1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_branch_prediction.h> 28 #include <rte_mempool.h> 29 #include <rte_mbuf.h> 30 #include <rte_interrupts.h> 31 #include <rte_pci.h> 32 #include <rte_ether.h> 33 #include <rte_ethdev.h> 34 #include <rte_ip.h> 35 #include <rte_tcp.h> 36 #include <rte_udp.h> 37 #include <rte_vxlan.h> 38 #include <rte_sctp.h> 39 #include <rte_gtp.h> 40 #include <rte_prefetch.h> 41 #include <rte_string_fns.h> 42 #include <rte_flow.h> 43 #ifdef RTE_LIB_GRO 44 #include <rte_gro.h> 45 #endif 46 #ifdef RTE_LIB_GSO 47 #include <rte_gso.h> 48 #endif 49 #include <rte_geneve.h> 50 51 #include "testpmd.h" 52 53 #define IP_DEFTTL 64 /* from RFC 1340. */ 54 55 #define GRE_CHECKSUM_PRESENT 0x8000 56 #define GRE_KEY_PRESENT 0x2000 57 #define GRE_SEQUENCE_PRESENT 0x1000 58 #define GRE_EXT_LEN 4 59 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 60 GRE_SEQUENCE_PRESENT) 61 62 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 63 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 64 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 65 #else 66 #define _htons(x) (x) 67 #endif 68 69 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; 70 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; 71 72 /* structure that caches offload info for the current packet */ 73 struct testpmd_offload_info { 74 uint16_t ethertype; 75 #ifdef RTE_LIB_GSO 76 uint8_t gso_enable; 77 #endif 78 uint16_t l2_len; 79 uint16_t l3_len; 80 uint16_t l4_len; 81 uint8_t l4_proto; 82 uint8_t is_tunnel; 83 uint16_t outer_ethertype; 84 uint16_t outer_l2_len; 85 uint16_t outer_l3_len; 86 uint8_t outer_l4_proto; 87 uint16_t tso_segsz; 88 uint16_t tunnel_tso_segsz; 89 uint32_t pkt_len; 90 }; 91 92 /* simplified GRE header */ 93 struct simple_gre_hdr { 94 uint16_t flags; 95 uint16_t proto; 96 } __rte_packed; 97 98 static uint16_t 99 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off, 100 uint16_t ethertype) 101 { 102 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 103 return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 104 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ 105 return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 106 } 107 108 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 109 static void 110 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 111 { 112 struct rte_tcp_hdr *tcp_hdr; 113 114 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); 115 info->l4_proto = ipv4_hdr->next_proto_id; 116 117 /* only fill l4_len for TCP, it's useful for TSO */ 118 if (info->l4_proto == IPPROTO_TCP) { 119 tcp_hdr = (struct rte_tcp_hdr *) 120 ((char *)ipv4_hdr + info->l3_len); 121 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 122 } else if (info->l4_proto == IPPROTO_UDP) 123 info->l4_len = sizeof(struct rte_udp_hdr); 124 else 125 info->l4_len = 0; 126 } 127 128 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 129 static void 130 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 131 { 132 struct rte_tcp_hdr *tcp_hdr; 133 134 info->l3_len = sizeof(struct rte_ipv6_hdr); 135 info->l4_proto = ipv6_hdr->proto; 136 137 /* only fill l4_len for TCP, it's useful for TSO */ 138 if (info->l4_proto == IPPROTO_TCP) { 139 tcp_hdr = (struct rte_tcp_hdr *) 140 ((char *)ipv6_hdr + info->l3_len); 141 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 142 } else if (info->l4_proto == IPPROTO_UDP) 143 info->l4_len = sizeof(struct rte_udp_hdr); 144 else 145 info->l4_len = 0; 146 } 147 148 /* 149 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 150 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN 151 * headers. The l4_len argument is only set in case of TCP (useful for TSO). 152 */ 153 static void 154 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 155 { 156 struct rte_ipv4_hdr *ipv4_hdr; 157 struct rte_ipv6_hdr *ipv6_hdr; 158 struct rte_vlan_hdr *vlan_hdr; 159 160 info->l2_len = sizeof(struct rte_ether_hdr); 161 info->ethertype = eth_hdr->ether_type; 162 163 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || 164 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { 165 vlan_hdr = (struct rte_vlan_hdr *) 166 ((char *)eth_hdr + info->l2_len); 167 info->l2_len += sizeof(struct rte_vlan_hdr); 168 info->ethertype = vlan_hdr->eth_proto; 169 } 170 171 switch (info->ethertype) { 172 case _htons(RTE_ETHER_TYPE_IPV4): 173 ipv4_hdr = (struct rte_ipv4_hdr *) 174 ((char *)eth_hdr + info->l2_len); 175 parse_ipv4(ipv4_hdr, info); 176 break; 177 case _htons(RTE_ETHER_TYPE_IPV6): 178 ipv6_hdr = (struct rte_ipv6_hdr *) 179 ((char *)eth_hdr + info->l2_len); 180 parse_ipv6(ipv6_hdr, info); 181 break; 182 default: 183 info->l4_len = 0; 184 info->l3_len = 0; 185 info->l4_proto = 0; 186 break; 187 } 188 } 189 190 /* Fill in outer layers length */ 191 static void 192 update_tunnel_outer(struct testpmd_offload_info *info) 193 { 194 info->is_tunnel = 1; 195 info->outer_ethertype = info->ethertype; 196 info->outer_l2_len = info->l2_len; 197 info->outer_l3_len = info->l3_len; 198 info->outer_l4_proto = info->l4_proto; 199 } 200 201 /* 202 * Parse a GTP protocol header. 203 * No optional fields and next extension header type. 204 */ 205 static void 206 parse_gtp(struct rte_udp_hdr *udp_hdr, 207 struct testpmd_offload_info *info) 208 { 209 struct rte_ipv4_hdr *ipv4_hdr; 210 struct rte_ipv6_hdr *ipv6_hdr; 211 struct rte_gtp_hdr *gtp_hdr; 212 uint8_t gtp_len = sizeof(*gtp_hdr); 213 uint8_t ip_ver; 214 215 /* Check udp destination port. */ 216 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && 217 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && 218 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) 219 return; 220 221 update_tunnel_outer(info); 222 info->l2_len = 0; 223 224 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + 225 sizeof(struct rte_udp_hdr)); 226 227 /* 228 * Check message type. If message type is 0xff, it is 229 * a GTP data packet. If not, it is a GTP control packet 230 */ 231 if (gtp_hdr->msg_type == 0xff) { 232 ip_ver = *(uint8_t *)((char *)udp_hdr + 233 sizeof(struct rte_udp_hdr) + 234 sizeof(struct rte_gtp_hdr)); 235 ip_ver = (ip_ver) & 0xf0; 236 237 if (ip_ver == RTE_GTP_TYPE_IPV4) { 238 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + 239 gtp_len); 240 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 241 parse_ipv4(ipv4_hdr, info); 242 } else if (ip_ver == RTE_GTP_TYPE_IPV6) { 243 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + 244 gtp_len); 245 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 246 parse_ipv6(ipv6_hdr, info); 247 } 248 } else { 249 info->ethertype = 0; 250 info->l4_len = 0; 251 info->l3_len = 0; 252 info->l4_proto = 0; 253 } 254 255 info->l2_len += RTE_ETHER_GTP_HLEN; 256 } 257 258 /* Parse a vxlan header */ 259 static void 260 parse_vxlan(struct rte_udp_hdr *udp_hdr, 261 struct testpmd_offload_info *info, 262 uint32_t pkt_type) 263 { 264 struct rte_ether_hdr *eth_hdr; 265 266 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the 267 * default vxlan port (rfc7348) or that the rx offload flag is set 268 * (i40e only currently) 269 */ 270 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) && 271 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 272 return; 273 274 update_tunnel_outer(info); 275 276 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 277 sizeof(struct rte_udp_hdr) + 278 sizeof(struct rte_vxlan_hdr)); 279 280 parse_ethernet(eth_hdr, info); 281 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 282 } 283 284 /* Parse a vxlan-gpe header */ 285 static void 286 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 287 struct testpmd_offload_info *info) 288 { 289 struct rte_ether_hdr *eth_hdr; 290 struct rte_ipv4_hdr *ipv4_hdr; 291 struct rte_ipv6_hdr *ipv6_hdr; 292 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 293 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 294 295 /* Check udp destination port. */ 296 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 297 return; 298 299 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 300 sizeof(struct rte_udp_hdr)); 301 302 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 303 RTE_VXLAN_GPE_TYPE_IPV4) { 304 update_tunnel_outer(info); 305 306 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 307 vxlan_gpe_len); 308 309 parse_ipv4(ipv4_hdr, info); 310 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 311 info->l2_len = 0; 312 313 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 314 update_tunnel_outer(info); 315 316 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 317 vxlan_gpe_len); 318 319 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 320 parse_ipv6(ipv6_hdr, info); 321 info->l2_len = 0; 322 323 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 324 update_tunnel_outer(info); 325 326 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 327 vxlan_gpe_len); 328 329 parse_ethernet(eth_hdr, info); 330 } else 331 return; 332 333 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 334 } 335 336 /* Parse a geneve header */ 337 static void 338 parse_geneve(struct rte_udp_hdr *udp_hdr, 339 struct testpmd_offload_info *info) 340 { 341 struct rte_ether_hdr *eth_hdr; 342 struct rte_ipv4_hdr *ipv4_hdr; 343 struct rte_ipv6_hdr *ipv6_hdr; 344 struct rte_geneve_hdr *geneve_hdr; 345 uint16_t geneve_len; 346 347 /* Check udp destination port. */ 348 if (udp_hdr->dst_port != _htons(geneve_udp_port)) 349 return; 350 351 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + 352 sizeof(struct rte_udp_hdr)); 353 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; 354 if (!geneve_hdr->proto || geneve_hdr->proto == 355 _htons(RTE_ETHER_TYPE_IPV4)) { 356 update_tunnel_outer(info); 357 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + 358 geneve_len); 359 parse_ipv4(ipv4_hdr, info); 360 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 361 info->l2_len = 0; 362 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 363 update_tunnel_outer(info); 364 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + 365 geneve_len); 366 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 367 parse_ipv6(ipv6_hdr, info); 368 info->l2_len = 0; 369 370 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { 371 update_tunnel_outer(info); 372 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + 373 geneve_len); 374 parse_ethernet(eth_hdr, info); 375 } else 376 return; 377 378 info->l2_len += 379 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + 380 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); 381 } 382 383 /* Parse a gre header */ 384 static void 385 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 386 { 387 struct rte_ether_hdr *eth_hdr; 388 struct rte_ipv4_hdr *ipv4_hdr; 389 struct rte_ipv6_hdr *ipv6_hdr; 390 uint8_t gre_len = 0; 391 392 gre_len += sizeof(struct simple_gre_hdr); 393 394 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 395 gre_len += GRE_EXT_LEN; 396 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 397 gre_len += GRE_EXT_LEN; 398 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 399 gre_len += GRE_EXT_LEN; 400 401 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { 402 update_tunnel_outer(info); 403 404 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 405 406 parse_ipv4(ipv4_hdr, info); 407 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 408 info->l2_len = 0; 409 410 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 411 update_tunnel_outer(info); 412 413 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 414 415 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 416 parse_ipv6(ipv6_hdr, info); 417 info->l2_len = 0; 418 419 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 420 update_tunnel_outer(info); 421 422 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 423 424 parse_ethernet(eth_hdr, info); 425 } else 426 return; 427 428 info->l2_len += gre_len; 429 } 430 431 432 /* Parse an encapsulated ip or ipv6 header */ 433 static void 434 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 435 { 436 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 437 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 438 uint8_t ip_version; 439 440 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 441 442 if (ip_version != 4 && ip_version != 6) 443 return; 444 445 info->is_tunnel = 1; 446 info->outer_ethertype = info->ethertype; 447 info->outer_l2_len = info->l2_len; 448 info->outer_l3_len = info->l3_len; 449 450 if (ip_version == 4) { 451 parse_ipv4(ipv4_hdr, info); 452 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 453 } else { 454 parse_ipv6(ipv6_hdr, info); 455 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 456 } 457 info->l2_len = 0; 458 } 459 460 /* if possible, calculate the checksum of a packet in hw or sw, 461 * depending on the testpmd command line configuration */ 462 static uint64_t 463 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 464 uint64_t tx_offloads, struct rte_mbuf *m) 465 { 466 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 467 struct rte_udp_hdr *udp_hdr; 468 struct rte_tcp_hdr *tcp_hdr; 469 struct rte_sctp_hdr *sctp_hdr; 470 uint64_t ol_flags = 0; 471 uint32_t max_pkt_len, tso_segsz = 0; 472 uint16_t l4_off; 473 474 /* ensure packet is large enough to require tso */ 475 if (!info->is_tunnel) { 476 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 477 info->tso_segsz; 478 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 479 tso_segsz = info->tso_segsz; 480 } else { 481 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 482 info->l2_len + info->l3_len + info->l4_len + 483 info->tunnel_tso_segsz; 484 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 485 tso_segsz = info->tunnel_tso_segsz; 486 } 487 488 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 489 ipv4_hdr = l3_hdr; 490 491 ol_flags |= RTE_MBUF_F_TX_IPV4; 492 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 493 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 494 } else { 495 if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) { 496 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 497 } else { 498 ipv4_hdr->hdr_checksum = 0; 499 ipv4_hdr->hdr_checksum = 500 rte_ipv4_cksum(ipv4_hdr); 501 } 502 } 503 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) 504 ol_flags |= RTE_MBUF_F_TX_IPV6; 505 else 506 return 0; /* packet type not supported, nothing to do */ 507 508 if (info->l4_proto == IPPROTO_UDP) { 509 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 510 /* do not recalculate udp cksum if it was 0 */ 511 if (udp_hdr->dgram_cksum != 0) { 512 if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) { 513 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM; 514 } else { 515 if (info->is_tunnel) 516 l4_off = info->l2_len + 517 info->outer_l3_len + 518 info->l2_len + info->l3_len; 519 else 520 l4_off = info->l2_len + info->l3_len; 521 udp_hdr->dgram_cksum = 0; 522 udp_hdr->dgram_cksum = 523 get_udptcp_checksum(m, l3_hdr, l4_off, 524 info->ethertype); 525 } 526 } 527 #ifdef RTE_LIB_GSO 528 if (info->gso_enable) 529 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 530 #endif 531 } else if (info->l4_proto == IPPROTO_TCP) { 532 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 533 if (tso_segsz) 534 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 535 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) { 536 ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM; 537 } else { 538 if (info->is_tunnel) 539 l4_off = info->l2_len + info->outer_l3_len + 540 info->l2_len + info->l3_len; 541 else 542 l4_off = info->l2_len + info->l3_len; 543 tcp_hdr->cksum = 0; 544 tcp_hdr->cksum = 545 get_udptcp_checksum(m, l3_hdr, l4_off, 546 info->ethertype); 547 } 548 #ifdef RTE_LIB_GSO 549 if (info->gso_enable) 550 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 551 #endif 552 } else if (info->l4_proto == IPPROTO_SCTP) { 553 sctp_hdr = (struct rte_sctp_hdr *) 554 ((char *)l3_hdr + info->l3_len); 555 /* sctp payload must be a multiple of 4 to be 556 * offloaded */ 557 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) && 558 ((ipv4_hdr->total_length & 0x3) == 0)) { 559 ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM; 560 } else { 561 sctp_hdr->cksum = 0; 562 /* XXX implement CRC32c, example available in 563 * RFC3309 */ 564 } 565 } 566 567 return ol_flags; 568 } 569 570 /* Calculate the checksum of outer header */ 571 static uint64_t 572 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 573 uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m) 574 { 575 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 576 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 577 struct rte_udp_hdr *udp_hdr; 578 uint64_t ol_flags = 0; 579 580 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 581 ipv4_hdr->hdr_checksum = 0; 582 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4; 583 584 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) 585 ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM; 586 else 587 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 588 } else 589 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6; 590 591 if (info->outer_l4_proto != IPPROTO_UDP) 592 return ol_flags; 593 594 udp_hdr = (struct rte_udp_hdr *) 595 ((char *)outer_l3_hdr + info->outer_l3_len); 596 597 if (tso_enabled) 598 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 599 600 /* Skip SW outer UDP checksum generation if HW supports it */ 601 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) { 602 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 603 udp_hdr->dgram_cksum 604 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 605 else 606 udp_hdr->dgram_cksum 607 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 608 609 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM; 610 return ol_flags; 611 } 612 613 /* outer UDP checksum is done in software. In the other side, for 614 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 615 * set to zero. 616 * 617 * If a packet will be TSOed into small packets by NIC, we cannot 618 * set/calculate a non-zero checksum, because it will be a wrong 619 * value after the packet be split into several small packets. 620 */ 621 if (tso_enabled) 622 udp_hdr->dgram_cksum = 0; 623 624 /* do not recalculate udp cksum if it was 0 */ 625 if (udp_hdr->dgram_cksum != 0) { 626 udp_hdr->dgram_cksum = 0; 627 udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr, 628 info->l2_len + info->outer_l3_len, 629 info->outer_ethertype); 630 } 631 632 return ol_flags; 633 } 634 635 /* 636 * Helper function. 637 * Performs actual copying. 638 * Returns number of segments in the destination mbuf on success, 639 * or negative error code on failure. 640 */ 641 static int 642 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 643 uint16_t seglen[], uint8_t nb_seg) 644 { 645 uint32_t dlen, slen, tlen; 646 uint32_t i, len; 647 const struct rte_mbuf *m; 648 const uint8_t *src; 649 uint8_t *dst; 650 651 dlen = 0; 652 slen = 0; 653 tlen = 0; 654 655 dst = NULL; 656 src = NULL; 657 658 m = ms; 659 i = 0; 660 while (ms != NULL && i != nb_seg) { 661 662 if (slen == 0) { 663 slen = rte_pktmbuf_data_len(ms); 664 src = rte_pktmbuf_mtod(ms, const uint8_t *); 665 } 666 667 if (dlen == 0) { 668 dlen = RTE_MIN(seglen[i], slen); 669 md[i]->data_len = dlen; 670 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 671 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 672 } 673 674 len = RTE_MIN(slen, dlen); 675 memcpy(dst, src, len); 676 tlen += len; 677 slen -= len; 678 dlen -= len; 679 src += len; 680 dst += len; 681 682 if (slen == 0) 683 ms = ms->next; 684 if (dlen == 0) 685 i++; 686 } 687 688 if (ms != NULL) 689 return -ENOBUFS; 690 else if (tlen != m->pkt_len) 691 return -EINVAL; 692 693 md[0]->nb_segs = nb_seg; 694 md[0]->pkt_len = tlen; 695 md[0]->vlan_tci = m->vlan_tci; 696 md[0]->vlan_tci_outer = m->vlan_tci_outer; 697 md[0]->ol_flags = m->ol_flags; 698 md[0]->tx_offload = m->tx_offload; 699 700 return nb_seg; 701 } 702 703 /* 704 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 705 * Copy packet contents and offload information into the new segmented mbuf. 706 */ 707 static struct rte_mbuf * 708 pkt_copy_split(const struct rte_mbuf *pkt) 709 { 710 int32_t n, rc; 711 uint32_t i, len, nb_seg; 712 struct rte_mempool *mp; 713 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 714 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 715 716 mp = current_fwd_lcore()->mbp; 717 718 if (tx_pkt_split == TX_PKT_SPLIT_RND) 719 nb_seg = rte_rand() % tx_pkt_nb_segs + 1; 720 else 721 nb_seg = tx_pkt_nb_segs; 722 723 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 724 725 /* calculate number of segments to use and their length. */ 726 len = 0; 727 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 728 len += seglen[i]; 729 md[i] = NULL; 730 } 731 732 n = pkt->pkt_len - len; 733 734 /* update size of the last segment to fit rest of the packet */ 735 if (n >= 0) { 736 seglen[i - 1] += n; 737 len += n; 738 } 739 740 nb_seg = i; 741 while (i != 0) { 742 p = rte_pktmbuf_alloc(mp); 743 if (p == NULL) { 744 TESTPMD_LOG(ERR, 745 "failed to allocate %u-th of %u mbuf " 746 "from mempool: %s\n", 747 nb_seg - i, nb_seg, mp->name); 748 break; 749 } 750 751 md[--i] = p; 752 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 753 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 754 "expected seglen: %u, " 755 "actual mbuf tailroom: %u\n", 756 mp->name, i, seglen[i], 757 rte_pktmbuf_tailroom(md[i])); 758 break; 759 } 760 } 761 762 /* all mbufs successfully allocated, do copy */ 763 if (i == 0) { 764 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 765 if (rc < 0) 766 TESTPMD_LOG(ERR, 767 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 768 "into %u segments failed with error code: %d\n", 769 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 770 771 /* figure out how many mbufs to free. */ 772 i = RTE_MAX(rc, 0); 773 } 774 775 /* free unused mbufs */ 776 for (; i != nb_seg; i++) { 777 rte_pktmbuf_free_seg(md[i]); 778 md[i] = NULL; 779 } 780 781 return md[0]; 782 } 783 784 /* 785 * Receive a burst of packets, and for each packet: 786 * - parse packet, and try to recognize a supported packet type (1) 787 * - if it's not a supported packet type, don't touch the packet, else: 788 * - reprocess the checksum of all supported layers. This is done in SW 789 * or HW, depending on testpmd command line configuration 790 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 791 * segmentation offload (this implies HW TCP checksum) 792 * Then transmit packets on the output port. 793 * 794 * (1) Supported packets are: 795 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 796 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 797 * UDP|TCP|SCTP 798 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 799 * UDP|TCP|SCTP 800 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 801 * UDP|TCP|SCTP 802 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP 803 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 804 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 805 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 806 * 807 * The testpmd command line for this forward engine sets the flags 808 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 809 * whether a checksum must be calculated in software or in hardware. The 810 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 811 * OUTER_IP is only useful for tunnel packets. 812 */ 813 static void 814 pkt_burst_checksum_forward(struct fwd_stream *fs) 815 { 816 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 817 #ifdef RTE_LIB_GSO 818 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 819 struct rte_gso_ctx *gso_ctx; 820 #endif 821 struct rte_mbuf **tx_pkts_burst; 822 struct rte_port *txp; 823 struct rte_mbuf *m, *p; 824 struct rte_ether_hdr *eth_hdr; 825 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 826 #ifdef RTE_LIB_GRO 827 void **gro_ctx; 828 uint16_t gro_pkts_num; 829 uint8_t gro_enable; 830 #endif 831 uint16_t nb_rx; 832 uint16_t nb_tx; 833 uint16_t nb_prep; 834 uint16_t i; 835 uint64_t rx_ol_flags, tx_ol_flags; 836 uint64_t tx_offloads; 837 uint32_t retry; 838 uint32_t rx_bad_ip_csum; 839 uint32_t rx_bad_l4_csum; 840 uint32_t rx_bad_outer_l4_csum; 841 uint32_t rx_bad_outer_ip_csum; 842 struct testpmd_offload_info info; 843 844 uint64_t start_tsc = 0; 845 846 get_start_cycles(&start_tsc); 847 848 /* receive a burst of packet */ 849 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 850 nb_pkt_per_burst); 851 inc_rx_burst_stats(fs, nb_rx); 852 if (unlikely(nb_rx == 0)) 853 return; 854 855 fs->rx_packets += nb_rx; 856 rx_bad_ip_csum = 0; 857 rx_bad_l4_csum = 0; 858 rx_bad_outer_l4_csum = 0; 859 rx_bad_outer_ip_csum = 0; 860 #ifdef RTE_LIB_GRO 861 gro_enable = gro_ports[fs->rx_port].enable; 862 #endif 863 864 txp = &ports[fs->tx_port]; 865 tx_offloads = txp->dev_conf.txmode.offloads; 866 memset(&info, 0, sizeof(info)); 867 info.tso_segsz = txp->tso_segsz; 868 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 869 #ifdef RTE_LIB_GSO 870 if (gso_ports[fs->tx_port].enable) 871 info.gso_enable = 1; 872 #endif 873 874 for (i = 0; i < nb_rx; i++) { 875 if (likely(i < nb_rx - 1)) 876 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 877 void *)); 878 879 m = pkts_burst[i]; 880 info.is_tunnel = 0; 881 info.pkt_len = rte_pktmbuf_pkt_len(m); 882 tx_ol_flags = m->ol_flags & 883 (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL); 884 rx_ol_flags = m->ol_flags; 885 886 /* Update the L3/L4 checksum error packet statistics */ 887 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD) 888 rx_bad_ip_csum += 1; 889 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD) 890 rx_bad_l4_csum += 1; 891 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD) 892 rx_bad_outer_l4_csum += 1; 893 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) 894 rx_bad_outer_ip_csum += 1; 895 896 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 897 * and inner headers */ 898 899 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 900 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 901 ð_hdr->dst_addr); 902 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, 903 ð_hdr->src_addr); 904 parse_ethernet(eth_hdr, &info); 905 l3_hdr = (char *)eth_hdr + info.l2_len; 906 907 /* check if it's a supported tunnel */ 908 if (txp->parse_tunnel) { 909 if (info.l4_proto == IPPROTO_UDP) { 910 struct rte_udp_hdr *udp_hdr; 911 912 udp_hdr = (struct rte_udp_hdr *) 913 ((char *)l3_hdr + info.l3_len); 914 parse_gtp(udp_hdr, &info); 915 if (info.is_tunnel) { 916 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP; 917 goto tunnel_update; 918 } 919 parse_vxlan_gpe(udp_hdr, &info); 920 if (info.is_tunnel) { 921 tx_ol_flags |= 922 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE; 923 goto tunnel_update; 924 } 925 parse_vxlan(udp_hdr, &info, 926 m->packet_type); 927 if (info.is_tunnel) { 928 tx_ol_flags |= 929 RTE_MBUF_F_TX_TUNNEL_VXLAN; 930 goto tunnel_update; 931 } 932 parse_geneve(udp_hdr, &info); 933 if (info.is_tunnel) { 934 tx_ol_flags |= 935 RTE_MBUF_F_TX_TUNNEL_GENEVE; 936 goto tunnel_update; 937 } 938 } else if (info.l4_proto == IPPROTO_GRE) { 939 struct simple_gre_hdr *gre_hdr; 940 941 gre_hdr = (struct simple_gre_hdr *) 942 ((char *)l3_hdr + info.l3_len); 943 parse_gre(gre_hdr, &info); 944 if (info.is_tunnel) 945 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE; 946 } else if (info.l4_proto == IPPROTO_IPIP) { 947 void *encap_ip_hdr; 948 949 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 950 parse_encap_ip(encap_ip_hdr, &info); 951 if (info.is_tunnel) 952 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP; 953 } 954 } 955 956 tunnel_update: 957 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 958 if (info.is_tunnel) { 959 outer_l3_hdr = l3_hdr; 960 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 961 } 962 963 /* step 2: depending on user command line configuration, 964 * recompute checksum either in software or flag the 965 * mbuf to offload the calculation to the NIC. If TSO 966 * is configured, prepare the mbuf for TCP segmentation. */ 967 968 /* process checksums of inner headers first */ 969 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 970 tx_offloads, m); 971 972 /* Then process outer headers if any. Note that the software 973 * checksum will be wrong if one of the inner checksums is 974 * processed in hardware. */ 975 if (info.is_tunnel == 1) { 976 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 977 tx_offloads, 978 !!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG), 979 m); 980 } 981 982 /* step 3: fill the mbuf meta data (flags and header lengths) */ 983 984 m->tx_offload = 0; 985 if (info.is_tunnel == 1) { 986 if (info.tunnel_tso_segsz || 987 (tx_offloads & 988 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 989 (tx_offloads & 990 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) { 991 m->outer_l2_len = info.outer_l2_len; 992 m->outer_l3_len = info.outer_l3_len; 993 m->l2_len = info.l2_len; 994 m->l3_len = info.l3_len; 995 m->l4_len = info.l4_len; 996 m->tso_segsz = info.tunnel_tso_segsz; 997 } 998 else { 999 /* if there is a outer UDP cksum 1000 processed in sw and the inner in hw, 1001 the outer checksum will be wrong as 1002 the payload will be modified by the 1003 hardware */ 1004 m->l2_len = info.outer_l2_len + 1005 info.outer_l3_len + info.l2_len; 1006 m->l3_len = info.l3_len; 1007 m->l4_len = info.l4_len; 1008 } 1009 } else { 1010 /* this is only useful if an offload flag is 1011 * set, but it does not hurt to fill it in any 1012 * case */ 1013 m->l2_len = info.l2_len; 1014 m->l3_len = info.l3_len; 1015 m->l4_len = info.l4_len; 1016 m->tso_segsz = info.tso_segsz; 1017 } 1018 m->ol_flags = tx_ol_flags; 1019 1020 /* Do split & copy for the packet. */ 1021 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 1022 p = pkt_copy_split(m); 1023 if (p != NULL) { 1024 rte_pktmbuf_free(m); 1025 m = p; 1026 pkts_burst[i] = m; 1027 } 1028 } 1029 1030 /* if verbose mode is enabled, dump debug info */ 1031 if (verbose_level > 0) { 1032 char buf[256]; 1033 1034 printf("-----------------\n"); 1035 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 1036 fs->rx_port, m, m->pkt_len, m->nb_segs); 1037 /* dump rx parsed packet info */ 1038 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 1039 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 1040 "l4_proto=%d l4_len=%d flags=%s\n", 1041 info.l2_len, rte_be_to_cpu_16(info.ethertype), 1042 info.l3_len, info.l4_proto, info.l4_len, buf); 1043 if (rx_ol_flags & RTE_MBUF_F_RX_LRO) 1044 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 1045 if (info.is_tunnel == 1) 1046 printf("rx: outer_l2_len=%d outer_ethertype=%x " 1047 "outer_l3_len=%d\n", info.outer_l2_len, 1048 rte_be_to_cpu_16(info.outer_ethertype), 1049 info.outer_l3_len); 1050 /* dump tx packet info */ 1051 if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 1052 RTE_ETH_TX_OFFLOAD_UDP_CKSUM | 1053 RTE_ETH_TX_OFFLOAD_TCP_CKSUM | 1054 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) || 1055 info.tso_segsz != 0) 1056 printf("tx: m->l2_len=%d m->l3_len=%d " 1057 "m->l4_len=%d\n", 1058 m->l2_len, m->l3_len, m->l4_len); 1059 if (info.is_tunnel == 1) { 1060 if ((tx_offloads & 1061 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1062 (tx_offloads & 1063 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) || 1064 (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)) 1065 printf("tx: m->outer_l2_len=%d " 1066 "m->outer_l3_len=%d\n", 1067 m->outer_l2_len, 1068 m->outer_l3_len); 1069 if (info.tunnel_tso_segsz != 0 && 1070 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1071 printf("tx: m->tso_segsz=%d\n", 1072 m->tso_segsz); 1073 } else if (info.tso_segsz != 0 && 1074 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1075 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 1076 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 1077 printf("tx: flags=%s", buf); 1078 printf("\n"); 1079 } 1080 } 1081 1082 #ifdef RTE_LIB_GRO 1083 if (unlikely(gro_enable)) { 1084 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 1085 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 1086 &(gro_ports[fs->rx_port].param)); 1087 } else { 1088 gro_ctx = current_fwd_lcore()->gro_ctx; 1089 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 1090 1091 if (++fs->gro_times >= gro_flush_cycles) { 1092 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 1093 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 1094 gro_pkts_num = MAX_PKT_BURST - nb_rx; 1095 1096 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 1097 RTE_GRO_TCP_IPV4, 1098 &pkts_burst[nb_rx], 1099 gro_pkts_num); 1100 fs->gro_times = 0; 1101 } 1102 } 1103 } 1104 #endif 1105 1106 #ifdef RTE_LIB_GSO 1107 if (gso_ports[fs->tx_port].enable != 0) { 1108 uint16_t nb_segments = 0; 1109 1110 gso_ctx = &(current_fwd_lcore()->gso_ctx); 1111 gso_ctx->gso_size = gso_max_segment_size; 1112 for (i = 0; i < nb_rx; i++) { 1113 int ret; 1114 1115 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 1116 &gso_segments[nb_segments], 1117 GSO_MAX_PKT_BURST - nb_segments); 1118 if (ret >= 1) { 1119 /* pkts_burst[i] can be freed safely here. */ 1120 rte_pktmbuf_free(pkts_burst[i]); 1121 nb_segments += ret; 1122 } else if (ret == 0) { 1123 /* 0 means it can be transmitted directly 1124 * without gso. 1125 */ 1126 gso_segments[nb_segments] = pkts_burst[i]; 1127 nb_segments += 1; 1128 } else { 1129 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 1130 rte_pktmbuf_free(pkts_burst[i]); 1131 } 1132 } 1133 1134 tx_pkts_burst = gso_segments; 1135 nb_rx = nb_segments; 1136 } else 1137 #endif 1138 tx_pkts_burst = pkts_burst; 1139 1140 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 1141 tx_pkts_burst, nb_rx); 1142 if (nb_prep != nb_rx) 1143 fprintf(stderr, 1144 "Preparing packet burst to transmit failed: %s\n", 1145 rte_strerror(rte_errno)); 1146 1147 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 1148 nb_prep); 1149 1150 /* 1151 * Retry if necessary 1152 */ 1153 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 1154 retry = 0; 1155 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 1156 rte_delay_us(burst_tx_delay_time); 1157 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 1158 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 1159 } 1160 } 1161 fs->tx_packets += nb_tx; 1162 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1163 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1164 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1165 fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; 1166 1167 inc_tx_burst_stats(fs, nb_tx); 1168 if (unlikely(nb_tx < nb_rx)) { 1169 fs->fwd_dropped += (nb_rx - nb_tx); 1170 do { 1171 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 1172 } while (++nb_tx < nb_rx); 1173 } 1174 1175 get_end_cycles(fs, start_tsc); 1176 } 1177 1178 struct fwd_engine csum_fwd_engine = { 1179 .fwd_mode_name = "csum", 1180 .port_fwd_begin = NULL, 1181 .port_fwd_end = NULL, 1182 .packet_fwd = pkt_burst_checksum_forward, 1183 }; 1184