1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_atomic.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_mempool.h> 30 #include <rte_mbuf.h> 31 #include <rte_interrupts.h> 32 #include <rte_pci.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_ip.h> 36 #include <rte_tcp.h> 37 #include <rte_udp.h> 38 #include <rte_sctp.h> 39 #include <rte_prefetch.h> 40 #include <rte_string_fns.h> 41 #include <rte_flow.h> 42 #include <rte_gro.h> 43 #include <rte_gso.h> 44 45 #include "testpmd.h" 46 47 #define IP_DEFTTL 64 /* from RFC 1340. */ 48 #define IP_VERSION 0x40 49 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ 50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) 51 52 #define GRE_CHECKSUM_PRESENT 0x8000 53 #define GRE_KEY_PRESENT 0x2000 54 #define GRE_SEQUENCE_PRESENT 0x1000 55 #define GRE_EXT_LEN 4 56 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 57 GRE_SEQUENCE_PRESENT) 58 59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 62 #else 63 #define _htons(x) (x) 64 #endif 65 66 uint16_t vxlan_gpe_udp_port = 4790; 67 68 /* structure that caches offload info for the current packet */ 69 struct testpmd_offload_info { 70 uint16_t ethertype; 71 uint8_t gso_enable; 72 uint16_t l2_len; 73 uint16_t l3_len; 74 uint16_t l4_len; 75 uint8_t l4_proto; 76 uint8_t is_tunnel; 77 uint16_t outer_ethertype; 78 uint16_t outer_l2_len; 79 uint16_t outer_l3_len; 80 uint8_t outer_l4_proto; 81 uint16_t tso_segsz; 82 uint16_t tunnel_tso_segsz; 83 uint32_t pkt_len; 84 }; 85 86 /* simplified GRE header */ 87 struct simple_gre_hdr { 88 uint16_t flags; 89 uint16_t proto; 90 } __attribute__((__packed__)); 91 92 static uint16_t 93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 94 { 95 if (ethertype == _htons(RTE_ETHER_TYPE_IPv4)) 96 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 97 else /* assume ethertype == RTE_ETHER_TYPE_IPv6 */ 98 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 99 } 100 101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 102 static void 103 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 104 { 105 struct rte_tcp_hdr *tcp_hdr; 106 107 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; 108 info->l4_proto = ipv4_hdr->next_proto_id; 109 110 /* only fill l4_len for TCP, it's useful for TSO */ 111 if (info->l4_proto == IPPROTO_TCP) { 112 tcp_hdr = (struct rte_tcp_hdr *) 113 ((char *)ipv4_hdr + info->l3_len); 114 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 115 } else if (info->l4_proto == IPPROTO_UDP) 116 info->l4_len = sizeof(struct rte_udp_hdr); 117 else 118 info->l4_len = 0; 119 } 120 121 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 122 static void 123 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 124 { 125 struct rte_tcp_hdr *tcp_hdr; 126 127 info->l3_len = sizeof(struct rte_ipv6_hdr); 128 info->l4_proto = ipv6_hdr->proto; 129 130 /* only fill l4_len for TCP, it's useful for TSO */ 131 if (info->l4_proto == IPPROTO_TCP) { 132 tcp_hdr = (struct rte_tcp_hdr *) 133 ((char *)ipv6_hdr + info->l3_len); 134 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 135 } else if (info->l4_proto == IPPROTO_UDP) 136 info->l4_len = sizeof(struct rte_udp_hdr); 137 else 138 info->l4_len = 0; 139 } 140 141 /* 142 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 143 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan 144 * header. The l4_len argument is only set in case of TCP (useful for TSO). 145 */ 146 static void 147 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 148 { 149 struct rte_ipv4_hdr *ipv4_hdr; 150 struct rte_ipv6_hdr *ipv6_hdr; 151 152 info->l2_len = sizeof(struct rte_ether_hdr); 153 info->ethertype = eth_hdr->ether_type; 154 155 if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) { 156 struct rte_vlan_hdr *vlan_hdr = ( 157 struct rte_vlan_hdr *)(eth_hdr + 1); 158 159 info->l2_len += sizeof(struct rte_vlan_hdr); 160 info->ethertype = vlan_hdr->eth_proto; 161 } 162 163 switch (info->ethertype) { 164 case _htons(RTE_ETHER_TYPE_IPv4): 165 ipv4_hdr = (struct rte_ipv4_hdr *) 166 ((char *)eth_hdr + info->l2_len); 167 parse_ipv4(ipv4_hdr, info); 168 break; 169 case _htons(RTE_ETHER_TYPE_IPv6): 170 ipv6_hdr = (struct rte_ipv6_hdr *) 171 ((char *)eth_hdr + info->l2_len); 172 parse_ipv6(ipv6_hdr, info); 173 break; 174 default: 175 info->l4_len = 0; 176 info->l3_len = 0; 177 info->l4_proto = 0; 178 break; 179 } 180 } 181 182 /* Parse a vxlan header */ 183 static void 184 parse_vxlan(struct rte_udp_hdr *udp_hdr, 185 struct testpmd_offload_info *info, 186 uint32_t pkt_type) 187 { 188 struct rte_ether_hdr *eth_hdr; 189 190 /* check udp destination port, 4789 is the default vxlan port 191 * (rfc7348) or that the rx offload flag is set (i40e only 192 * currently) */ 193 if (udp_hdr->dst_port != _htons(4789) && 194 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 195 return; 196 197 info->is_tunnel = 1; 198 info->outer_ethertype = info->ethertype; 199 info->outer_l2_len = info->l2_len; 200 info->outer_l3_len = info->l3_len; 201 info->outer_l4_proto = info->l4_proto; 202 203 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 204 sizeof(struct rte_udp_hdr) + 205 sizeof(struct rte_vxlan_hdr)); 206 207 parse_ethernet(eth_hdr, info); 208 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 209 } 210 211 /* Parse a vxlan-gpe header */ 212 static void 213 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 214 struct testpmd_offload_info *info) 215 { 216 struct rte_ether_hdr *eth_hdr; 217 struct rte_ipv4_hdr *ipv4_hdr; 218 struct rte_ipv6_hdr *ipv6_hdr; 219 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 220 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 221 222 /* Check udp destination port. */ 223 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 224 return; 225 226 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 227 sizeof(struct rte_udp_hdr)); 228 229 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 230 RTE_VXLAN_GPE_TYPE_IPV4) { 231 info->is_tunnel = 1; 232 info->outer_ethertype = info->ethertype; 233 info->outer_l2_len = info->l2_len; 234 info->outer_l3_len = info->l3_len; 235 info->outer_l4_proto = info->l4_proto; 236 237 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 238 vxlan_gpe_len); 239 240 parse_ipv4(ipv4_hdr, info); 241 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4); 242 info->l2_len = 0; 243 244 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 245 info->is_tunnel = 1; 246 info->outer_ethertype = info->ethertype; 247 info->outer_l2_len = info->l2_len; 248 info->outer_l3_len = info->l3_len; 249 info->outer_l4_proto = info->l4_proto; 250 251 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 252 vxlan_gpe_len); 253 254 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6); 255 parse_ipv6(ipv6_hdr, info); 256 info->l2_len = 0; 257 258 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 259 info->is_tunnel = 1; 260 info->outer_ethertype = info->ethertype; 261 info->outer_l2_len = info->l2_len; 262 info->outer_l3_len = info->l3_len; 263 info->outer_l4_proto = info->l4_proto; 264 265 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 266 vxlan_gpe_len); 267 268 parse_ethernet(eth_hdr, info); 269 } else 270 return; 271 272 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 273 } 274 275 /* Parse a gre header */ 276 static void 277 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 278 { 279 struct rte_ether_hdr *eth_hdr; 280 struct rte_ipv4_hdr *ipv4_hdr; 281 struct rte_ipv6_hdr *ipv6_hdr; 282 uint8_t gre_len = 0; 283 284 gre_len += sizeof(struct simple_gre_hdr); 285 286 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 287 gre_len += GRE_EXT_LEN; 288 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 289 gre_len += GRE_EXT_LEN; 290 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 291 gre_len += GRE_EXT_LEN; 292 293 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv4)) { 294 info->is_tunnel = 1; 295 info->outer_ethertype = info->ethertype; 296 info->outer_l2_len = info->l2_len; 297 info->outer_l3_len = info->l3_len; 298 info->outer_l4_proto = info->l4_proto; 299 300 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 301 302 parse_ipv4(ipv4_hdr, info); 303 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4); 304 info->l2_len = 0; 305 306 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv6)) { 307 info->is_tunnel = 1; 308 info->outer_ethertype = info->ethertype; 309 info->outer_l2_len = info->l2_len; 310 info->outer_l3_len = info->l3_len; 311 info->outer_l4_proto = info->l4_proto; 312 313 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 314 315 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6); 316 parse_ipv6(ipv6_hdr, info); 317 info->l2_len = 0; 318 319 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 320 info->is_tunnel = 1; 321 info->outer_ethertype = info->ethertype; 322 info->outer_l2_len = info->l2_len; 323 info->outer_l3_len = info->l3_len; 324 info->outer_l4_proto = info->l4_proto; 325 326 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 327 328 parse_ethernet(eth_hdr, info); 329 } else 330 return; 331 332 info->l2_len += gre_len; 333 } 334 335 336 /* Parse an encapsulated ip or ipv6 header */ 337 static void 338 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 339 { 340 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 341 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 342 uint8_t ip_version; 343 344 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 345 346 if (ip_version != 4 && ip_version != 6) 347 return; 348 349 info->is_tunnel = 1; 350 info->outer_ethertype = info->ethertype; 351 info->outer_l2_len = info->l2_len; 352 info->outer_l3_len = info->l3_len; 353 354 if (ip_version == 4) { 355 parse_ipv4(ipv4_hdr, info); 356 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4); 357 } else { 358 parse_ipv6(ipv6_hdr, info); 359 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6); 360 } 361 info->l2_len = 0; 362 } 363 364 /* if possible, calculate the checksum of a packet in hw or sw, 365 * depending on the testpmd command line configuration */ 366 static uint64_t 367 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 368 uint64_t tx_offloads) 369 { 370 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 371 struct rte_udp_hdr *udp_hdr; 372 struct rte_tcp_hdr *tcp_hdr; 373 struct rte_sctp_hdr *sctp_hdr; 374 uint64_t ol_flags = 0; 375 uint32_t max_pkt_len, tso_segsz = 0; 376 377 /* ensure packet is large enough to require tso */ 378 if (!info->is_tunnel) { 379 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 380 info->tso_segsz; 381 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 382 tso_segsz = info->tso_segsz; 383 } else { 384 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 385 info->l2_len + info->l3_len + info->l4_len + 386 info->tunnel_tso_segsz; 387 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 388 tso_segsz = info->tunnel_tso_segsz; 389 } 390 391 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv4)) { 392 ipv4_hdr = l3_hdr; 393 ipv4_hdr->hdr_checksum = 0; 394 395 ol_flags |= PKT_TX_IPV4; 396 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 397 ol_flags |= PKT_TX_IP_CKSUM; 398 } else { 399 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) 400 ol_flags |= PKT_TX_IP_CKSUM; 401 else 402 ipv4_hdr->hdr_checksum = 403 rte_ipv4_cksum(ipv4_hdr); 404 } 405 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv6)) 406 ol_flags |= PKT_TX_IPV6; 407 else 408 return 0; /* packet type not supported, nothing to do */ 409 410 if (info->l4_proto == IPPROTO_UDP) { 411 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 412 /* do not recalculate udp cksum if it was 0 */ 413 if (udp_hdr->dgram_cksum != 0) { 414 udp_hdr->dgram_cksum = 0; 415 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM) 416 ol_flags |= PKT_TX_UDP_CKSUM; 417 else { 418 udp_hdr->dgram_cksum = 419 get_udptcp_checksum(l3_hdr, udp_hdr, 420 info->ethertype); 421 } 422 } 423 if (info->gso_enable) 424 ol_flags |= PKT_TX_UDP_SEG; 425 } else if (info->l4_proto == IPPROTO_TCP) { 426 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 427 tcp_hdr->cksum = 0; 428 if (tso_segsz) 429 ol_flags |= PKT_TX_TCP_SEG; 430 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM) 431 ol_flags |= PKT_TX_TCP_CKSUM; 432 else { 433 tcp_hdr->cksum = 434 get_udptcp_checksum(l3_hdr, tcp_hdr, 435 info->ethertype); 436 } 437 if (info->gso_enable) 438 ol_flags |= PKT_TX_TCP_SEG; 439 } else if (info->l4_proto == IPPROTO_SCTP) { 440 sctp_hdr = (struct rte_sctp_hdr *) 441 ((char *)l3_hdr + info->l3_len); 442 sctp_hdr->cksum = 0; 443 /* sctp payload must be a multiple of 4 to be 444 * offloaded */ 445 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) && 446 ((ipv4_hdr->total_length & 0x3) == 0)) { 447 ol_flags |= PKT_TX_SCTP_CKSUM; 448 } else { 449 /* XXX implement CRC32c, example available in 450 * RFC3309 */ 451 } 452 } 453 454 return ol_flags; 455 } 456 457 /* Calculate the checksum of outer header */ 458 static uint64_t 459 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 460 uint64_t tx_offloads, int tso_enabled) 461 { 462 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 463 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 464 struct rte_udp_hdr *udp_hdr; 465 uint64_t ol_flags = 0; 466 467 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4)) { 468 ipv4_hdr->hdr_checksum = 0; 469 ol_flags |= PKT_TX_OUTER_IPV4; 470 471 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 472 ol_flags |= PKT_TX_OUTER_IP_CKSUM; 473 else 474 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 475 } else 476 ol_flags |= PKT_TX_OUTER_IPV6; 477 478 if (info->outer_l4_proto != IPPROTO_UDP) 479 return ol_flags; 480 481 /* Skip SW outer UDP checksum generation if HW supports it */ 482 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) { 483 ol_flags |= PKT_TX_OUTER_UDP_CKSUM; 484 return ol_flags; 485 } 486 487 udp_hdr = (struct rte_udp_hdr *) 488 ((char *)outer_l3_hdr + info->outer_l3_len); 489 490 /* outer UDP checksum is done in software. In the other side, for 491 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 492 * set to zero. 493 * 494 * If a packet will be TSOed into small packets by NIC, we cannot 495 * set/calculate a non-zero checksum, because it will be a wrong 496 * value after the packet be split into several small packets. 497 */ 498 if (tso_enabled) 499 udp_hdr->dgram_cksum = 0; 500 501 /* do not recalculate udp cksum if it was 0 */ 502 if (udp_hdr->dgram_cksum != 0) { 503 udp_hdr->dgram_cksum = 0; 504 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4)) 505 udp_hdr->dgram_cksum = 506 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 507 else 508 udp_hdr->dgram_cksum = 509 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 510 } 511 512 return ol_flags; 513 } 514 515 /* 516 * Helper function. 517 * Performs actual copying. 518 * Returns number of segments in the destination mbuf on success, 519 * or negative error code on failure. 520 */ 521 static int 522 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 523 uint16_t seglen[], uint8_t nb_seg) 524 { 525 uint32_t dlen, slen, tlen; 526 uint32_t i, len; 527 const struct rte_mbuf *m; 528 const uint8_t *src; 529 uint8_t *dst; 530 531 dlen = 0; 532 slen = 0; 533 tlen = 0; 534 535 dst = NULL; 536 src = NULL; 537 538 m = ms; 539 i = 0; 540 while (ms != NULL && i != nb_seg) { 541 542 if (slen == 0) { 543 slen = rte_pktmbuf_data_len(ms); 544 src = rte_pktmbuf_mtod(ms, const uint8_t *); 545 } 546 547 if (dlen == 0) { 548 dlen = RTE_MIN(seglen[i], slen); 549 md[i]->data_len = dlen; 550 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 551 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 552 } 553 554 len = RTE_MIN(slen, dlen); 555 memcpy(dst, src, len); 556 tlen += len; 557 slen -= len; 558 dlen -= len; 559 src += len; 560 dst += len; 561 562 if (slen == 0) 563 ms = ms->next; 564 if (dlen == 0) 565 i++; 566 } 567 568 if (ms != NULL) 569 return -ENOBUFS; 570 else if (tlen != m->pkt_len) 571 return -EINVAL; 572 573 md[0]->nb_segs = nb_seg; 574 md[0]->pkt_len = tlen; 575 md[0]->vlan_tci = m->vlan_tci; 576 md[0]->vlan_tci_outer = m->vlan_tci_outer; 577 md[0]->ol_flags = m->ol_flags; 578 md[0]->tx_offload = m->tx_offload; 579 580 return nb_seg; 581 } 582 583 /* 584 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 585 * Copy packet contents and offload information into the new segmented mbuf. 586 */ 587 static struct rte_mbuf * 588 pkt_copy_split(const struct rte_mbuf *pkt) 589 { 590 int32_t n, rc; 591 uint32_t i, len, nb_seg; 592 struct rte_mempool *mp; 593 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 594 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 595 596 mp = current_fwd_lcore()->mbp; 597 598 if (tx_pkt_split == TX_PKT_SPLIT_RND) 599 nb_seg = random() % tx_pkt_nb_segs + 1; 600 else 601 nb_seg = tx_pkt_nb_segs; 602 603 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 604 605 /* calculate number of segments to use and their length. */ 606 len = 0; 607 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 608 len += seglen[i]; 609 md[i] = NULL; 610 } 611 612 n = pkt->pkt_len - len; 613 614 /* update size of the last segment to fit rest of the packet */ 615 if (n >= 0) { 616 seglen[i - 1] += n; 617 len += n; 618 } 619 620 nb_seg = i; 621 while (i != 0) { 622 p = rte_pktmbuf_alloc(mp); 623 if (p == NULL) { 624 TESTPMD_LOG(ERR, 625 "failed to allocate %u-th of %u mbuf " 626 "from mempool: %s\n", 627 nb_seg - i, nb_seg, mp->name); 628 break; 629 } 630 631 md[--i] = p; 632 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 633 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 634 "expected seglen: %u, " 635 "actual mbuf tailroom: %u\n", 636 mp->name, i, seglen[i], 637 rte_pktmbuf_tailroom(md[i])); 638 break; 639 } 640 } 641 642 /* all mbufs successfully allocated, do copy */ 643 if (i == 0) { 644 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 645 if (rc < 0) 646 TESTPMD_LOG(ERR, 647 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 648 "into %u segments failed with error code: %d\n", 649 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 650 651 /* figure out how many mbufs to free. */ 652 i = RTE_MAX(rc, 0); 653 } 654 655 /* free unused mbufs */ 656 for (; i != nb_seg; i++) { 657 rte_pktmbuf_free_seg(md[i]); 658 md[i] = NULL; 659 } 660 661 return md[0]; 662 } 663 664 /* 665 * Receive a burst of packets, and for each packet: 666 * - parse packet, and try to recognize a supported packet type (1) 667 * - if it's not a supported packet type, don't touch the packet, else: 668 * - reprocess the checksum of all supported layers. This is done in SW 669 * or HW, depending on testpmd command line configuration 670 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 671 * segmentation offload (this implies HW TCP checksum) 672 * Then transmit packets on the output port. 673 * 674 * (1) Supported packets are: 675 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 676 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 677 * UDP|TCP|SCTP 678 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 679 * UDP|TCP|SCTP 680 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 681 * UDP|TCP|SCTP 682 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 683 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 684 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 685 * 686 * The testpmd command line for this forward engine sets the flags 687 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 688 * wether a checksum must be calculated in software or in hardware. The 689 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 690 * OUTER_IP is only useful for tunnel packets. 691 */ 692 static void 693 pkt_burst_checksum_forward(struct fwd_stream *fs) 694 { 695 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 696 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 697 struct rte_gso_ctx *gso_ctx; 698 struct rte_mbuf **tx_pkts_burst; 699 struct rte_port *txp; 700 struct rte_mbuf *m, *p; 701 struct rte_ether_hdr *eth_hdr; 702 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 703 void **gro_ctx; 704 uint16_t gro_pkts_num; 705 uint8_t gro_enable; 706 uint16_t nb_rx; 707 uint16_t nb_tx; 708 uint16_t nb_prep; 709 uint16_t i; 710 uint64_t rx_ol_flags, tx_ol_flags; 711 uint64_t tx_offloads; 712 uint32_t retry; 713 uint32_t rx_bad_ip_csum; 714 uint32_t rx_bad_l4_csum; 715 uint32_t rx_bad_outer_l4_csum; 716 struct testpmd_offload_info info; 717 uint16_t nb_segments = 0; 718 int ret; 719 720 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 721 uint64_t start_tsc; 722 uint64_t end_tsc; 723 uint64_t core_cycles; 724 #endif 725 726 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 727 start_tsc = rte_rdtsc(); 728 #endif 729 730 /* receive a burst of packet */ 731 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 732 nb_pkt_per_burst); 733 if (unlikely(nb_rx == 0)) 734 return; 735 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 736 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++; 737 #endif 738 fs->rx_packets += nb_rx; 739 rx_bad_ip_csum = 0; 740 rx_bad_l4_csum = 0; 741 rx_bad_outer_l4_csum = 0; 742 gro_enable = gro_ports[fs->rx_port].enable; 743 744 txp = &ports[fs->tx_port]; 745 tx_offloads = txp->dev_conf.txmode.offloads; 746 memset(&info, 0, sizeof(info)); 747 info.tso_segsz = txp->tso_segsz; 748 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 749 if (gso_ports[fs->tx_port].enable) 750 info.gso_enable = 1; 751 752 for (i = 0; i < nb_rx; i++) { 753 if (likely(i < nb_rx - 1)) 754 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 755 void *)); 756 757 m = pkts_burst[i]; 758 info.is_tunnel = 0; 759 info.pkt_len = rte_pktmbuf_pkt_len(m); 760 tx_ol_flags = m->ol_flags & 761 (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF); 762 rx_ol_flags = m->ol_flags; 763 764 /* Update the L3/L4 checksum error packet statistics */ 765 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD) 766 rx_bad_ip_csum += 1; 767 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD) 768 rx_bad_l4_csum += 1; 769 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD) 770 rx_bad_outer_l4_csum += 1; 771 772 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 773 * and inner headers */ 774 775 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 776 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 777 ð_hdr->d_addr); 778 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, 779 ð_hdr->s_addr); 780 parse_ethernet(eth_hdr, &info); 781 l3_hdr = (char *)eth_hdr + info.l2_len; 782 783 /* check if it's a supported tunnel */ 784 if (txp->parse_tunnel) { 785 if (info.l4_proto == IPPROTO_UDP) { 786 struct rte_udp_hdr *udp_hdr; 787 788 udp_hdr = (struct rte_udp_hdr *) 789 ((char *)l3_hdr + info.l3_len); 790 parse_vxlan_gpe(udp_hdr, &info); 791 if (info.is_tunnel) { 792 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE; 793 } else { 794 parse_vxlan(udp_hdr, &info, 795 m->packet_type); 796 if (info.is_tunnel) 797 tx_ol_flags |= 798 PKT_TX_TUNNEL_VXLAN; 799 } 800 } else if (info.l4_proto == IPPROTO_GRE) { 801 struct simple_gre_hdr *gre_hdr; 802 803 gre_hdr = (struct simple_gre_hdr *) 804 ((char *)l3_hdr + info.l3_len); 805 parse_gre(gre_hdr, &info); 806 if (info.is_tunnel) 807 tx_ol_flags |= PKT_TX_TUNNEL_GRE; 808 } else if (info.l4_proto == IPPROTO_IPIP) { 809 void *encap_ip_hdr; 810 811 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 812 parse_encap_ip(encap_ip_hdr, &info); 813 if (info.is_tunnel) 814 tx_ol_flags |= PKT_TX_TUNNEL_IPIP; 815 } 816 } 817 818 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 819 if (info.is_tunnel) { 820 outer_l3_hdr = l3_hdr; 821 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 822 } 823 824 /* step 2: depending on user command line configuration, 825 * recompute checksum either in software or flag the 826 * mbuf to offload the calculation to the NIC. If TSO 827 * is configured, prepare the mbuf for TCP segmentation. */ 828 829 /* process checksums of inner headers first */ 830 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 831 tx_offloads); 832 833 /* Then process outer headers if any. Note that the software 834 * checksum will be wrong if one of the inner checksums is 835 * processed in hardware. */ 836 if (info.is_tunnel == 1) { 837 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 838 tx_offloads, 839 !!(tx_ol_flags & PKT_TX_TCP_SEG)); 840 } 841 842 /* step 3: fill the mbuf meta data (flags and header lengths) */ 843 844 m->tx_offload = 0; 845 if (info.is_tunnel == 1) { 846 if (info.tunnel_tso_segsz || 847 (tx_offloads & 848 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 849 (tx_offloads & 850 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) || 851 (tx_ol_flags & PKT_TX_OUTER_IPV6)) { 852 m->outer_l2_len = info.outer_l2_len; 853 m->outer_l3_len = info.outer_l3_len; 854 m->l2_len = info.l2_len; 855 m->l3_len = info.l3_len; 856 m->l4_len = info.l4_len; 857 m->tso_segsz = info.tunnel_tso_segsz; 858 } 859 else { 860 /* if there is a outer UDP cksum 861 processed in sw and the inner in hw, 862 the outer checksum will be wrong as 863 the payload will be modified by the 864 hardware */ 865 m->l2_len = info.outer_l2_len + 866 info.outer_l3_len + info.l2_len; 867 m->l3_len = info.l3_len; 868 m->l4_len = info.l4_len; 869 } 870 } else { 871 /* this is only useful if an offload flag is 872 * set, but it does not hurt to fill it in any 873 * case */ 874 m->l2_len = info.l2_len; 875 m->l3_len = info.l3_len; 876 m->l4_len = info.l4_len; 877 m->tso_segsz = info.tso_segsz; 878 } 879 m->ol_flags = tx_ol_flags; 880 881 /* Do split & copy for the packet. */ 882 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 883 p = pkt_copy_split(m); 884 if (p != NULL) { 885 rte_pktmbuf_free(m); 886 m = p; 887 pkts_burst[i] = m; 888 } 889 } 890 891 /* if verbose mode is enabled, dump debug info */ 892 if (verbose_level > 0) { 893 char buf[256]; 894 895 printf("-----------------\n"); 896 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 897 fs->rx_port, m, m->pkt_len, m->nb_segs); 898 /* dump rx parsed packet info */ 899 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 900 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 901 "l4_proto=%d l4_len=%d flags=%s\n", 902 info.l2_len, rte_be_to_cpu_16(info.ethertype), 903 info.l3_len, info.l4_proto, info.l4_len, buf); 904 if (rx_ol_flags & PKT_RX_LRO) 905 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 906 if (info.is_tunnel == 1) 907 printf("rx: outer_l2_len=%d outer_ethertype=%x " 908 "outer_l3_len=%d\n", info.outer_l2_len, 909 rte_be_to_cpu_16(info.outer_ethertype), 910 info.outer_l3_len); 911 /* dump tx packet info */ 912 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM | 913 DEV_TX_OFFLOAD_UDP_CKSUM | 914 DEV_TX_OFFLOAD_TCP_CKSUM | 915 DEV_TX_OFFLOAD_SCTP_CKSUM)) || 916 info.tso_segsz != 0) 917 printf("tx: m->l2_len=%d m->l3_len=%d " 918 "m->l4_len=%d\n", 919 m->l2_len, m->l3_len, m->l4_len); 920 if (info.is_tunnel == 1) { 921 if ((tx_offloads & 922 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 923 (tx_offloads & 924 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) || 925 (tx_ol_flags & PKT_TX_OUTER_IPV6)) 926 printf("tx: m->outer_l2_len=%d " 927 "m->outer_l3_len=%d\n", 928 m->outer_l2_len, 929 m->outer_l3_len); 930 if (info.tunnel_tso_segsz != 0 && 931 (m->ol_flags & PKT_TX_TCP_SEG)) 932 printf("tx: m->tso_segsz=%d\n", 933 m->tso_segsz); 934 } else if (info.tso_segsz != 0 && 935 (m->ol_flags & PKT_TX_TCP_SEG)) 936 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 937 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 938 printf("tx: flags=%s", buf); 939 printf("\n"); 940 } 941 } 942 943 if (unlikely(gro_enable)) { 944 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 945 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 946 &(gro_ports[fs->rx_port].param)); 947 } else { 948 gro_ctx = current_fwd_lcore()->gro_ctx; 949 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 950 951 if (++fs->gro_times >= gro_flush_cycles) { 952 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 953 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 954 gro_pkts_num = MAX_PKT_BURST - nb_rx; 955 956 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 957 RTE_GRO_TCP_IPV4, 958 &pkts_burst[nb_rx], 959 gro_pkts_num); 960 fs->gro_times = 0; 961 } 962 } 963 } 964 965 if (gso_ports[fs->tx_port].enable == 0) 966 tx_pkts_burst = pkts_burst; 967 else { 968 gso_ctx = &(current_fwd_lcore()->gso_ctx); 969 gso_ctx->gso_size = gso_max_segment_size; 970 for (i = 0; i < nb_rx; i++) { 971 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 972 &gso_segments[nb_segments], 973 GSO_MAX_PKT_BURST - nb_segments); 974 if (ret >= 0) 975 nb_segments += ret; 976 else { 977 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 978 rte_pktmbuf_free(pkts_burst[i]); 979 } 980 } 981 982 tx_pkts_burst = gso_segments; 983 nb_rx = nb_segments; 984 } 985 986 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 987 tx_pkts_burst, nb_rx); 988 if (nb_prep != nb_rx) 989 printf("Preparing packet burst to transmit failed: %s\n", 990 rte_strerror(rte_errno)); 991 992 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 993 nb_prep); 994 995 /* 996 * Retry if necessary 997 */ 998 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 999 retry = 0; 1000 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 1001 rte_delay_us(burst_tx_delay_time); 1002 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 1003 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 1004 } 1005 } 1006 fs->tx_packets += nb_tx; 1007 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1008 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1009 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1010 1011 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 1012 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++; 1013 #endif 1014 if (unlikely(nb_tx < nb_rx)) { 1015 fs->fwd_dropped += (nb_rx - nb_tx); 1016 do { 1017 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 1018 } while (++nb_tx < nb_rx); 1019 } 1020 1021 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 1022 end_tsc = rte_rdtsc(); 1023 core_cycles = (end_tsc - start_tsc); 1024 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles); 1025 #endif 1026 } 1027 1028 struct fwd_engine csum_fwd_engine = { 1029 .fwd_mode_name = "csum", 1030 .port_fwd_begin = NULL, 1031 .port_fwd_end = NULL, 1032 .packet_fwd = pkt_burst_checksum_forward, 1033 }; 1034