1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_atomic.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_mempool.h> 30 #include <rte_mbuf.h> 31 #include <rte_interrupts.h> 32 #include <rte_pci.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_ip.h> 36 #include <rte_tcp.h> 37 #include <rte_udp.h> 38 #include <rte_sctp.h> 39 #include <rte_prefetch.h> 40 #include <rte_string_fns.h> 41 #include <rte_flow.h> 42 #include <rte_gro.h> 43 #include <rte_gso.h> 44 45 #include "testpmd.h" 46 47 #define IP_DEFTTL 64 /* from RFC 1340. */ 48 #define IP_VERSION 0x40 49 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ 50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) 51 52 #define GRE_KEY_PRESENT 0x2000 53 #define GRE_KEY_LEN 4 54 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT 55 56 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 57 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 58 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 59 #else 60 #define _htons(x) (x) 61 #endif 62 63 uint16_t vxlan_gpe_udp_port = 4790; 64 65 /* structure that caches offload info for the current packet */ 66 struct testpmd_offload_info { 67 uint16_t ethertype; 68 uint8_t gso_enable; 69 uint16_t l2_len; 70 uint16_t l3_len; 71 uint16_t l4_len; 72 uint8_t l4_proto; 73 uint8_t is_tunnel; 74 uint16_t outer_ethertype; 75 uint16_t outer_l2_len; 76 uint16_t outer_l3_len; 77 uint8_t outer_l4_proto; 78 uint16_t tso_segsz; 79 uint16_t tunnel_tso_segsz; 80 uint32_t pkt_len; 81 }; 82 83 /* simplified GRE header */ 84 struct simple_gre_hdr { 85 uint16_t flags; 86 uint16_t proto; 87 } __attribute__((__packed__)); 88 89 static uint16_t 90 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 91 { 92 if (ethertype == _htons(ETHER_TYPE_IPv4)) 93 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 94 else /* assume ethertype == ETHER_TYPE_IPv6 */ 95 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 96 } 97 98 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 99 static void 100 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 101 { 102 struct tcp_hdr *tcp_hdr; 103 104 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; 105 info->l4_proto = ipv4_hdr->next_proto_id; 106 107 /* only fill l4_len for TCP, it's useful for TSO */ 108 if (info->l4_proto == IPPROTO_TCP) { 109 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len); 110 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 111 } else 112 info->l4_len = 0; 113 } 114 115 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 116 static void 117 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 118 { 119 struct tcp_hdr *tcp_hdr; 120 121 info->l3_len = sizeof(struct ipv6_hdr); 122 info->l4_proto = ipv6_hdr->proto; 123 124 /* only fill l4_len for TCP, it's useful for TSO */ 125 if (info->l4_proto == IPPROTO_TCP) { 126 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len); 127 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 128 } else 129 info->l4_len = 0; 130 } 131 132 /* 133 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 134 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan 135 * header. The l4_len argument is only set in case of TCP (useful for TSO). 136 */ 137 static void 138 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info) 139 { 140 struct ipv4_hdr *ipv4_hdr; 141 struct ipv6_hdr *ipv6_hdr; 142 143 info->l2_len = sizeof(struct ether_hdr); 144 info->ethertype = eth_hdr->ether_type; 145 146 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) { 147 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); 148 149 info->l2_len += sizeof(struct vlan_hdr); 150 info->ethertype = vlan_hdr->eth_proto; 151 } 152 153 switch (info->ethertype) { 154 case _htons(ETHER_TYPE_IPv4): 155 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len); 156 parse_ipv4(ipv4_hdr, info); 157 break; 158 case _htons(ETHER_TYPE_IPv6): 159 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len); 160 parse_ipv6(ipv6_hdr, info); 161 break; 162 default: 163 info->l4_len = 0; 164 info->l3_len = 0; 165 info->l4_proto = 0; 166 break; 167 } 168 } 169 170 /* Parse a vxlan header */ 171 static void 172 parse_vxlan(struct udp_hdr *udp_hdr, 173 struct testpmd_offload_info *info, 174 uint32_t pkt_type) 175 { 176 struct ether_hdr *eth_hdr; 177 178 /* check udp destination port, 4789 is the default vxlan port 179 * (rfc7348) or that the rx offload flag is set (i40e only 180 * currently) */ 181 if (udp_hdr->dst_port != _htons(4789) && 182 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 183 return; 184 185 info->is_tunnel = 1; 186 info->outer_ethertype = info->ethertype; 187 info->outer_l2_len = info->l2_len; 188 info->outer_l3_len = info->l3_len; 189 info->outer_l4_proto = info->l4_proto; 190 191 eth_hdr = (struct ether_hdr *)((char *)udp_hdr + 192 sizeof(struct udp_hdr) + 193 sizeof(struct vxlan_hdr)); 194 195 parse_ethernet(eth_hdr, info); 196 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */ 197 } 198 199 /* Parse a vxlan-gpe header */ 200 static void 201 parse_vxlan_gpe(struct udp_hdr *udp_hdr, 202 struct testpmd_offload_info *info) 203 { 204 struct ether_hdr *eth_hdr; 205 struct ipv4_hdr *ipv4_hdr; 206 struct ipv6_hdr *ipv6_hdr; 207 struct vxlan_gpe_hdr *vxlan_gpe_hdr; 208 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 209 210 /* Check udp destination port. */ 211 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 212 return; 213 214 vxlan_gpe_hdr = (struct vxlan_gpe_hdr *)((char *)udp_hdr + 215 sizeof(struct udp_hdr)); 216 217 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 218 VXLAN_GPE_TYPE_IPV4) { 219 info->is_tunnel = 1; 220 info->outer_ethertype = info->ethertype; 221 info->outer_l2_len = info->l2_len; 222 info->outer_l3_len = info->l3_len; 223 info->outer_l4_proto = info->l4_proto; 224 225 ipv4_hdr = (struct ipv4_hdr *)((char *)vxlan_gpe_hdr + 226 vxlan_gpe_len); 227 228 parse_ipv4(ipv4_hdr, info); 229 info->ethertype = _htons(ETHER_TYPE_IPv4); 230 info->l2_len = 0; 231 232 } else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_IPV6) { 233 info->is_tunnel = 1; 234 info->outer_ethertype = info->ethertype; 235 info->outer_l2_len = info->l2_len; 236 info->outer_l3_len = info->l3_len; 237 info->outer_l4_proto = info->l4_proto; 238 239 ipv6_hdr = (struct ipv6_hdr *)((char *)vxlan_gpe_hdr + 240 vxlan_gpe_len); 241 242 info->ethertype = _htons(ETHER_TYPE_IPv6); 243 parse_ipv6(ipv6_hdr, info); 244 info->l2_len = 0; 245 246 } else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_ETH) { 247 info->is_tunnel = 1; 248 info->outer_ethertype = info->ethertype; 249 info->outer_l2_len = info->l2_len; 250 info->outer_l3_len = info->l3_len; 251 info->outer_l4_proto = info->l4_proto; 252 253 eth_hdr = (struct ether_hdr *)((char *)vxlan_gpe_hdr + 254 vxlan_gpe_len); 255 256 parse_ethernet(eth_hdr, info); 257 } else 258 return; 259 260 info->l2_len += ETHER_VXLAN_GPE_HLEN; 261 } 262 263 /* Parse a gre header */ 264 static void 265 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 266 { 267 struct ether_hdr *eth_hdr; 268 struct ipv4_hdr *ipv4_hdr; 269 struct ipv6_hdr *ipv6_hdr; 270 uint8_t gre_len = 0; 271 272 /* check which fields are supported */ 273 if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0) 274 return; 275 276 gre_len += sizeof(struct simple_gre_hdr); 277 278 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 279 gre_len += GRE_KEY_LEN; 280 281 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) { 282 info->is_tunnel = 1; 283 info->outer_ethertype = info->ethertype; 284 info->outer_l2_len = info->l2_len; 285 info->outer_l3_len = info->l3_len; 286 info->outer_l4_proto = info->l4_proto; 287 288 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len); 289 290 parse_ipv4(ipv4_hdr, info); 291 info->ethertype = _htons(ETHER_TYPE_IPv4); 292 info->l2_len = 0; 293 294 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) { 295 info->is_tunnel = 1; 296 info->outer_ethertype = info->ethertype; 297 info->outer_l2_len = info->l2_len; 298 info->outer_l3_len = info->l3_len; 299 info->outer_l4_proto = info->l4_proto; 300 301 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len); 302 303 info->ethertype = _htons(ETHER_TYPE_IPv6); 304 parse_ipv6(ipv6_hdr, info); 305 info->l2_len = 0; 306 307 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) { 308 info->is_tunnel = 1; 309 info->outer_ethertype = info->ethertype; 310 info->outer_l2_len = info->l2_len; 311 info->outer_l3_len = info->l3_len; 312 info->outer_l4_proto = info->l4_proto; 313 314 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len); 315 316 parse_ethernet(eth_hdr, info); 317 } else 318 return; 319 320 info->l2_len += gre_len; 321 } 322 323 324 /* Parse an encapsulated ip or ipv6 header */ 325 static void 326 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 327 { 328 struct ipv4_hdr *ipv4_hdr = encap_ip; 329 struct ipv6_hdr *ipv6_hdr = encap_ip; 330 uint8_t ip_version; 331 332 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 333 334 if (ip_version != 4 && ip_version != 6) 335 return; 336 337 info->is_tunnel = 1; 338 info->outer_ethertype = info->ethertype; 339 info->outer_l2_len = info->l2_len; 340 info->outer_l3_len = info->l3_len; 341 342 if (ip_version == 4) { 343 parse_ipv4(ipv4_hdr, info); 344 info->ethertype = _htons(ETHER_TYPE_IPv4); 345 } else { 346 parse_ipv6(ipv6_hdr, info); 347 info->ethertype = _htons(ETHER_TYPE_IPv6); 348 } 349 info->l2_len = 0; 350 } 351 352 /* if possible, calculate the checksum of a packet in hw or sw, 353 * depending on the testpmd command line configuration */ 354 static uint64_t 355 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 356 uint64_t tx_offloads) 357 { 358 struct ipv4_hdr *ipv4_hdr = l3_hdr; 359 struct udp_hdr *udp_hdr; 360 struct tcp_hdr *tcp_hdr; 361 struct sctp_hdr *sctp_hdr; 362 uint64_t ol_flags = 0; 363 uint32_t max_pkt_len, tso_segsz = 0; 364 365 /* ensure packet is large enough to require tso */ 366 if (!info->is_tunnel) { 367 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 368 info->tso_segsz; 369 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 370 tso_segsz = info->tso_segsz; 371 } else { 372 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 373 info->l2_len + info->l3_len + info->l4_len + 374 info->tunnel_tso_segsz; 375 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 376 tso_segsz = info->tunnel_tso_segsz; 377 } 378 379 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) { 380 ipv4_hdr = l3_hdr; 381 ipv4_hdr->hdr_checksum = 0; 382 383 ol_flags |= PKT_TX_IPV4; 384 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 385 ol_flags |= PKT_TX_IP_CKSUM; 386 } else { 387 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) 388 ol_flags |= PKT_TX_IP_CKSUM; 389 else 390 ipv4_hdr->hdr_checksum = 391 rte_ipv4_cksum(ipv4_hdr); 392 } 393 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6)) 394 ol_flags |= PKT_TX_IPV6; 395 else 396 return 0; /* packet type not supported, nothing to do */ 397 398 if (info->l4_proto == IPPROTO_UDP) { 399 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len); 400 /* do not recalculate udp cksum if it was 0 */ 401 if (udp_hdr->dgram_cksum != 0) { 402 udp_hdr->dgram_cksum = 0; 403 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM) 404 ol_flags |= PKT_TX_UDP_CKSUM; 405 else { 406 udp_hdr->dgram_cksum = 407 get_udptcp_checksum(l3_hdr, udp_hdr, 408 info->ethertype); 409 } 410 } 411 } else if (info->l4_proto == IPPROTO_TCP) { 412 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len); 413 tcp_hdr->cksum = 0; 414 if (tso_segsz) 415 ol_flags |= PKT_TX_TCP_SEG; 416 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM) 417 ol_flags |= PKT_TX_TCP_CKSUM; 418 else { 419 tcp_hdr->cksum = 420 get_udptcp_checksum(l3_hdr, tcp_hdr, 421 info->ethertype); 422 } 423 if (info->gso_enable) 424 ol_flags |= PKT_TX_TCP_SEG; 425 } else if (info->l4_proto == IPPROTO_SCTP) { 426 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len); 427 sctp_hdr->cksum = 0; 428 /* sctp payload must be a multiple of 4 to be 429 * offloaded */ 430 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) && 431 ((ipv4_hdr->total_length & 0x3) == 0)) { 432 ol_flags |= PKT_TX_SCTP_CKSUM; 433 } else { 434 /* XXX implement CRC32c, example available in 435 * RFC3309 */ 436 } 437 } 438 439 return ol_flags; 440 } 441 442 /* Calculate the checksum of outer header */ 443 static uint64_t 444 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 445 uint64_t tx_offloads, int tso_enabled) 446 { 447 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr; 448 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr; 449 struct udp_hdr *udp_hdr; 450 uint64_t ol_flags = 0; 451 452 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) { 453 ipv4_hdr->hdr_checksum = 0; 454 ol_flags |= PKT_TX_OUTER_IPV4; 455 456 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 457 ol_flags |= PKT_TX_OUTER_IP_CKSUM; 458 else 459 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 460 } else 461 ol_flags |= PKT_TX_OUTER_IPV6; 462 463 if (info->outer_l4_proto != IPPROTO_UDP) 464 return ol_flags; 465 466 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len); 467 468 /* outer UDP checksum is done in software as we have no hardware 469 * supporting it today, and no API for it. In the other side, for 470 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 471 * set to zero. 472 * 473 * If a packet will be TSOed into small packets by NIC, we cannot 474 * set/calculate a non-zero checksum, because it will be a wrong 475 * value after the packet be split into several small packets. 476 */ 477 if (tso_enabled) 478 udp_hdr->dgram_cksum = 0; 479 480 /* do not recalculate udp cksum if it was 0 */ 481 if (udp_hdr->dgram_cksum != 0) { 482 udp_hdr->dgram_cksum = 0; 483 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) 484 udp_hdr->dgram_cksum = 485 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 486 else 487 udp_hdr->dgram_cksum = 488 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 489 } 490 491 return ol_flags; 492 } 493 494 /* 495 * Helper function. 496 * Performs actual copying. 497 * Returns number of segments in the destination mbuf on success, 498 * or negative error code on failure. 499 */ 500 static int 501 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 502 uint16_t seglen[], uint8_t nb_seg) 503 { 504 uint32_t dlen, slen, tlen; 505 uint32_t i, len; 506 const struct rte_mbuf *m; 507 const uint8_t *src; 508 uint8_t *dst; 509 510 dlen = 0; 511 slen = 0; 512 tlen = 0; 513 514 dst = NULL; 515 src = NULL; 516 517 m = ms; 518 i = 0; 519 while (ms != NULL && i != nb_seg) { 520 521 if (slen == 0) { 522 slen = rte_pktmbuf_data_len(ms); 523 src = rte_pktmbuf_mtod(ms, const uint8_t *); 524 } 525 526 if (dlen == 0) { 527 dlen = RTE_MIN(seglen[i], slen); 528 md[i]->data_len = dlen; 529 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 530 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 531 } 532 533 len = RTE_MIN(slen, dlen); 534 memcpy(dst, src, len); 535 tlen += len; 536 slen -= len; 537 dlen -= len; 538 src += len; 539 dst += len; 540 541 if (slen == 0) 542 ms = ms->next; 543 if (dlen == 0) 544 i++; 545 } 546 547 if (ms != NULL) 548 return -ENOBUFS; 549 else if (tlen != m->pkt_len) 550 return -EINVAL; 551 552 md[0]->nb_segs = nb_seg; 553 md[0]->pkt_len = tlen; 554 md[0]->vlan_tci = m->vlan_tci; 555 md[0]->vlan_tci_outer = m->vlan_tci_outer; 556 md[0]->ol_flags = m->ol_flags; 557 md[0]->tx_offload = m->tx_offload; 558 559 return nb_seg; 560 } 561 562 /* 563 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 564 * Copy packet contents and offload information into then new segmented mbuf. 565 */ 566 static struct rte_mbuf * 567 pkt_copy_split(const struct rte_mbuf *pkt) 568 { 569 int32_t n, rc; 570 uint32_t i, len, nb_seg; 571 struct rte_mempool *mp; 572 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 573 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 574 575 mp = current_fwd_lcore()->mbp; 576 577 if (tx_pkt_split == TX_PKT_SPLIT_RND) 578 nb_seg = random() % tx_pkt_nb_segs + 1; 579 else 580 nb_seg = tx_pkt_nb_segs; 581 582 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 583 584 /* calculate number of segments to use and their length. */ 585 len = 0; 586 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 587 len += seglen[i]; 588 md[i] = NULL; 589 } 590 591 n = pkt->pkt_len - len; 592 593 /* update size of the last segment to fit rest of the packet */ 594 if (n >= 0) { 595 seglen[i - 1] += n; 596 len += n; 597 } 598 599 nb_seg = i; 600 while (i != 0) { 601 p = rte_pktmbuf_alloc(mp); 602 if (p == NULL) { 603 TESTPMD_LOG(ERR, 604 "failed to allocate %u-th of %u mbuf " 605 "from mempool: %s\n", 606 nb_seg - i, nb_seg, mp->name); 607 break; 608 } 609 610 md[--i] = p; 611 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 612 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 613 "expected seglen: %u, " 614 "actual mbuf tailroom: %u\n", 615 mp->name, i, seglen[i], 616 rte_pktmbuf_tailroom(md[i])); 617 break; 618 } 619 } 620 621 /* all mbufs successfully allocated, do copy */ 622 if (i == 0) { 623 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 624 if (rc < 0) 625 TESTPMD_LOG(ERR, 626 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 627 "into %u segments failed with error code: %d\n", 628 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 629 630 /* figure out how many mbufs to free. */ 631 i = RTE_MAX(rc, 0); 632 } 633 634 /* free unused mbufs */ 635 for (; i != nb_seg; i++) { 636 rte_pktmbuf_free_seg(md[i]); 637 md[i] = NULL; 638 } 639 640 return md[0]; 641 } 642 643 /* 644 * Receive a burst of packets, and for each packet: 645 * - parse packet, and try to recognize a supported packet type (1) 646 * - if it's not a supported packet type, don't touch the packet, else: 647 * - reprocess the checksum of all supported layers. This is done in SW 648 * or HW, depending on testpmd command line configuration 649 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 650 * segmentation offload (this implies HW TCP checksum) 651 * Then transmit packets on the output port. 652 * 653 * (1) Supported packets are: 654 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 655 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 656 * UDP|TCP|SCTP 657 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 658 * UDP|TCP|SCTP 659 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 660 * UDP|TCP|SCTP 661 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 662 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 663 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 664 * 665 * The testpmd command line for this forward engine sets the flags 666 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 667 * wether a checksum must be calculated in software or in hardware. The 668 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 669 * OUTER_IP is only useful for tunnel packets. 670 */ 671 static void 672 pkt_burst_checksum_forward(struct fwd_stream *fs) 673 { 674 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 675 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 676 struct rte_gso_ctx *gso_ctx; 677 struct rte_mbuf **tx_pkts_burst; 678 struct rte_port *txp; 679 struct rte_mbuf *m, *p; 680 struct ether_hdr *eth_hdr; 681 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 682 void **gro_ctx; 683 uint16_t gro_pkts_num; 684 uint8_t gro_enable; 685 uint16_t nb_rx; 686 uint16_t nb_tx; 687 uint16_t nb_prep; 688 uint16_t i; 689 uint64_t rx_ol_flags, tx_ol_flags; 690 uint64_t tx_offloads; 691 uint32_t retry; 692 uint32_t rx_bad_ip_csum; 693 uint32_t rx_bad_l4_csum; 694 struct testpmd_offload_info info; 695 uint16_t nb_segments = 0; 696 int ret; 697 698 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 699 uint64_t start_tsc; 700 uint64_t end_tsc; 701 uint64_t core_cycles; 702 #endif 703 704 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 705 start_tsc = rte_rdtsc(); 706 #endif 707 708 /* receive a burst of packet */ 709 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 710 nb_pkt_per_burst); 711 if (unlikely(nb_rx == 0)) 712 return; 713 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 714 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++; 715 #endif 716 fs->rx_packets += nb_rx; 717 rx_bad_ip_csum = 0; 718 rx_bad_l4_csum = 0; 719 gro_enable = gro_ports[fs->rx_port].enable; 720 721 txp = &ports[fs->tx_port]; 722 tx_offloads = txp->dev_conf.txmode.offloads; 723 memset(&info, 0, sizeof(info)); 724 info.tso_segsz = txp->tso_segsz; 725 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 726 if (gso_ports[fs->tx_port].enable) 727 info.gso_enable = 1; 728 729 for (i = 0; i < nb_rx; i++) { 730 if (likely(i < nb_rx - 1)) 731 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 732 void *)); 733 734 m = pkts_burst[i]; 735 info.is_tunnel = 0; 736 info.pkt_len = rte_pktmbuf_pkt_len(m); 737 tx_ol_flags = 0; 738 rx_ol_flags = m->ol_flags; 739 740 /* Update the L3/L4 checksum error packet statistics */ 741 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD) 742 rx_bad_ip_csum += 1; 743 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD) 744 rx_bad_l4_csum += 1; 745 746 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 747 * and inner headers */ 748 749 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 750 ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 751 ð_hdr->d_addr); 752 ether_addr_copy(&ports[fs->tx_port].eth_addr, 753 ð_hdr->s_addr); 754 parse_ethernet(eth_hdr, &info); 755 l3_hdr = (char *)eth_hdr + info.l2_len; 756 757 /* check if it's a supported tunnel */ 758 if (txp->parse_tunnel) { 759 if (info.l4_proto == IPPROTO_UDP) { 760 struct udp_hdr *udp_hdr; 761 762 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + 763 info.l3_len); 764 parse_vxlan_gpe(udp_hdr, &info); 765 if (info.is_tunnel) { 766 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE; 767 } else { 768 parse_vxlan(udp_hdr, &info, 769 m->packet_type); 770 if (info.is_tunnel) 771 tx_ol_flags |= 772 PKT_TX_TUNNEL_VXLAN; 773 } 774 } else if (info.l4_proto == IPPROTO_GRE) { 775 struct simple_gre_hdr *gre_hdr; 776 777 gre_hdr = (struct simple_gre_hdr *) 778 ((char *)l3_hdr + info.l3_len); 779 parse_gre(gre_hdr, &info); 780 if (info.is_tunnel) 781 tx_ol_flags |= PKT_TX_TUNNEL_GRE; 782 } else if (info.l4_proto == IPPROTO_IPIP) { 783 void *encap_ip_hdr; 784 785 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 786 parse_encap_ip(encap_ip_hdr, &info); 787 if (info.is_tunnel) 788 tx_ol_flags |= PKT_TX_TUNNEL_IPIP; 789 } 790 } 791 792 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 793 if (info.is_tunnel) { 794 outer_l3_hdr = l3_hdr; 795 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 796 } 797 798 /* step 2: depending on user command line configuration, 799 * recompute checksum either in software or flag the 800 * mbuf to offload the calculation to the NIC. If TSO 801 * is configured, prepare the mbuf for TCP segmentation. */ 802 803 /* process checksums of inner headers first */ 804 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 805 tx_offloads); 806 807 /* Then process outer headers if any. Note that the software 808 * checksum will be wrong if one of the inner checksums is 809 * processed in hardware. */ 810 if (info.is_tunnel == 1) { 811 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 812 tx_offloads, 813 !!(tx_ol_flags & PKT_TX_TCP_SEG)); 814 } 815 816 /* step 3: fill the mbuf meta data (flags and header lengths) */ 817 818 if (info.is_tunnel == 1) { 819 if (info.tunnel_tso_segsz || 820 (tx_offloads & 821 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 822 (tx_ol_flags & PKT_TX_OUTER_IPV6)) { 823 m->outer_l2_len = info.outer_l2_len; 824 m->outer_l3_len = info.outer_l3_len; 825 m->l2_len = info.l2_len; 826 m->l3_len = info.l3_len; 827 m->l4_len = info.l4_len; 828 m->tso_segsz = info.tunnel_tso_segsz; 829 } 830 else { 831 /* if there is a outer UDP cksum 832 processed in sw and the inner in hw, 833 the outer checksum will be wrong as 834 the payload will be modified by the 835 hardware */ 836 m->l2_len = info.outer_l2_len + 837 info.outer_l3_len + info.l2_len; 838 m->l3_len = info.l3_len; 839 m->l4_len = info.l4_len; 840 } 841 } else { 842 /* this is only useful if an offload flag is 843 * set, but it does not hurt to fill it in any 844 * case */ 845 m->l2_len = info.l2_len; 846 m->l3_len = info.l3_len; 847 m->l4_len = info.l4_len; 848 m->tso_segsz = info.tso_segsz; 849 } 850 m->ol_flags = tx_ol_flags; 851 852 /* Do split & copy for the packet. */ 853 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 854 p = pkt_copy_split(m); 855 if (p != NULL) { 856 rte_pktmbuf_free(m); 857 m = p; 858 pkts_burst[i] = m; 859 } 860 } 861 862 /* if verbose mode is enabled, dump debug info */ 863 if (verbose_level > 0) { 864 char buf[256]; 865 866 printf("-----------------\n"); 867 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 868 fs->rx_port, m, m->pkt_len, m->nb_segs); 869 /* dump rx parsed packet info */ 870 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 871 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 872 "l4_proto=%d l4_len=%d flags=%s\n", 873 info.l2_len, rte_be_to_cpu_16(info.ethertype), 874 info.l3_len, info.l4_proto, info.l4_len, buf); 875 if (rx_ol_flags & PKT_RX_LRO) 876 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 877 if (info.is_tunnel == 1) 878 printf("rx: outer_l2_len=%d outer_ethertype=%x " 879 "outer_l3_len=%d\n", info.outer_l2_len, 880 rte_be_to_cpu_16(info.outer_ethertype), 881 info.outer_l3_len); 882 /* dump tx packet info */ 883 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM | 884 DEV_TX_OFFLOAD_UDP_CKSUM | 885 DEV_TX_OFFLOAD_TCP_CKSUM | 886 DEV_TX_OFFLOAD_SCTP_CKSUM)) || 887 info.tso_segsz != 0) 888 printf("tx: m->l2_len=%d m->l3_len=%d " 889 "m->l4_len=%d\n", 890 m->l2_len, m->l3_len, m->l4_len); 891 if (info.is_tunnel == 1) { 892 if ((tx_offloads & 893 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 894 (tx_ol_flags & PKT_TX_OUTER_IPV6)) 895 printf("tx: m->outer_l2_len=%d " 896 "m->outer_l3_len=%d\n", 897 m->outer_l2_len, 898 m->outer_l3_len); 899 if (info.tunnel_tso_segsz != 0 && 900 (m->ol_flags & PKT_TX_TCP_SEG)) 901 printf("tx: m->tso_segsz=%d\n", 902 m->tso_segsz); 903 } else if (info.tso_segsz != 0 && 904 (m->ol_flags & PKT_TX_TCP_SEG)) 905 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 906 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 907 printf("tx: flags=%s", buf); 908 printf("\n"); 909 } 910 } 911 912 if (unlikely(gro_enable)) { 913 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 914 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 915 &(gro_ports[fs->rx_port].param)); 916 } else { 917 gro_ctx = current_fwd_lcore()->gro_ctx; 918 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 919 920 if (++fs->gro_times >= gro_flush_cycles) { 921 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 922 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 923 gro_pkts_num = MAX_PKT_BURST - nb_rx; 924 925 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 926 RTE_GRO_TCP_IPV4, 927 &pkts_burst[nb_rx], 928 gro_pkts_num); 929 fs->gro_times = 0; 930 } 931 } 932 } 933 934 if (gso_ports[fs->tx_port].enable == 0) 935 tx_pkts_burst = pkts_burst; 936 else { 937 gso_ctx = &(current_fwd_lcore()->gso_ctx); 938 gso_ctx->gso_size = gso_max_segment_size; 939 for (i = 0; i < nb_rx; i++) { 940 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 941 &gso_segments[nb_segments], 942 GSO_MAX_PKT_BURST - nb_segments); 943 if (ret >= 0) 944 nb_segments += ret; 945 else { 946 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 947 rte_pktmbuf_free(pkts_burst[i]); 948 } 949 } 950 951 tx_pkts_burst = gso_segments; 952 nb_rx = nb_segments; 953 } 954 955 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 956 tx_pkts_burst, nb_rx); 957 if (nb_prep != nb_rx) 958 printf("Preparing packet burst to transmit failed: %s\n", 959 rte_strerror(rte_errno)); 960 961 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 962 nb_prep); 963 964 /* 965 * Retry if necessary 966 */ 967 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 968 retry = 0; 969 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 970 rte_delay_us(burst_tx_delay_time); 971 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 972 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 973 } 974 } 975 fs->tx_packets += nb_tx; 976 fs->rx_bad_ip_csum += rx_bad_ip_csum; 977 fs->rx_bad_l4_csum += rx_bad_l4_csum; 978 979 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 980 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++; 981 #endif 982 if (unlikely(nb_tx < nb_rx)) { 983 fs->fwd_dropped += (nb_rx - nb_tx); 984 do { 985 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 986 } while (++nb_tx < nb_rx); 987 } 988 989 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 990 end_tsc = rte_rdtsc(); 991 core_cycles = (end_tsc - start_tsc); 992 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles); 993 #endif 994 } 995 996 struct fwd_engine csum_fwd_engine = { 997 .fwd_mode_name = "csum", 998 .port_fwd_begin = NULL, 999 .port_fwd_end = NULL, 1000 .packet_fwd = pkt_burst_checksum_forward, 1001 }; 1002