1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_atomic.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_mempool.h> 30 #include <rte_mbuf.h> 31 #include <rte_interrupts.h> 32 #include <rte_pci.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_ip.h> 36 #include <rte_tcp.h> 37 #include <rte_udp.h> 38 #include <rte_vxlan.h> 39 #include <rte_sctp.h> 40 #include <rte_gtp.h> 41 #include <rte_prefetch.h> 42 #include <rte_string_fns.h> 43 #include <rte_flow.h> 44 #include <rte_gro.h> 45 #include <rte_gso.h> 46 #include <rte_geneve.h> 47 48 #include "testpmd.h" 49 50 #define IP_DEFTTL 64 /* from RFC 1340. */ 51 52 #define GRE_CHECKSUM_PRESENT 0x8000 53 #define GRE_KEY_PRESENT 0x2000 54 #define GRE_SEQUENCE_PRESENT 0x1000 55 #define GRE_EXT_LEN 4 56 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 57 GRE_SEQUENCE_PRESENT) 58 59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 62 #else 63 #define _htons(x) (x) 64 #endif 65 66 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; 67 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; 68 69 /* structure that caches offload info for the current packet */ 70 struct testpmd_offload_info { 71 uint16_t ethertype; 72 uint8_t gso_enable; 73 uint16_t l2_len; 74 uint16_t l3_len; 75 uint16_t l4_len; 76 uint8_t l4_proto; 77 uint8_t is_tunnel; 78 uint16_t outer_ethertype; 79 uint16_t outer_l2_len; 80 uint16_t outer_l3_len; 81 uint8_t outer_l4_proto; 82 uint16_t tso_segsz; 83 uint16_t tunnel_tso_segsz; 84 uint32_t pkt_len; 85 }; 86 87 /* simplified GRE header */ 88 struct simple_gre_hdr { 89 uint16_t flags; 90 uint16_t proto; 91 } __rte_packed; 92 93 static uint16_t 94 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 95 { 96 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 97 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 98 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ 99 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 100 } 101 102 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 103 static void 104 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 105 { 106 struct rte_tcp_hdr *tcp_hdr; 107 108 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); 109 info->l4_proto = ipv4_hdr->next_proto_id; 110 111 /* only fill l4_len for TCP, it's useful for TSO */ 112 if (info->l4_proto == IPPROTO_TCP) { 113 tcp_hdr = (struct rte_tcp_hdr *) 114 ((char *)ipv4_hdr + info->l3_len); 115 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 116 } else if (info->l4_proto == IPPROTO_UDP) 117 info->l4_len = sizeof(struct rte_udp_hdr); 118 else 119 info->l4_len = 0; 120 } 121 122 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 123 static void 124 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 125 { 126 struct rte_tcp_hdr *tcp_hdr; 127 128 info->l3_len = sizeof(struct rte_ipv6_hdr); 129 info->l4_proto = ipv6_hdr->proto; 130 131 /* only fill l4_len for TCP, it's useful for TSO */ 132 if (info->l4_proto == IPPROTO_TCP) { 133 tcp_hdr = (struct rte_tcp_hdr *) 134 ((char *)ipv6_hdr + info->l3_len); 135 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 136 } else if (info->l4_proto == IPPROTO_UDP) 137 info->l4_len = sizeof(struct rte_udp_hdr); 138 else 139 info->l4_len = 0; 140 } 141 142 /* 143 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 144 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN 145 * headers. The l4_len argument is only set in case of TCP (useful for TSO). 146 */ 147 static void 148 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 149 { 150 struct rte_ipv4_hdr *ipv4_hdr; 151 struct rte_ipv6_hdr *ipv6_hdr; 152 struct rte_vlan_hdr *vlan_hdr; 153 154 info->l2_len = sizeof(struct rte_ether_hdr); 155 info->ethertype = eth_hdr->ether_type; 156 157 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || 158 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { 159 vlan_hdr = (struct rte_vlan_hdr *) 160 ((char *)eth_hdr + info->l2_len); 161 info->l2_len += sizeof(struct rte_vlan_hdr); 162 info->ethertype = vlan_hdr->eth_proto; 163 } 164 165 switch (info->ethertype) { 166 case _htons(RTE_ETHER_TYPE_IPV4): 167 ipv4_hdr = (struct rte_ipv4_hdr *) 168 ((char *)eth_hdr + info->l2_len); 169 parse_ipv4(ipv4_hdr, info); 170 break; 171 case _htons(RTE_ETHER_TYPE_IPV6): 172 ipv6_hdr = (struct rte_ipv6_hdr *) 173 ((char *)eth_hdr + info->l2_len); 174 parse_ipv6(ipv6_hdr, info); 175 break; 176 default: 177 info->l4_len = 0; 178 info->l3_len = 0; 179 info->l4_proto = 0; 180 break; 181 } 182 } 183 184 /* Fill in outer layers length */ 185 static void 186 update_tunnel_outer(struct testpmd_offload_info *info) 187 { 188 info->is_tunnel = 1; 189 info->outer_ethertype = info->ethertype; 190 info->outer_l2_len = info->l2_len; 191 info->outer_l3_len = info->l3_len; 192 info->outer_l4_proto = info->l4_proto; 193 } 194 195 /* 196 * Parse a GTP protocol header. 197 * No optional fields and next extension header type. 198 */ 199 static void 200 parse_gtp(struct rte_udp_hdr *udp_hdr, 201 struct testpmd_offload_info *info) 202 { 203 struct rte_ipv4_hdr *ipv4_hdr; 204 struct rte_ipv6_hdr *ipv6_hdr; 205 struct rte_gtp_hdr *gtp_hdr; 206 uint8_t gtp_len = sizeof(*gtp_hdr); 207 uint8_t ip_ver; 208 209 /* Check udp destination port. */ 210 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && 211 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && 212 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) 213 return; 214 215 update_tunnel_outer(info); 216 info->l2_len = 0; 217 218 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + 219 sizeof(struct rte_udp_hdr)); 220 221 /* 222 * Check message type. If message type is 0xff, it is 223 * a GTP data packet. If not, it is a GTP control packet 224 */ 225 if (gtp_hdr->msg_type == 0xff) { 226 ip_ver = *(uint8_t *)((char *)udp_hdr + 227 sizeof(struct rte_udp_hdr) + 228 sizeof(struct rte_gtp_hdr)); 229 ip_ver = (ip_ver) & 0xf0; 230 231 if (ip_ver == RTE_GTP_TYPE_IPV4) { 232 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + 233 gtp_len); 234 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 235 parse_ipv4(ipv4_hdr, info); 236 } else if (ip_ver == RTE_GTP_TYPE_IPV6) { 237 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + 238 gtp_len); 239 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 240 parse_ipv6(ipv6_hdr, info); 241 } 242 } else { 243 info->ethertype = 0; 244 info->l4_len = 0; 245 info->l3_len = 0; 246 info->l4_proto = 0; 247 } 248 249 info->l2_len += RTE_ETHER_GTP_HLEN; 250 } 251 252 /* Parse a vxlan header */ 253 static void 254 parse_vxlan(struct rte_udp_hdr *udp_hdr, 255 struct testpmd_offload_info *info, 256 uint32_t pkt_type) 257 { 258 struct rte_ether_hdr *eth_hdr; 259 260 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the 261 * default vxlan port (rfc7348) or that the rx offload flag is set 262 * (i40e only currently) 263 */ 264 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) && 265 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 266 return; 267 268 update_tunnel_outer(info); 269 270 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 271 sizeof(struct rte_udp_hdr) + 272 sizeof(struct rte_vxlan_hdr)); 273 274 parse_ethernet(eth_hdr, info); 275 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 276 } 277 278 /* Parse a vxlan-gpe header */ 279 static void 280 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 281 struct testpmd_offload_info *info) 282 { 283 struct rte_ether_hdr *eth_hdr; 284 struct rte_ipv4_hdr *ipv4_hdr; 285 struct rte_ipv6_hdr *ipv6_hdr; 286 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 287 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 288 289 /* Check udp destination port. */ 290 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 291 return; 292 293 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 294 sizeof(struct rte_udp_hdr)); 295 296 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 297 RTE_VXLAN_GPE_TYPE_IPV4) { 298 update_tunnel_outer(info); 299 300 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 301 vxlan_gpe_len); 302 303 parse_ipv4(ipv4_hdr, info); 304 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 305 info->l2_len = 0; 306 307 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 308 update_tunnel_outer(info); 309 310 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 311 vxlan_gpe_len); 312 313 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 314 parse_ipv6(ipv6_hdr, info); 315 info->l2_len = 0; 316 317 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 318 update_tunnel_outer(info); 319 320 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 321 vxlan_gpe_len); 322 323 parse_ethernet(eth_hdr, info); 324 } else 325 return; 326 327 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 328 } 329 330 /* Parse a geneve header */ 331 static void 332 parse_geneve(struct rte_udp_hdr *udp_hdr, 333 struct testpmd_offload_info *info) 334 { 335 struct rte_ether_hdr *eth_hdr; 336 struct rte_ipv4_hdr *ipv4_hdr; 337 struct rte_ipv6_hdr *ipv6_hdr; 338 struct rte_geneve_hdr *geneve_hdr; 339 uint16_t geneve_len; 340 341 /* Check udp destination port. */ 342 if (udp_hdr->dst_port != _htons(geneve_udp_port)) 343 return; 344 345 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + 346 sizeof(struct rte_udp_hdr)); 347 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; 348 if (!geneve_hdr->proto || geneve_hdr->proto == 349 _htons(RTE_ETHER_TYPE_IPV4)) { 350 update_tunnel_outer(info); 351 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + 352 geneve_len); 353 parse_ipv4(ipv4_hdr, info); 354 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 355 info->l2_len = 0; 356 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 357 update_tunnel_outer(info); 358 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + 359 geneve_len); 360 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 361 parse_ipv6(ipv6_hdr, info); 362 info->l2_len = 0; 363 364 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { 365 update_tunnel_outer(info); 366 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + 367 geneve_len); 368 parse_ethernet(eth_hdr, info); 369 } else 370 return; 371 372 info->l2_len += 373 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + 374 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); 375 } 376 377 /* Parse a gre header */ 378 static void 379 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 380 { 381 struct rte_ether_hdr *eth_hdr; 382 struct rte_ipv4_hdr *ipv4_hdr; 383 struct rte_ipv6_hdr *ipv6_hdr; 384 uint8_t gre_len = 0; 385 386 gre_len += sizeof(struct simple_gre_hdr); 387 388 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 389 gre_len += GRE_EXT_LEN; 390 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 391 gre_len += GRE_EXT_LEN; 392 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 393 gre_len += GRE_EXT_LEN; 394 395 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { 396 update_tunnel_outer(info); 397 398 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 399 400 parse_ipv4(ipv4_hdr, info); 401 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 402 info->l2_len = 0; 403 404 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 405 update_tunnel_outer(info); 406 407 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 408 409 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 410 parse_ipv6(ipv6_hdr, info); 411 info->l2_len = 0; 412 413 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 414 update_tunnel_outer(info); 415 416 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 417 418 parse_ethernet(eth_hdr, info); 419 } else 420 return; 421 422 info->l2_len += gre_len; 423 } 424 425 426 /* Parse an encapsulated ip or ipv6 header */ 427 static void 428 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 429 { 430 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 431 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 432 uint8_t ip_version; 433 434 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 435 436 if (ip_version != 4 && ip_version != 6) 437 return; 438 439 info->is_tunnel = 1; 440 info->outer_ethertype = info->ethertype; 441 info->outer_l2_len = info->l2_len; 442 info->outer_l3_len = info->l3_len; 443 444 if (ip_version == 4) { 445 parse_ipv4(ipv4_hdr, info); 446 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 447 } else { 448 parse_ipv6(ipv6_hdr, info); 449 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 450 } 451 info->l2_len = 0; 452 } 453 454 /* if possible, calculate the checksum of a packet in hw or sw, 455 * depending on the testpmd command line configuration */ 456 static uint64_t 457 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 458 uint64_t tx_offloads) 459 { 460 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 461 struct rte_udp_hdr *udp_hdr; 462 struct rte_tcp_hdr *tcp_hdr; 463 struct rte_sctp_hdr *sctp_hdr; 464 uint64_t ol_flags = 0; 465 uint32_t max_pkt_len, tso_segsz = 0; 466 467 /* ensure packet is large enough to require tso */ 468 if (!info->is_tunnel) { 469 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 470 info->tso_segsz; 471 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 472 tso_segsz = info->tso_segsz; 473 } else { 474 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 475 info->l2_len + info->l3_len + info->l4_len + 476 info->tunnel_tso_segsz; 477 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 478 tso_segsz = info->tunnel_tso_segsz; 479 } 480 481 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 482 ipv4_hdr = l3_hdr; 483 ipv4_hdr->hdr_checksum = 0; 484 485 ol_flags |= PKT_TX_IPV4; 486 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 487 ol_flags |= PKT_TX_IP_CKSUM; 488 } else { 489 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) 490 ol_flags |= PKT_TX_IP_CKSUM; 491 else 492 ipv4_hdr->hdr_checksum = 493 rte_ipv4_cksum(ipv4_hdr); 494 } 495 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) 496 ol_flags |= PKT_TX_IPV6; 497 else 498 return 0; /* packet type not supported, nothing to do */ 499 500 if (info->l4_proto == IPPROTO_UDP) { 501 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 502 /* do not recalculate udp cksum if it was 0 */ 503 if (udp_hdr->dgram_cksum != 0) { 504 udp_hdr->dgram_cksum = 0; 505 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM) 506 ol_flags |= PKT_TX_UDP_CKSUM; 507 else { 508 udp_hdr->dgram_cksum = 509 get_udptcp_checksum(l3_hdr, udp_hdr, 510 info->ethertype); 511 } 512 } 513 if (info->gso_enable) 514 ol_flags |= PKT_TX_UDP_SEG; 515 } else if (info->l4_proto == IPPROTO_TCP) { 516 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 517 tcp_hdr->cksum = 0; 518 if (tso_segsz) 519 ol_flags |= PKT_TX_TCP_SEG; 520 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM) 521 ol_flags |= PKT_TX_TCP_CKSUM; 522 else { 523 tcp_hdr->cksum = 524 get_udptcp_checksum(l3_hdr, tcp_hdr, 525 info->ethertype); 526 } 527 if (info->gso_enable) 528 ol_flags |= PKT_TX_TCP_SEG; 529 } else if (info->l4_proto == IPPROTO_SCTP) { 530 sctp_hdr = (struct rte_sctp_hdr *) 531 ((char *)l3_hdr + info->l3_len); 532 sctp_hdr->cksum = 0; 533 /* sctp payload must be a multiple of 4 to be 534 * offloaded */ 535 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) && 536 ((ipv4_hdr->total_length & 0x3) == 0)) { 537 ol_flags |= PKT_TX_SCTP_CKSUM; 538 } else { 539 /* XXX implement CRC32c, example available in 540 * RFC3309 */ 541 } 542 } 543 544 return ol_flags; 545 } 546 547 /* Calculate the checksum of outer header */ 548 static uint64_t 549 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 550 uint64_t tx_offloads, int tso_enabled) 551 { 552 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 553 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 554 struct rte_udp_hdr *udp_hdr; 555 uint64_t ol_flags = 0; 556 557 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 558 ipv4_hdr->hdr_checksum = 0; 559 ol_flags |= PKT_TX_OUTER_IPV4; 560 561 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 562 ol_flags |= PKT_TX_OUTER_IP_CKSUM; 563 else 564 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 565 } else 566 ol_flags |= PKT_TX_OUTER_IPV6; 567 568 if (info->outer_l4_proto != IPPROTO_UDP) 569 return ol_flags; 570 571 udp_hdr = (struct rte_udp_hdr *) 572 ((char *)outer_l3_hdr + info->outer_l3_len); 573 574 if (tso_enabled) 575 ol_flags |= PKT_TX_TCP_SEG; 576 577 /* Skip SW outer UDP checksum generation if HW supports it */ 578 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) { 579 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 580 udp_hdr->dgram_cksum 581 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 582 else 583 udp_hdr->dgram_cksum 584 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 585 586 ol_flags |= PKT_TX_OUTER_UDP_CKSUM; 587 return ol_flags; 588 } 589 590 /* outer UDP checksum is done in software. In the other side, for 591 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 592 * set to zero. 593 * 594 * If a packet will be TSOed into small packets by NIC, we cannot 595 * set/calculate a non-zero checksum, because it will be a wrong 596 * value after the packet be split into several small packets. 597 */ 598 if (tso_enabled) 599 udp_hdr->dgram_cksum = 0; 600 601 /* do not recalculate udp cksum if it was 0 */ 602 if (udp_hdr->dgram_cksum != 0) { 603 udp_hdr->dgram_cksum = 0; 604 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 605 udp_hdr->dgram_cksum = 606 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 607 else 608 udp_hdr->dgram_cksum = 609 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 610 } 611 612 return ol_flags; 613 } 614 615 /* 616 * Helper function. 617 * Performs actual copying. 618 * Returns number of segments in the destination mbuf on success, 619 * or negative error code on failure. 620 */ 621 static int 622 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 623 uint16_t seglen[], uint8_t nb_seg) 624 { 625 uint32_t dlen, slen, tlen; 626 uint32_t i, len; 627 const struct rte_mbuf *m; 628 const uint8_t *src; 629 uint8_t *dst; 630 631 dlen = 0; 632 slen = 0; 633 tlen = 0; 634 635 dst = NULL; 636 src = NULL; 637 638 m = ms; 639 i = 0; 640 while (ms != NULL && i != nb_seg) { 641 642 if (slen == 0) { 643 slen = rte_pktmbuf_data_len(ms); 644 src = rte_pktmbuf_mtod(ms, const uint8_t *); 645 } 646 647 if (dlen == 0) { 648 dlen = RTE_MIN(seglen[i], slen); 649 md[i]->data_len = dlen; 650 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 651 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 652 } 653 654 len = RTE_MIN(slen, dlen); 655 memcpy(dst, src, len); 656 tlen += len; 657 slen -= len; 658 dlen -= len; 659 src += len; 660 dst += len; 661 662 if (slen == 0) 663 ms = ms->next; 664 if (dlen == 0) 665 i++; 666 } 667 668 if (ms != NULL) 669 return -ENOBUFS; 670 else if (tlen != m->pkt_len) 671 return -EINVAL; 672 673 md[0]->nb_segs = nb_seg; 674 md[0]->pkt_len = tlen; 675 md[0]->vlan_tci = m->vlan_tci; 676 md[0]->vlan_tci_outer = m->vlan_tci_outer; 677 md[0]->ol_flags = m->ol_flags; 678 md[0]->tx_offload = m->tx_offload; 679 680 return nb_seg; 681 } 682 683 /* 684 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 685 * Copy packet contents and offload information into the new segmented mbuf. 686 */ 687 static struct rte_mbuf * 688 pkt_copy_split(const struct rte_mbuf *pkt) 689 { 690 int32_t n, rc; 691 uint32_t i, len, nb_seg; 692 struct rte_mempool *mp; 693 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 694 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 695 696 mp = current_fwd_lcore()->mbp; 697 698 if (tx_pkt_split == TX_PKT_SPLIT_RND) 699 nb_seg = random() % tx_pkt_nb_segs + 1; 700 else 701 nb_seg = tx_pkt_nb_segs; 702 703 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 704 705 /* calculate number of segments to use and their length. */ 706 len = 0; 707 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 708 len += seglen[i]; 709 md[i] = NULL; 710 } 711 712 n = pkt->pkt_len - len; 713 714 /* update size of the last segment to fit rest of the packet */ 715 if (n >= 0) { 716 seglen[i - 1] += n; 717 len += n; 718 } 719 720 nb_seg = i; 721 while (i != 0) { 722 p = rte_pktmbuf_alloc(mp); 723 if (p == NULL) { 724 TESTPMD_LOG(ERR, 725 "failed to allocate %u-th of %u mbuf " 726 "from mempool: %s\n", 727 nb_seg - i, nb_seg, mp->name); 728 break; 729 } 730 731 md[--i] = p; 732 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 733 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 734 "expected seglen: %u, " 735 "actual mbuf tailroom: %u\n", 736 mp->name, i, seglen[i], 737 rte_pktmbuf_tailroom(md[i])); 738 break; 739 } 740 } 741 742 /* all mbufs successfully allocated, do copy */ 743 if (i == 0) { 744 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 745 if (rc < 0) 746 TESTPMD_LOG(ERR, 747 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 748 "into %u segments failed with error code: %d\n", 749 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 750 751 /* figure out how many mbufs to free. */ 752 i = RTE_MAX(rc, 0); 753 } 754 755 /* free unused mbufs */ 756 for (; i != nb_seg; i++) { 757 rte_pktmbuf_free_seg(md[i]); 758 md[i] = NULL; 759 } 760 761 return md[0]; 762 } 763 764 /* 765 * Receive a burst of packets, and for each packet: 766 * - parse packet, and try to recognize a supported packet type (1) 767 * - if it's not a supported packet type, don't touch the packet, else: 768 * - reprocess the checksum of all supported layers. This is done in SW 769 * or HW, depending on testpmd command line configuration 770 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 771 * segmentation offload (this implies HW TCP checksum) 772 * Then transmit packets on the output port. 773 * 774 * (1) Supported packets are: 775 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 776 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 777 * UDP|TCP|SCTP 778 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 779 * UDP|TCP|SCTP 780 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 781 * UDP|TCP|SCTP 782 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP 783 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 784 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 785 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 786 * 787 * The testpmd command line for this forward engine sets the flags 788 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 789 * wether a checksum must be calculated in software or in hardware. The 790 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 791 * OUTER_IP is only useful for tunnel packets. 792 */ 793 static void 794 pkt_burst_checksum_forward(struct fwd_stream *fs) 795 { 796 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 797 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 798 struct rte_gso_ctx *gso_ctx; 799 struct rte_mbuf **tx_pkts_burst; 800 struct rte_port *txp; 801 struct rte_mbuf *m, *p; 802 struct rte_ether_hdr *eth_hdr; 803 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 804 void **gro_ctx; 805 uint16_t gro_pkts_num; 806 uint8_t gro_enable; 807 uint16_t nb_rx; 808 uint16_t nb_tx; 809 uint16_t nb_prep; 810 uint16_t i; 811 uint64_t rx_ol_flags, tx_ol_flags; 812 uint64_t tx_offloads; 813 uint32_t retry; 814 uint32_t rx_bad_ip_csum; 815 uint32_t rx_bad_l4_csum; 816 uint32_t rx_bad_outer_l4_csum; 817 uint32_t rx_bad_outer_ip_csum; 818 struct testpmd_offload_info info; 819 uint16_t nb_segments = 0; 820 int ret; 821 822 uint64_t start_tsc = 0; 823 824 get_start_cycles(&start_tsc); 825 826 /* receive a burst of packet */ 827 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 828 nb_pkt_per_burst); 829 inc_rx_burst_stats(fs, nb_rx); 830 if (unlikely(nb_rx == 0)) 831 return; 832 833 fs->rx_packets += nb_rx; 834 rx_bad_ip_csum = 0; 835 rx_bad_l4_csum = 0; 836 rx_bad_outer_l4_csum = 0; 837 rx_bad_outer_ip_csum = 0; 838 gro_enable = gro_ports[fs->rx_port].enable; 839 840 txp = &ports[fs->tx_port]; 841 tx_offloads = txp->dev_conf.txmode.offloads; 842 memset(&info, 0, sizeof(info)); 843 info.tso_segsz = txp->tso_segsz; 844 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 845 if (gso_ports[fs->tx_port].enable) 846 info.gso_enable = 1; 847 848 for (i = 0; i < nb_rx; i++) { 849 if (likely(i < nb_rx - 1)) 850 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 851 void *)); 852 853 m = pkts_burst[i]; 854 info.is_tunnel = 0; 855 info.pkt_len = rte_pktmbuf_pkt_len(m); 856 tx_ol_flags = m->ol_flags & 857 (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF); 858 rx_ol_flags = m->ol_flags; 859 860 /* Update the L3/L4 checksum error packet statistics */ 861 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD) 862 rx_bad_ip_csum += 1; 863 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD) 864 rx_bad_l4_csum += 1; 865 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD) 866 rx_bad_outer_l4_csum += 1; 867 if (rx_ol_flags & PKT_RX_OUTER_IP_CKSUM_BAD) 868 rx_bad_outer_ip_csum += 1; 869 870 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 871 * and inner headers */ 872 873 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 874 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 875 ð_hdr->d_addr); 876 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, 877 ð_hdr->s_addr); 878 parse_ethernet(eth_hdr, &info); 879 l3_hdr = (char *)eth_hdr + info.l2_len; 880 881 /* check if it's a supported tunnel */ 882 if (txp->parse_tunnel) { 883 if (info.l4_proto == IPPROTO_UDP) { 884 struct rte_udp_hdr *udp_hdr; 885 886 udp_hdr = (struct rte_udp_hdr *) 887 ((char *)l3_hdr + info.l3_len); 888 parse_gtp(udp_hdr, &info); 889 if (info.is_tunnel) { 890 tx_ol_flags |= PKT_TX_TUNNEL_GTP; 891 goto tunnel_update; 892 } 893 parse_vxlan_gpe(udp_hdr, &info); 894 if (info.is_tunnel) { 895 tx_ol_flags |= 896 PKT_TX_TUNNEL_VXLAN_GPE; 897 goto tunnel_update; 898 } 899 parse_vxlan(udp_hdr, &info, 900 m->packet_type); 901 if (info.is_tunnel) { 902 tx_ol_flags |= 903 PKT_TX_TUNNEL_VXLAN; 904 goto tunnel_update; 905 } 906 parse_geneve(udp_hdr, &info); 907 if (info.is_tunnel) { 908 tx_ol_flags |= 909 PKT_TX_TUNNEL_GENEVE; 910 goto tunnel_update; 911 } 912 } else if (info.l4_proto == IPPROTO_GRE) { 913 struct simple_gre_hdr *gre_hdr; 914 915 gre_hdr = (struct simple_gre_hdr *) 916 ((char *)l3_hdr + info.l3_len); 917 parse_gre(gre_hdr, &info); 918 if (info.is_tunnel) 919 tx_ol_flags |= PKT_TX_TUNNEL_GRE; 920 } else if (info.l4_proto == IPPROTO_IPIP) { 921 void *encap_ip_hdr; 922 923 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 924 parse_encap_ip(encap_ip_hdr, &info); 925 if (info.is_tunnel) 926 tx_ol_flags |= PKT_TX_TUNNEL_IPIP; 927 } 928 } 929 930 tunnel_update: 931 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 932 if (info.is_tunnel) { 933 outer_l3_hdr = l3_hdr; 934 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 935 } 936 937 /* step 2: depending on user command line configuration, 938 * recompute checksum either in software or flag the 939 * mbuf to offload the calculation to the NIC. If TSO 940 * is configured, prepare the mbuf for TCP segmentation. */ 941 942 /* process checksums of inner headers first */ 943 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 944 tx_offloads); 945 946 /* Then process outer headers if any. Note that the software 947 * checksum will be wrong if one of the inner checksums is 948 * processed in hardware. */ 949 if (info.is_tunnel == 1) { 950 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 951 tx_offloads, 952 !!(tx_ol_flags & PKT_TX_TCP_SEG)); 953 } 954 955 /* step 3: fill the mbuf meta data (flags and header lengths) */ 956 957 m->tx_offload = 0; 958 if (info.is_tunnel == 1) { 959 if (info.tunnel_tso_segsz || 960 (tx_offloads & 961 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 962 (tx_offloads & 963 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) || 964 (tx_ol_flags & PKT_TX_OUTER_IPV6)) { 965 m->outer_l2_len = info.outer_l2_len; 966 m->outer_l3_len = info.outer_l3_len; 967 m->l2_len = info.l2_len; 968 m->l3_len = info.l3_len; 969 m->l4_len = info.l4_len; 970 m->tso_segsz = info.tunnel_tso_segsz; 971 } 972 else { 973 /* if there is a outer UDP cksum 974 processed in sw and the inner in hw, 975 the outer checksum will be wrong as 976 the payload will be modified by the 977 hardware */ 978 m->l2_len = info.outer_l2_len + 979 info.outer_l3_len + info.l2_len; 980 m->l3_len = info.l3_len; 981 m->l4_len = info.l4_len; 982 } 983 } else { 984 /* this is only useful if an offload flag is 985 * set, but it does not hurt to fill it in any 986 * case */ 987 m->l2_len = info.l2_len; 988 m->l3_len = info.l3_len; 989 m->l4_len = info.l4_len; 990 m->tso_segsz = info.tso_segsz; 991 } 992 m->ol_flags = tx_ol_flags; 993 994 /* Do split & copy for the packet. */ 995 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 996 p = pkt_copy_split(m); 997 if (p != NULL) { 998 rte_pktmbuf_free(m); 999 m = p; 1000 pkts_burst[i] = m; 1001 } 1002 } 1003 1004 /* if verbose mode is enabled, dump debug info */ 1005 if (verbose_level > 0) { 1006 char buf[256]; 1007 1008 printf("-----------------\n"); 1009 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 1010 fs->rx_port, m, m->pkt_len, m->nb_segs); 1011 /* dump rx parsed packet info */ 1012 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 1013 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 1014 "l4_proto=%d l4_len=%d flags=%s\n", 1015 info.l2_len, rte_be_to_cpu_16(info.ethertype), 1016 info.l3_len, info.l4_proto, info.l4_len, buf); 1017 if (rx_ol_flags & PKT_RX_LRO) 1018 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 1019 if (info.is_tunnel == 1) 1020 printf("rx: outer_l2_len=%d outer_ethertype=%x " 1021 "outer_l3_len=%d\n", info.outer_l2_len, 1022 rte_be_to_cpu_16(info.outer_ethertype), 1023 info.outer_l3_len); 1024 /* dump tx packet info */ 1025 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM | 1026 DEV_TX_OFFLOAD_UDP_CKSUM | 1027 DEV_TX_OFFLOAD_TCP_CKSUM | 1028 DEV_TX_OFFLOAD_SCTP_CKSUM)) || 1029 info.tso_segsz != 0) 1030 printf("tx: m->l2_len=%d m->l3_len=%d " 1031 "m->l4_len=%d\n", 1032 m->l2_len, m->l3_len, m->l4_len); 1033 if (info.is_tunnel == 1) { 1034 if ((tx_offloads & 1035 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1036 (tx_offloads & 1037 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) || 1038 (tx_ol_flags & PKT_TX_OUTER_IPV6)) 1039 printf("tx: m->outer_l2_len=%d " 1040 "m->outer_l3_len=%d\n", 1041 m->outer_l2_len, 1042 m->outer_l3_len); 1043 if (info.tunnel_tso_segsz != 0 && 1044 (m->ol_flags & PKT_TX_TCP_SEG)) 1045 printf("tx: m->tso_segsz=%d\n", 1046 m->tso_segsz); 1047 } else if (info.tso_segsz != 0 && 1048 (m->ol_flags & PKT_TX_TCP_SEG)) 1049 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 1050 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 1051 printf("tx: flags=%s", buf); 1052 printf("\n"); 1053 } 1054 } 1055 1056 if (unlikely(gro_enable)) { 1057 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 1058 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 1059 &(gro_ports[fs->rx_port].param)); 1060 } else { 1061 gro_ctx = current_fwd_lcore()->gro_ctx; 1062 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 1063 1064 if (++fs->gro_times >= gro_flush_cycles) { 1065 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 1066 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 1067 gro_pkts_num = MAX_PKT_BURST - nb_rx; 1068 1069 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 1070 RTE_GRO_TCP_IPV4, 1071 &pkts_burst[nb_rx], 1072 gro_pkts_num); 1073 fs->gro_times = 0; 1074 } 1075 } 1076 } 1077 1078 if (gso_ports[fs->tx_port].enable == 0) 1079 tx_pkts_burst = pkts_burst; 1080 else { 1081 gso_ctx = &(current_fwd_lcore()->gso_ctx); 1082 gso_ctx->gso_size = gso_max_segment_size; 1083 for (i = 0; i < nb_rx; i++) { 1084 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 1085 &gso_segments[nb_segments], 1086 GSO_MAX_PKT_BURST - nb_segments); 1087 if (ret >= 1) { 1088 /* pkts_burst[i] can be freed safely here. */ 1089 rte_pktmbuf_free(pkts_burst[i]); 1090 nb_segments += ret; 1091 } else if (ret == 0) { 1092 /* 0 means it can be transmitted directly 1093 * without gso. 1094 */ 1095 gso_segments[nb_segments] = pkts_burst[i]; 1096 nb_segments += 1; 1097 } else { 1098 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 1099 rte_pktmbuf_free(pkts_burst[i]); 1100 } 1101 } 1102 1103 tx_pkts_burst = gso_segments; 1104 nb_rx = nb_segments; 1105 } 1106 1107 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 1108 tx_pkts_burst, nb_rx); 1109 if (nb_prep != nb_rx) 1110 printf("Preparing packet burst to transmit failed: %s\n", 1111 rte_strerror(rte_errno)); 1112 1113 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 1114 nb_prep); 1115 1116 /* 1117 * Retry if necessary 1118 */ 1119 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 1120 retry = 0; 1121 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 1122 rte_delay_us(burst_tx_delay_time); 1123 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 1124 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 1125 } 1126 } 1127 fs->tx_packets += nb_tx; 1128 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1129 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1130 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1131 fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; 1132 1133 inc_tx_burst_stats(fs, nb_tx); 1134 if (unlikely(nb_tx < nb_rx)) { 1135 fs->fwd_dropped += (nb_rx - nb_tx); 1136 do { 1137 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 1138 } while (++nb_tx < nb_rx); 1139 } 1140 1141 get_end_cycles(fs, start_tsc); 1142 } 1143 1144 struct fwd_engine csum_fwd_engine = { 1145 .fwd_mode_name = "csum", 1146 .port_fwd_begin = NULL, 1147 .port_fwd_end = NULL, 1148 .packet_fwd = pkt_burst_checksum_forward, 1149 }; 1150