Retry if necessary 1176 */ 1177 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 1178 retry = 0; 1179 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 1180 rte_delay_us(burst_tx_delay_time); 1181 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 1182 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 1183 } 1184 } 1185 fs->tx_packets += nb_tx; 1186 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1187 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1188 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1189 fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; 1190 1191 inc_tx_burst_stats(fs, nb_tx); 1192 if (unlikely(nb_tx < nb_rx)) { 1193 fs->fwd_dropped += (nb_rx - nb_tx); 1194 do { 1195 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 1196 } while (++nb_tx < nb_rx); 1197 } 1198 1199 get_end_cycles(fs, start_tsc); 1200 } 1201 1202 static void 1203 stream_init_checksum_forward(struct fwd_stream *fs) 1204 { 1205 bool rx_stopped, tx_stopped; 1206 1207 rx_stopped = ports[fs->rx_port].rxq[fs->rx_queue].state == 1208 RTE_ETH_QUEUE_STATE_STOPPED; 1209 tx_stopped = ports[fs->tx_port].txq[fs->tx_queue].state == 1210 RTE_ETH_QUEUE_STATE_STOPPED; 1211 fs->disabled = rx_stopped || tx_stopped; 1212 } 1213 1214 struct fwd_engine csum_fwd_engine = { 1215 .fwd_mode_name = "csum", 1216 .port_fwd_begin = NULL, 1217 .port_fwd_end = NULL, 1218 .stream_init = stream_init_checksum_forward, 1219 .packet_fwd = pkt_burst_checksum_forward, 1220 }; 1221