1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * Copyright 2014 6WIND S.A. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * * Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * * Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in 16 * the documentation and/or other materials provided with the 17 * distribution. 18 * * Neither the name of Intel Corporation nor the names of its 19 * contributors may be used to endorse or promote products derived 20 * from this software without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <stdarg.h> 36 #include <stdio.h> 37 #include <errno.h> 38 #include <stdint.h> 39 #include <unistd.h> 40 #include <inttypes.h> 41 42 #include <sys/queue.h> 43 #include <sys/stat.h> 44 45 #include <rte_common.h> 46 #include <rte_byteorder.h> 47 #include <rte_log.h> 48 #include <rte_debug.h> 49 #include <rte_cycles.h> 50 #include <rte_memory.h> 51 #include <rte_memcpy.h> 52 #include <rte_memzone.h> 53 #include <rte_launch.h> 54 #include <rte_eal.h> 55 #include <rte_per_lcore.h> 56 #include <rte_lcore.h> 57 #include <rte_atomic.h> 58 #include <rte_branch_prediction.h> 59 #include <rte_memory.h> 60 #include <rte_mempool.h> 61 #include <rte_mbuf.h> 62 #include <rte_memcpy.h> 63 #include <rte_interrupts.h> 64 #include <rte_pci.h> 65 #include <rte_ether.h> 66 #include <rte_ethdev.h> 67 #include <rte_ip.h> 68 #include <rte_tcp.h> 69 #include <rte_udp.h> 70 #include <rte_sctp.h> 71 #include <rte_prefetch.h> 72 #include <rte_string_fns.h> 73 #include "testpmd.h" 74 75 #define IP_DEFTTL 64 /* from RFC 1340. */ 76 #define IP_VERSION 0x40 77 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ 78 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) 79 80 #define GRE_KEY_PRESENT 0x2000 81 #define GRE_KEY_LEN 4 82 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT 83 84 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 85 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 86 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 87 #else 88 #define _htons(x) (x) 89 #endif 90 91 /* structure that caches offload info for the current packet */ 92 struct testpmd_offload_info { 93 uint16_t ethertype; 94 uint16_t l2_len; 95 uint16_t l3_len; 96 uint16_t l4_len; 97 uint8_t l4_proto; 98 uint8_t is_tunnel; 99 uint16_t outer_ethertype; 100 uint16_t outer_l2_len; 101 uint16_t outer_l3_len; 102 uint8_t outer_l4_proto; 103 uint16_t tso_segsz; 104 uint16_t tunnel_tso_segsz; 105 uint32_t pkt_len; 106 }; 107 108 /* simplified GRE header */ 109 struct simple_gre_hdr { 110 uint16_t flags; 111 uint16_t proto; 112 } __attribute__((__packed__)); 113 114 static uint16_t 115 get_psd_sum(void *l3_hdr, uint16_t ethertype, uint64_t ol_flags) 116 { 117 if (ethertype == _htons(ETHER_TYPE_IPv4)) 118 return rte_ipv4_phdr_cksum(l3_hdr, ol_flags); 119 else /* assume ethertype == ETHER_TYPE_IPv6 */ 120 return rte_ipv6_phdr_cksum(l3_hdr, ol_flags); 121 } 122 123 static uint16_t 124 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 125 { 126 if (ethertype == _htons(ETHER_TYPE_IPv4)) 127 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 128 else /* assume ethertype == ETHER_TYPE_IPv6 */ 129 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 130 } 131 132 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 133 static void 134 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 135 { 136 struct tcp_hdr *tcp_hdr; 137 138 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; 139 info->l4_proto = ipv4_hdr->next_proto_id; 140 141 /* only fill l4_len for TCP, it's useful for TSO */ 142 if (info->l4_proto == IPPROTO_TCP) { 143 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len); 144 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 145 } else 146 info->l4_len = 0; 147 } 148 149 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 150 static void 151 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 152 { 153 struct tcp_hdr *tcp_hdr; 154 155 info->l3_len = sizeof(struct ipv6_hdr); 156 info->l4_proto = ipv6_hdr->proto; 157 158 /* only fill l4_len for TCP, it's useful for TSO */ 159 if (info->l4_proto == IPPROTO_TCP) { 160 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len); 161 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 162 } else 163 info->l4_len = 0; 164 } 165 166 /* 167 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 168 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan 169 * header. The l4_len argument is only set in case of TCP (useful for TSO). 170 */ 171 static void 172 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info) 173 { 174 struct ipv4_hdr *ipv4_hdr; 175 struct ipv6_hdr *ipv6_hdr; 176 177 info->l2_len = sizeof(struct ether_hdr); 178 info->ethertype = eth_hdr->ether_type; 179 180 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) { 181 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); 182 183 info->l2_len += sizeof(struct vlan_hdr); 184 info->ethertype = vlan_hdr->eth_proto; 185 } 186 187 switch (info->ethertype) { 188 case _htons(ETHER_TYPE_IPv4): 189 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len); 190 parse_ipv4(ipv4_hdr, info); 191 break; 192 case _htons(ETHER_TYPE_IPv6): 193 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len); 194 parse_ipv6(ipv6_hdr, info); 195 break; 196 default: 197 info->l4_len = 0; 198 info->l3_len = 0; 199 info->l4_proto = 0; 200 break; 201 } 202 } 203 204 /* Parse a vxlan header */ 205 static void 206 parse_vxlan(struct udp_hdr *udp_hdr, 207 struct testpmd_offload_info *info, 208 uint32_t pkt_type) 209 { 210 struct ether_hdr *eth_hdr; 211 212 /* check udp destination port, 4789 is the default vxlan port 213 * (rfc7348) or that the rx offload flag is set (i40e only 214 * currently) */ 215 if (udp_hdr->dst_port != _htons(4789) && 216 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 217 return; 218 219 info->is_tunnel = 1; 220 info->outer_ethertype = info->ethertype; 221 info->outer_l2_len = info->l2_len; 222 info->outer_l3_len = info->l3_len; 223 info->outer_l4_proto = info->l4_proto; 224 225 eth_hdr = (struct ether_hdr *)((char *)udp_hdr + 226 sizeof(struct udp_hdr) + 227 sizeof(struct vxlan_hdr)); 228 229 parse_ethernet(eth_hdr, info); 230 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */ 231 } 232 233 /* Parse a gre header */ 234 static void 235 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 236 { 237 struct ether_hdr *eth_hdr; 238 struct ipv4_hdr *ipv4_hdr; 239 struct ipv6_hdr *ipv6_hdr; 240 uint8_t gre_len = 0; 241 242 /* check which fields are supported */ 243 if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0) 244 return; 245 246 gre_len += sizeof(struct simple_gre_hdr); 247 248 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 249 gre_len += GRE_KEY_LEN; 250 251 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) { 252 info->is_tunnel = 1; 253 info->outer_ethertype = info->ethertype; 254 info->outer_l2_len = info->l2_len; 255 info->outer_l3_len = info->l3_len; 256 info->outer_l4_proto = info->l4_proto; 257 258 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len); 259 260 parse_ipv4(ipv4_hdr, info); 261 info->ethertype = _htons(ETHER_TYPE_IPv4); 262 info->l2_len = 0; 263 264 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) { 265 info->is_tunnel = 1; 266 info->outer_ethertype = info->ethertype; 267 info->outer_l2_len = info->l2_len; 268 info->outer_l3_len = info->l3_len; 269 info->outer_l4_proto = info->l4_proto; 270 271 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len); 272 273 info->ethertype = _htons(ETHER_TYPE_IPv6); 274 parse_ipv6(ipv6_hdr, info); 275 info->l2_len = 0; 276 277 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) { 278 info->is_tunnel = 1; 279 info->outer_ethertype = info->ethertype; 280 info->outer_l2_len = info->l2_len; 281 info->outer_l3_len = info->l3_len; 282 info->outer_l4_proto = info->l4_proto; 283 284 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len); 285 286 parse_ethernet(eth_hdr, info); 287 } else 288 return; 289 290 info->l2_len += gre_len; 291 } 292 293 294 /* Parse an encapsulated ip or ipv6 header */ 295 static void 296 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 297 { 298 struct ipv4_hdr *ipv4_hdr = encap_ip; 299 struct ipv6_hdr *ipv6_hdr = encap_ip; 300 uint8_t ip_version; 301 302 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 303 304 if (ip_version != 4 && ip_version != 6) 305 return; 306 307 info->is_tunnel = 1; 308 info->outer_ethertype = info->ethertype; 309 info->outer_l2_len = info->l2_len; 310 info->outer_l3_len = info->l3_len; 311 312 if (ip_version == 4) { 313 parse_ipv4(ipv4_hdr, info); 314 info->ethertype = _htons(ETHER_TYPE_IPv4); 315 } else { 316 parse_ipv6(ipv6_hdr, info); 317 info->ethertype = _htons(ETHER_TYPE_IPv6); 318 } 319 info->l2_len = 0; 320 } 321 322 /* if possible, calculate the checksum of a packet in hw or sw, 323 * depending on the testpmd command line configuration */ 324 static uint64_t 325 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 326 uint16_t testpmd_ol_flags) 327 { 328 struct ipv4_hdr *ipv4_hdr = l3_hdr; 329 struct udp_hdr *udp_hdr; 330 struct tcp_hdr *tcp_hdr; 331 struct sctp_hdr *sctp_hdr; 332 uint64_t ol_flags = 0; 333 uint32_t max_pkt_len, tso_segsz = 0; 334 335 /* ensure packet is large enough to require tso */ 336 if (!info->is_tunnel) { 337 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 338 info->tso_segsz; 339 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 340 tso_segsz = info->tso_segsz; 341 } else { 342 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 343 info->l2_len + info->l3_len + info->l4_len + 344 info->tunnel_tso_segsz; 345 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 346 tso_segsz = info->tunnel_tso_segsz; 347 } 348 349 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) { 350 ipv4_hdr = l3_hdr; 351 ipv4_hdr->hdr_checksum = 0; 352 353 ol_flags |= PKT_TX_IPV4; 354 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 355 ol_flags |= PKT_TX_IP_CKSUM; 356 } else { 357 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_IP_CKSUM) 358 ol_flags |= PKT_TX_IP_CKSUM; 359 else 360 ipv4_hdr->hdr_checksum = 361 rte_ipv4_cksum(ipv4_hdr); 362 } 363 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6)) 364 ol_flags |= PKT_TX_IPV6; 365 else 366 return 0; /* packet type not supported, nothing to do */ 367 368 if (info->l4_proto == IPPROTO_UDP) { 369 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len); 370 /* do not recalculate udp cksum if it was 0 */ 371 if (udp_hdr->dgram_cksum != 0) { 372 udp_hdr->dgram_cksum = 0; 373 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_UDP_CKSUM) { 374 ol_flags |= PKT_TX_UDP_CKSUM; 375 udp_hdr->dgram_cksum = get_psd_sum(l3_hdr, 376 info->ethertype, ol_flags); 377 } else { 378 udp_hdr->dgram_cksum = 379 get_udptcp_checksum(l3_hdr, udp_hdr, 380 info->ethertype); 381 } 382 } 383 } else if (info->l4_proto == IPPROTO_TCP) { 384 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len); 385 tcp_hdr->cksum = 0; 386 if (tso_segsz) { 387 ol_flags |= PKT_TX_TCP_SEG; 388 tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype, 389 ol_flags); 390 } else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_TCP_CKSUM) { 391 ol_flags |= PKT_TX_TCP_CKSUM; 392 tcp_hdr->cksum = get_psd_sum(l3_hdr, info->ethertype, 393 ol_flags); 394 } else { 395 tcp_hdr->cksum = 396 get_udptcp_checksum(l3_hdr, tcp_hdr, 397 info->ethertype); 398 } 399 } else if (info->l4_proto == IPPROTO_SCTP) { 400 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len); 401 sctp_hdr->cksum = 0; 402 /* sctp payload must be a multiple of 4 to be 403 * offloaded */ 404 if ((testpmd_ol_flags & TESTPMD_TX_OFFLOAD_SCTP_CKSUM) && 405 ((ipv4_hdr->total_length & 0x3) == 0)) { 406 ol_flags |= PKT_TX_SCTP_CKSUM; 407 } else { 408 /* XXX implement CRC32c, example available in 409 * RFC3309 */ 410 } 411 } 412 413 return ol_flags; 414 } 415 416 /* Calculate the checksum of outer header */ 417 static uint64_t 418 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 419 uint16_t testpmd_ol_flags, int tso_enabled) 420 { 421 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr; 422 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr; 423 struct udp_hdr *udp_hdr; 424 uint64_t ol_flags = 0; 425 426 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) { 427 ipv4_hdr->hdr_checksum = 0; 428 ol_flags |= PKT_TX_OUTER_IPV4; 429 430 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 431 ol_flags |= PKT_TX_OUTER_IP_CKSUM; 432 else 433 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 434 } else if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 435 ol_flags |= PKT_TX_OUTER_IPV6; 436 437 if (info->outer_l4_proto != IPPROTO_UDP) 438 return ol_flags; 439 440 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len); 441 442 /* outer UDP checksum is done in software as we have no hardware 443 * supporting it today, and no API for it. In the other side, for 444 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 445 * set to zero. 446 * 447 * If a packet will be TSOed into small packets by NIC, we cannot 448 * set/calculate a non-zero checksum, because it will be a wrong 449 * value after the packet be split into several small packets. 450 */ 451 if (tso_enabled) 452 udp_hdr->dgram_cksum = 0; 453 454 /* do not recalculate udp cksum if it was 0 */ 455 if (udp_hdr->dgram_cksum != 0) { 456 udp_hdr->dgram_cksum = 0; 457 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) 458 udp_hdr->dgram_cksum = 459 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 460 else 461 udp_hdr->dgram_cksum = 462 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 463 } 464 465 return ol_flags; 466 } 467 468 /* 469 * Helper function. 470 * Performs actual copying. 471 * Returns number of segments in the destination mbuf on success, 472 * or negative error code on failure. 473 */ 474 static int 475 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 476 uint16_t seglen[], uint8_t nb_seg) 477 { 478 uint32_t dlen, slen, tlen; 479 uint32_t i, len; 480 const struct rte_mbuf *m; 481 const uint8_t *src; 482 uint8_t *dst; 483 484 dlen = 0; 485 slen = 0; 486 tlen = 0; 487 488 dst = NULL; 489 src = NULL; 490 491 m = ms; 492 i = 0; 493 while (ms != NULL && i != nb_seg) { 494 495 if (slen == 0) { 496 slen = rte_pktmbuf_data_len(ms); 497 src = rte_pktmbuf_mtod(ms, const uint8_t *); 498 } 499 500 if (dlen == 0) { 501 dlen = RTE_MIN(seglen[i], slen); 502 md[i]->data_len = dlen; 503 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 504 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 505 } 506 507 len = RTE_MIN(slen, dlen); 508 memcpy(dst, src, len); 509 tlen += len; 510 slen -= len; 511 dlen -= len; 512 src += len; 513 dst += len; 514 515 if (slen == 0) 516 ms = ms->next; 517 if (dlen == 0) 518 i++; 519 } 520 521 if (ms != NULL) 522 return -ENOBUFS; 523 else if (tlen != m->pkt_len) 524 return -EINVAL; 525 526 md[0]->nb_segs = nb_seg; 527 md[0]->pkt_len = tlen; 528 md[0]->vlan_tci = m->vlan_tci; 529 md[0]->vlan_tci_outer = m->vlan_tci_outer; 530 md[0]->ol_flags = m->ol_flags; 531 md[0]->tx_offload = m->tx_offload; 532 533 return nb_seg; 534 } 535 536 /* 537 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 538 * Copy packet contents and offload information into then new segmented mbuf. 539 */ 540 static struct rte_mbuf * 541 pkt_copy_split(const struct rte_mbuf *pkt) 542 { 543 int32_t n, rc; 544 uint32_t i, len, nb_seg; 545 struct rte_mempool *mp; 546 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 547 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 548 549 mp = current_fwd_lcore()->mbp; 550 551 if (tx_pkt_split == TX_PKT_SPLIT_RND) 552 nb_seg = random() % tx_pkt_nb_segs + 1; 553 else 554 nb_seg = tx_pkt_nb_segs; 555 556 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 557 558 /* calculate number of segments to use and their length. */ 559 len = 0; 560 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 561 len += seglen[i]; 562 md[i] = NULL; 563 } 564 565 n = pkt->pkt_len - len; 566 567 /* update size of the last segment to fit rest of the packet */ 568 if (n >= 0) { 569 seglen[i - 1] += n; 570 len += n; 571 } 572 573 nb_seg = i; 574 while (i != 0) { 575 p = rte_pktmbuf_alloc(mp); 576 if (p == NULL) { 577 RTE_LOG(ERR, USER1, 578 "failed to allocate %u-th of %u mbuf " 579 "from mempool: %s\n", 580 nb_seg - i, nb_seg, mp->name); 581 break; 582 } 583 584 md[--i] = p; 585 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 586 RTE_LOG(ERR, USER1, "mempool %s, %u-th segment: " 587 "expected seglen: %u, " 588 "actual mbuf tailroom: %u\n", 589 mp->name, i, seglen[i], 590 rte_pktmbuf_tailroom(md[i])); 591 break; 592 } 593 } 594 595 /* all mbufs successfully allocated, do copy */ 596 if (i == 0) { 597 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 598 if (rc < 0) 599 RTE_LOG(ERR, USER1, 600 "mbuf_copy_split for %p(len=%u, nb_seg=%hhu) " 601 "into %u segments failed with error code: %d\n", 602 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 603 604 /* figure out how many mbufs to free. */ 605 i = RTE_MAX(rc, 0); 606 } 607 608 /* free unused mbufs */ 609 for (; i != nb_seg; i++) { 610 rte_pktmbuf_free_seg(md[i]); 611 md[i] = NULL; 612 } 613 614 return md[0]; 615 } 616 617 /* 618 * Receive a burst of packets, and for each packet: 619 * - parse packet, and try to recognize a supported packet type (1) 620 * - if it's not a supported packet type, don't touch the packet, else: 621 * - reprocess the checksum of all supported layers. This is done in SW 622 * or HW, depending on testpmd command line configuration 623 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 624 * segmentation offload (this implies HW TCP checksum) 625 * Then transmit packets on the output port. 626 * 627 * (1) Supported packets are: 628 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 629 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 630 * UDP|TCP|SCTP 631 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 632 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 633 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 634 * 635 * The testpmd command line for this forward engine sets the flags 636 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 637 * wether a checksum must be calculated in software or in hardware. The 638 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 639 * OUTER_IP is only useful for tunnel packets. 640 */ 641 static void 642 pkt_burst_checksum_forward(struct fwd_stream *fs) 643 { 644 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 645 struct rte_port *txp; 646 struct rte_mbuf *m, *p; 647 struct ether_hdr *eth_hdr; 648 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 649 uint16_t nb_rx; 650 uint16_t nb_tx; 651 uint16_t i; 652 uint64_t rx_ol_flags, tx_ol_flags; 653 uint16_t testpmd_ol_flags; 654 uint32_t retry; 655 uint32_t rx_bad_ip_csum; 656 uint32_t rx_bad_l4_csum; 657 struct testpmd_offload_info info; 658 659 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 660 uint64_t start_tsc; 661 uint64_t end_tsc; 662 uint64_t core_cycles; 663 #endif 664 665 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 666 start_tsc = rte_rdtsc(); 667 #endif 668 669 /* receive a burst of packet */ 670 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 671 nb_pkt_per_burst); 672 if (unlikely(nb_rx == 0)) 673 return; 674 675 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 676 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++; 677 #endif 678 fs->rx_packets += nb_rx; 679 rx_bad_ip_csum = 0; 680 rx_bad_l4_csum = 0; 681 682 txp = &ports[fs->tx_port]; 683 testpmd_ol_flags = txp->tx_ol_flags; 684 memset(&info, 0, sizeof(info)); 685 info.tso_segsz = txp->tso_segsz; 686 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 687 688 for (i = 0; i < nb_rx; i++) { 689 if (likely(i < nb_rx - 1)) 690 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 691 void *)); 692 693 m = pkts_burst[i]; 694 info.is_tunnel = 0; 695 info.pkt_len = rte_pktmbuf_pkt_len(m); 696 tx_ol_flags = 0; 697 rx_ol_flags = m->ol_flags; 698 699 /* Update the L3/L4 checksum error packet statistics */ 700 rx_bad_ip_csum += ((rx_ol_flags & PKT_RX_IP_CKSUM_BAD) != 0); 701 rx_bad_l4_csum += ((rx_ol_flags & PKT_RX_L4_CKSUM_BAD) != 0); 702 703 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 704 * and inner headers */ 705 706 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 707 ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 708 ð_hdr->d_addr); 709 ether_addr_copy(&ports[fs->tx_port].eth_addr, 710 ð_hdr->s_addr); 711 parse_ethernet(eth_hdr, &info); 712 l3_hdr = (char *)eth_hdr + info.l2_len; 713 714 /* check if it's a supported tunnel */ 715 if (testpmd_ol_flags & TESTPMD_TX_OFFLOAD_PARSE_TUNNEL) { 716 if (info.l4_proto == IPPROTO_UDP) { 717 struct udp_hdr *udp_hdr; 718 719 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + 720 info.l3_len); 721 parse_vxlan(udp_hdr, &info, m->packet_type); 722 if (info.is_tunnel) 723 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN; 724 } else if (info.l4_proto == IPPROTO_GRE) { 725 struct simple_gre_hdr *gre_hdr; 726 727 gre_hdr = (struct simple_gre_hdr *) 728 ((char *)l3_hdr + info.l3_len); 729 parse_gre(gre_hdr, &info); 730 if (info.is_tunnel) 731 tx_ol_flags |= PKT_TX_TUNNEL_GRE; 732 } else if (info.l4_proto == IPPROTO_IPIP) { 733 void *encap_ip_hdr; 734 735 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 736 parse_encap_ip(encap_ip_hdr, &info); 737 if (info.is_tunnel) 738 tx_ol_flags |= PKT_TX_TUNNEL_IPIP; 739 } 740 } 741 742 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 743 if (info.is_tunnel) { 744 outer_l3_hdr = l3_hdr; 745 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 746 } 747 748 /* step 2: depending on user command line configuration, 749 * recompute checksum either in software or flag the 750 * mbuf to offload the calculation to the NIC. If TSO 751 * is configured, prepare the mbuf for TCP segmentation. */ 752 753 /* process checksums of inner headers first */ 754 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 755 testpmd_ol_flags); 756 757 /* Then process outer headers if any. Note that the software 758 * checksum will be wrong if one of the inner checksums is 759 * processed in hardware. */ 760 if (info.is_tunnel == 1) { 761 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 762 testpmd_ol_flags, 763 !!(tx_ol_flags & PKT_TX_TCP_SEG)); 764 } 765 766 /* step 3: fill the mbuf meta data (flags and header lengths) */ 767 768 if (info.is_tunnel == 1) { 769 if (info.tunnel_tso_segsz || 770 testpmd_ol_flags & TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) { 771 m->outer_l2_len = info.outer_l2_len; 772 m->outer_l3_len = info.outer_l3_len; 773 m->l2_len = info.l2_len; 774 m->l3_len = info.l3_len; 775 m->l4_len = info.l4_len; 776 m->tso_segsz = info.tunnel_tso_segsz; 777 } 778 else { 779 /* if there is a outer UDP cksum 780 processed in sw and the inner in hw, 781 the outer checksum will be wrong as 782 the payload will be modified by the 783 hardware */ 784 m->l2_len = info.outer_l2_len + 785 info.outer_l3_len + info.l2_len; 786 m->l3_len = info.l3_len; 787 m->l4_len = info.l4_len; 788 } 789 } else { 790 /* this is only useful if an offload flag is 791 * set, but it does not hurt to fill it in any 792 * case */ 793 m->l2_len = info.l2_len; 794 m->l3_len = info.l3_len; 795 m->l4_len = info.l4_len; 796 m->tso_segsz = info.tso_segsz; 797 } 798 m->ol_flags = tx_ol_flags; 799 800 /* Do split & copy for the packet. */ 801 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 802 p = pkt_copy_split(m); 803 if (p != NULL) { 804 rte_pktmbuf_free(m); 805 m = p; 806 pkts_burst[i] = m; 807 } 808 } 809 810 /* if verbose mode is enabled, dump debug info */ 811 if (verbose_level > 0) { 812 char buf[256]; 813 814 printf("-----------------\n"); 815 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%hhu:\n", 816 fs->rx_port, m, m->pkt_len, m->nb_segs); 817 /* dump rx parsed packet info */ 818 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 819 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 820 "l4_proto=%d l4_len=%d flags=%s\n", 821 info.l2_len, rte_be_to_cpu_16(info.ethertype), 822 info.l3_len, info.l4_proto, info.l4_len, buf); 823 if (info.is_tunnel == 1) 824 printf("rx: outer_l2_len=%d outer_ethertype=%x " 825 "outer_l3_len=%d\n", info.outer_l2_len, 826 rte_be_to_cpu_16(info.outer_ethertype), 827 info.outer_l3_len); 828 /* dump tx packet info */ 829 if ((testpmd_ol_flags & (TESTPMD_TX_OFFLOAD_IP_CKSUM | 830 TESTPMD_TX_OFFLOAD_UDP_CKSUM | 831 TESTPMD_TX_OFFLOAD_TCP_CKSUM | 832 TESTPMD_TX_OFFLOAD_SCTP_CKSUM)) || 833 info.tso_segsz != 0) 834 printf("tx: m->l2_len=%d m->l3_len=%d " 835 "m->l4_len=%d\n", 836 m->l2_len, m->l3_len, m->l4_len); 837 if (info.is_tunnel == 1) { 838 if (testpmd_ol_flags & 839 TESTPMD_TX_OFFLOAD_OUTER_IP_CKSUM) 840 printf("tx: m->outer_l2_len=%d " 841 "m->outer_l3_len=%d\n", 842 m->outer_l2_len, 843 m->outer_l3_len); 844 if (info.tunnel_tso_segsz != 0 && 845 (m->ol_flags & PKT_TX_TCP_SEG)) 846 printf("tx: m->tso_segsz=%d\n", 847 m->tso_segsz); 848 } else if (info.tso_segsz != 0 && 849 (m->ol_flags & PKT_TX_TCP_SEG)) 850 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 851 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 852 printf("tx: flags=%s", buf); 853 printf("\n"); 854 } 855 } 856 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx); 857 /* 858 * Retry if necessary 859 */ 860 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 861 retry = 0; 862 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 863 rte_delay_us(burst_tx_delay_time); 864 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 865 &pkts_burst[nb_tx], nb_rx - nb_tx); 866 } 867 } 868 fs->tx_packets += nb_tx; 869 fs->rx_bad_ip_csum += rx_bad_ip_csum; 870 fs->rx_bad_l4_csum += rx_bad_l4_csum; 871 872 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 873 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++; 874 #endif 875 if (unlikely(nb_tx < nb_rx)) { 876 fs->fwd_dropped += (nb_rx - nb_tx); 877 do { 878 rte_pktmbuf_free(pkts_burst[nb_tx]); 879 } while (++nb_tx < nb_rx); 880 } 881 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 882 end_tsc = rte_rdtsc(); 883 core_cycles = (end_tsc - start_tsc); 884 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles); 885 #endif 886 } 887 888 struct fwd_engine csum_fwd_engine = { 889 .fwd_mode_name = "csum", 890 .port_fwd_begin = NULL, 891 .port_fwd_end = NULL, 892 .packet_fwd = pkt_burst_checksum_forward, 893 }; 894