1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_atomic.h> 28 #include <rte_branch_prediction.h> 29 #include <rte_mempool.h> 30 #include <rte_mbuf.h> 31 #include <rte_interrupts.h> 32 #include <rte_pci.h> 33 #include <rte_ether.h> 34 #include <rte_ethdev.h> 35 #include <rte_ip.h> 36 #include <rte_tcp.h> 37 #include <rte_udp.h> 38 #include <rte_sctp.h> 39 #include <rte_prefetch.h> 40 #include <rte_string_fns.h> 41 #include <rte_flow.h> 42 #include <rte_gro.h> 43 #include <rte_gso.h> 44 45 #include "testpmd.h" 46 47 #define IP_DEFTTL 64 /* from RFC 1340. */ 48 #define IP_VERSION 0x40 49 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */ 50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN) 51 52 #define GRE_CHECKSUM_PRESENT 0x8000 53 #define GRE_KEY_PRESENT 0x2000 54 #define GRE_SEQUENCE_PRESENT 0x1000 55 #define GRE_EXT_LEN 4 56 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 57 GRE_SEQUENCE_PRESENT) 58 59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 62 #else 63 #define _htons(x) (x) 64 #endif 65 66 uint16_t vxlan_gpe_udp_port = 4790; 67 68 /* structure that caches offload info for the current packet */ 69 struct testpmd_offload_info { 70 uint16_t ethertype; 71 uint8_t gso_enable; 72 uint16_t l2_len; 73 uint16_t l3_len; 74 uint16_t l4_len; 75 uint8_t l4_proto; 76 uint8_t is_tunnel; 77 uint16_t outer_ethertype; 78 uint16_t outer_l2_len; 79 uint16_t outer_l3_len; 80 uint8_t outer_l4_proto; 81 uint16_t tso_segsz; 82 uint16_t tunnel_tso_segsz; 83 uint32_t pkt_len; 84 }; 85 86 /* simplified GRE header */ 87 struct simple_gre_hdr { 88 uint16_t flags; 89 uint16_t proto; 90 } __attribute__((__packed__)); 91 92 static uint16_t 93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype) 94 { 95 if (ethertype == _htons(ETHER_TYPE_IPv4)) 96 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr); 97 else /* assume ethertype == ETHER_TYPE_IPv6 */ 98 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr); 99 } 100 101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 102 static void 103 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 104 { 105 struct tcp_hdr *tcp_hdr; 106 107 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4; 108 info->l4_proto = ipv4_hdr->next_proto_id; 109 110 /* only fill l4_len for TCP, it's useful for TSO */ 111 if (info->l4_proto == IPPROTO_TCP) { 112 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len); 113 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 114 } else 115 info->l4_len = 0; 116 } 117 118 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 119 static void 120 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 121 { 122 struct tcp_hdr *tcp_hdr; 123 124 info->l3_len = sizeof(struct ipv6_hdr); 125 info->l4_proto = ipv6_hdr->proto; 126 127 /* only fill l4_len for TCP, it's useful for TSO */ 128 if (info->l4_proto == IPPROTO_TCP) { 129 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len); 130 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 131 } else 132 info->l4_len = 0; 133 } 134 135 /* 136 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 137 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan 138 * header. The l4_len argument is only set in case of TCP (useful for TSO). 139 */ 140 static void 141 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info) 142 { 143 struct ipv4_hdr *ipv4_hdr; 144 struct ipv6_hdr *ipv6_hdr; 145 146 info->l2_len = sizeof(struct ether_hdr); 147 info->ethertype = eth_hdr->ether_type; 148 149 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) { 150 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1); 151 152 info->l2_len += sizeof(struct vlan_hdr); 153 info->ethertype = vlan_hdr->eth_proto; 154 } 155 156 switch (info->ethertype) { 157 case _htons(ETHER_TYPE_IPv4): 158 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len); 159 parse_ipv4(ipv4_hdr, info); 160 break; 161 case _htons(ETHER_TYPE_IPv6): 162 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len); 163 parse_ipv6(ipv6_hdr, info); 164 break; 165 default: 166 info->l4_len = 0; 167 info->l3_len = 0; 168 info->l4_proto = 0; 169 break; 170 } 171 } 172 173 /* Parse a vxlan header */ 174 static void 175 parse_vxlan(struct udp_hdr *udp_hdr, 176 struct testpmd_offload_info *info, 177 uint32_t pkt_type) 178 { 179 struct ether_hdr *eth_hdr; 180 181 /* check udp destination port, 4789 is the default vxlan port 182 * (rfc7348) or that the rx offload flag is set (i40e only 183 * currently) */ 184 if (udp_hdr->dst_port != _htons(4789) && 185 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0) 186 return; 187 188 info->is_tunnel = 1; 189 info->outer_ethertype = info->ethertype; 190 info->outer_l2_len = info->l2_len; 191 info->outer_l3_len = info->l3_len; 192 info->outer_l4_proto = info->l4_proto; 193 194 eth_hdr = (struct ether_hdr *)((char *)udp_hdr + 195 sizeof(struct udp_hdr) + 196 sizeof(struct vxlan_hdr)); 197 198 parse_ethernet(eth_hdr, info); 199 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */ 200 } 201 202 /* Parse a vxlan-gpe header */ 203 static void 204 parse_vxlan_gpe(struct udp_hdr *udp_hdr, 205 struct testpmd_offload_info *info) 206 { 207 struct ether_hdr *eth_hdr; 208 struct ipv4_hdr *ipv4_hdr; 209 struct ipv6_hdr *ipv6_hdr; 210 struct vxlan_gpe_hdr *vxlan_gpe_hdr; 211 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 212 213 /* Check udp destination port. */ 214 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 215 return; 216 217 vxlan_gpe_hdr = (struct vxlan_gpe_hdr *)((char *)udp_hdr + 218 sizeof(struct udp_hdr)); 219 220 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 221 VXLAN_GPE_TYPE_IPV4) { 222 info->is_tunnel = 1; 223 info->outer_ethertype = info->ethertype; 224 info->outer_l2_len = info->l2_len; 225 info->outer_l3_len = info->l3_len; 226 info->outer_l4_proto = info->l4_proto; 227 228 ipv4_hdr = (struct ipv4_hdr *)((char *)vxlan_gpe_hdr + 229 vxlan_gpe_len); 230 231 parse_ipv4(ipv4_hdr, info); 232 info->ethertype = _htons(ETHER_TYPE_IPv4); 233 info->l2_len = 0; 234 235 } else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_IPV6) { 236 info->is_tunnel = 1; 237 info->outer_ethertype = info->ethertype; 238 info->outer_l2_len = info->l2_len; 239 info->outer_l3_len = info->l3_len; 240 info->outer_l4_proto = info->l4_proto; 241 242 ipv6_hdr = (struct ipv6_hdr *)((char *)vxlan_gpe_hdr + 243 vxlan_gpe_len); 244 245 info->ethertype = _htons(ETHER_TYPE_IPv6); 246 parse_ipv6(ipv6_hdr, info); 247 info->l2_len = 0; 248 249 } else if (vxlan_gpe_hdr->proto == VXLAN_GPE_TYPE_ETH) { 250 info->is_tunnel = 1; 251 info->outer_ethertype = info->ethertype; 252 info->outer_l2_len = info->l2_len; 253 info->outer_l3_len = info->l3_len; 254 info->outer_l4_proto = info->l4_proto; 255 256 eth_hdr = (struct ether_hdr *)((char *)vxlan_gpe_hdr + 257 vxlan_gpe_len); 258 259 parse_ethernet(eth_hdr, info); 260 } else 261 return; 262 263 info->l2_len += ETHER_VXLAN_GPE_HLEN; 264 } 265 266 /* Parse a gre header */ 267 static void 268 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 269 { 270 struct ether_hdr *eth_hdr; 271 struct ipv4_hdr *ipv4_hdr; 272 struct ipv6_hdr *ipv6_hdr; 273 uint8_t gre_len = 0; 274 275 gre_len += sizeof(struct simple_gre_hdr); 276 277 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 278 gre_len += GRE_EXT_LEN; 279 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 280 gre_len += GRE_EXT_LEN; 281 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 282 gre_len += GRE_EXT_LEN; 283 284 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) { 285 info->is_tunnel = 1; 286 info->outer_ethertype = info->ethertype; 287 info->outer_l2_len = info->l2_len; 288 info->outer_l3_len = info->l3_len; 289 info->outer_l4_proto = info->l4_proto; 290 291 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len); 292 293 parse_ipv4(ipv4_hdr, info); 294 info->ethertype = _htons(ETHER_TYPE_IPv4); 295 info->l2_len = 0; 296 297 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) { 298 info->is_tunnel = 1; 299 info->outer_ethertype = info->ethertype; 300 info->outer_l2_len = info->l2_len; 301 info->outer_l3_len = info->l3_len; 302 info->outer_l4_proto = info->l4_proto; 303 304 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len); 305 306 info->ethertype = _htons(ETHER_TYPE_IPv6); 307 parse_ipv6(ipv6_hdr, info); 308 info->l2_len = 0; 309 310 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) { 311 info->is_tunnel = 1; 312 info->outer_ethertype = info->ethertype; 313 info->outer_l2_len = info->l2_len; 314 info->outer_l3_len = info->l3_len; 315 info->outer_l4_proto = info->l4_proto; 316 317 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len); 318 319 parse_ethernet(eth_hdr, info); 320 } else 321 return; 322 323 info->l2_len += gre_len; 324 } 325 326 327 /* Parse an encapsulated ip or ipv6 header */ 328 static void 329 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 330 { 331 struct ipv4_hdr *ipv4_hdr = encap_ip; 332 struct ipv6_hdr *ipv6_hdr = encap_ip; 333 uint8_t ip_version; 334 335 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 336 337 if (ip_version != 4 && ip_version != 6) 338 return; 339 340 info->is_tunnel = 1; 341 info->outer_ethertype = info->ethertype; 342 info->outer_l2_len = info->l2_len; 343 info->outer_l3_len = info->l3_len; 344 345 if (ip_version == 4) { 346 parse_ipv4(ipv4_hdr, info); 347 info->ethertype = _htons(ETHER_TYPE_IPv4); 348 } else { 349 parse_ipv6(ipv6_hdr, info); 350 info->ethertype = _htons(ETHER_TYPE_IPv6); 351 } 352 info->l2_len = 0; 353 } 354 355 /* if possible, calculate the checksum of a packet in hw or sw, 356 * depending on the testpmd command line configuration */ 357 static uint64_t 358 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 359 uint64_t tx_offloads) 360 { 361 struct ipv4_hdr *ipv4_hdr = l3_hdr; 362 struct udp_hdr *udp_hdr; 363 struct tcp_hdr *tcp_hdr; 364 struct sctp_hdr *sctp_hdr; 365 uint64_t ol_flags = 0; 366 uint32_t max_pkt_len, tso_segsz = 0; 367 368 /* ensure packet is large enough to require tso */ 369 if (!info->is_tunnel) { 370 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 371 info->tso_segsz; 372 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 373 tso_segsz = info->tso_segsz; 374 } else { 375 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 376 info->l2_len + info->l3_len + info->l4_len + 377 info->tunnel_tso_segsz; 378 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 379 tso_segsz = info->tunnel_tso_segsz; 380 } 381 382 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) { 383 ipv4_hdr = l3_hdr; 384 ipv4_hdr->hdr_checksum = 0; 385 386 ol_flags |= PKT_TX_IPV4; 387 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 388 ol_flags |= PKT_TX_IP_CKSUM; 389 } else { 390 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM) 391 ol_flags |= PKT_TX_IP_CKSUM; 392 else 393 ipv4_hdr->hdr_checksum = 394 rte_ipv4_cksum(ipv4_hdr); 395 } 396 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6)) 397 ol_flags |= PKT_TX_IPV6; 398 else 399 return 0; /* packet type not supported, nothing to do */ 400 401 if (info->l4_proto == IPPROTO_UDP) { 402 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len); 403 /* do not recalculate udp cksum if it was 0 */ 404 if (udp_hdr->dgram_cksum != 0) { 405 udp_hdr->dgram_cksum = 0; 406 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM) 407 ol_flags |= PKT_TX_UDP_CKSUM; 408 else { 409 udp_hdr->dgram_cksum = 410 get_udptcp_checksum(l3_hdr, udp_hdr, 411 info->ethertype); 412 } 413 } 414 if (info->gso_enable) 415 ol_flags |= PKT_TX_UDP_SEG; 416 } else if (info->l4_proto == IPPROTO_TCP) { 417 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len); 418 tcp_hdr->cksum = 0; 419 if (tso_segsz) 420 ol_flags |= PKT_TX_TCP_SEG; 421 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM) 422 ol_flags |= PKT_TX_TCP_CKSUM; 423 else { 424 tcp_hdr->cksum = 425 get_udptcp_checksum(l3_hdr, tcp_hdr, 426 info->ethertype); 427 } 428 if (info->gso_enable) 429 ol_flags |= PKT_TX_TCP_SEG; 430 } else if (info->l4_proto == IPPROTO_SCTP) { 431 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len); 432 sctp_hdr->cksum = 0; 433 /* sctp payload must be a multiple of 4 to be 434 * offloaded */ 435 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) && 436 ((ipv4_hdr->total_length & 0x3) == 0)) { 437 ol_flags |= PKT_TX_SCTP_CKSUM; 438 } else { 439 /* XXX implement CRC32c, example available in 440 * RFC3309 */ 441 } 442 } 443 444 return ol_flags; 445 } 446 447 /* Calculate the checksum of outer header */ 448 static uint64_t 449 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 450 uint64_t tx_offloads, int tso_enabled) 451 { 452 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr; 453 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr; 454 struct udp_hdr *udp_hdr; 455 uint64_t ol_flags = 0; 456 457 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) { 458 ipv4_hdr->hdr_checksum = 0; 459 ol_flags |= PKT_TX_OUTER_IPV4; 460 461 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) 462 ol_flags |= PKT_TX_OUTER_IP_CKSUM; 463 else 464 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 465 } else 466 ol_flags |= PKT_TX_OUTER_IPV6; 467 468 if (info->outer_l4_proto != IPPROTO_UDP) 469 return ol_flags; 470 471 /* Skip SW outer UDP checksum generation if HW supports it */ 472 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) { 473 ol_flags |= PKT_TX_OUTER_UDP_CKSUM; 474 return ol_flags; 475 } 476 477 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len); 478 479 /* outer UDP checksum is done in software. In the other side, for 480 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 481 * set to zero. 482 * 483 * If a packet will be TSOed into small packets by NIC, we cannot 484 * set/calculate a non-zero checksum, because it will be a wrong 485 * value after the packet be split into several small packets. 486 */ 487 if (tso_enabled) 488 udp_hdr->dgram_cksum = 0; 489 490 /* do not recalculate udp cksum if it was 0 */ 491 if (udp_hdr->dgram_cksum != 0) { 492 udp_hdr->dgram_cksum = 0; 493 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) 494 udp_hdr->dgram_cksum = 495 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr); 496 else 497 udp_hdr->dgram_cksum = 498 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr); 499 } 500 501 return ol_flags; 502 } 503 504 /* 505 * Helper function. 506 * Performs actual copying. 507 * Returns number of segments in the destination mbuf on success, 508 * or negative error code on failure. 509 */ 510 static int 511 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 512 uint16_t seglen[], uint8_t nb_seg) 513 { 514 uint32_t dlen, slen, tlen; 515 uint32_t i, len; 516 const struct rte_mbuf *m; 517 const uint8_t *src; 518 uint8_t *dst; 519 520 dlen = 0; 521 slen = 0; 522 tlen = 0; 523 524 dst = NULL; 525 src = NULL; 526 527 m = ms; 528 i = 0; 529 while (ms != NULL && i != nb_seg) { 530 531 if (slen == 0) { 532 slen = rte_pktmbuf_data_len(ms); 533 src = rte_pktmbuf_mtod(ms, const uint8_t *); 534 } 535 536 if (dlen == 0) { 537 dlen = RTE_MIN(seglen[i], slen); 538 md[i]->data_len = dlen; 539 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 540 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 541 } 542 543 len = RTE_MIN(slen, dlen); 544 memcpy(dst, src, len); 545 tlen += len; 546 slen -= len; 547 dlen -= len; 548 src += len; 549 dst += len; 550 551 if (slen == 0) 552 ms = ms->next; 553 if (dlen == 0) 554 i++; 555 } 556 557 if (ms != NULL) 558 return -ENOBUFS; 559 else if (tlen != m->pkt_len) 560 return -EINVAL; 561 562 md[0]->nb_segs = nb_seg; 563 md[0]->pkt_len = tlen; 564 md[0]->vlan_tci = m->vlan_tci; 565 md[0]->vlan_tci_outer = m->vlan_tci_outer; 566 md[0]->ol_flags = m->ol_flags; 567 md[0]->tx_offload = m->tx_offload; 568 569 return nb_seg; 570 } 571 572 /* 573 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 574 * Copy packet contents and offload information into then new segmented mbuf. 575 */ 576 static struct rte_mbuf * 577 pkt_copy_split(const struct rte_mbuf *pkt) 578 { 579 int32_t n, rc; 580 uint32_t i, len, nb_seg; 581 struct rte_mempool *mp; 582 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 583 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 584 585 mp = current_fwd_lcore()->mbp; 586 587 if (tx_pkt_split == TX_PKT_SPLIT_RND) 588 nb_seg = random() % tx_pkt_nb_segs + 1; 589 else 590 nb_seg = tx_pkt_nb_segs; 591 592 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 593 594 /* calculate number of segments to use and their length. */ 595 len = 0; 596 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 597 len += seglen[i]; 598 md[i] = NULL; 599 } 600 601 n = pkt->pkt_len - len; 602 603 /* update size of the last segment to fit rest of the packet */ 604 if (n >= 0) { 605 seglen[i - 1] += n; 606 len += n; 607 } 608 609 nb_seg = i; 610 while (i != 0) { 611 p = rte_pktmbuf_alloc(mp); 612 if (p == NULL) { 613 TESTPMD_LOG(ERR, 614 "failed to allocate %u-th of %u mbuf " 615 "from mempool: %s\n", 616 nb_seg - i, nb_seg, mp->name); 617 break; 618 } 619 620 md[--i] = p; 621 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 622 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 623 "expected seglen: %u, " 624 "actual mbuf tailroom: %u\n", 625 mp->name, i, seglen[i], 626 rte_pktmbuf_tailroom(md[i])); 627 break; 628 } 629 } 630 631 /* all mbufs successfully allocated, do copy */ 632 if (i == 0) { 633 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 634 if (rc < 0) 635 TESTPMD_LOG(ERR, 636 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 637 "into %u segments failed with error code: %d\n", 638 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 639 640 /* figure out how many mbufs to free. */ 641 i = RTE_MAX(rc, 0); 642 } 643 644 /* free unused mbufs */ 645 for (; i != nb_seg; i++) { 646 rte_pktmbuf_free_seg(md[i]); 647 md[i] = NULL; 648 } 649 650 return md[0]; 651 } 652 653 /* 654 * Receive a burst of packets, and for each packet: 655 * - parse packet, and try to recognize a supported packet type (1) 656 * - if it's not a supported packet type, don't touch the packet, else: 657 * - reprocess the checksum of all supported layers. This is done in SW 658 * or HW, depending on testpmd command line configuration 659 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 660 * segmentation offload (this implies HW TCP checksum) 661 * Then transmit packets on the output port. 662 * 663 * (1) Supported packets are: 664 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 665 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 666 * UDP|TCP|SCTP 667 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 668 * UDP|TCP|SCTP 669 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 670 * UDP|TCP|SCTP 671 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 672 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 673 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 674 * 675 * The testpmd command line for this forward engine sets the flags 676 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 677 * wether a checksum must be calculated in software or in hardware. The 678 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 679 * OUTER_IP is only useful for tunnel packets. 680 */ 681 static void 682 pkt_burst_checksum_forward(struct fwd_stream *fs) 683 { 684 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 685 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 686 struct rte_gso_ctx *gso_ctx; 687 struct rte_mbuf **tx_pkts_burst; 688 struct rte_port *txp; 689 struct rte_mbuf *m, *p; 690 struct ether_hdr *eth_hdr; 691 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 692 void **gro_ctx; 693 uint16_t gro_pkts_num; 694 uint8_t gro_enable; 695 uint16_t nb_rx; 696 uint16_t nb_tx; 697 uint16_t nb_prep; 698 uint16_t i; 699 uint64_t rx_ol_flags, tx_ol_flags; 700 uint64_t tx_offloads; 701 uint32_t retry; 702 uint32_t rx_bad_ip_csum; 703 uint32_t rx_bad_l4_csum; 704 uint32_t rx_bad_outer_l4_csum; 705 struct testpmd_offload_info info; 706 uint16_t nb_segments = 0; 707 int ret; 708 709 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 710 uint64_t start_tsc; 711 uint64_t end_tsc; 712 uint64_t core_cycles; 713 #endif 714 715 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 716 start_tsc = rte_rdtsc(); 717 #endif 718 719 /* receive a burst of packet */ 720 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 721 nb_pkt_per_burst); 722 if (unlikely(nb_rx == 0)) 723 return; 724 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 725 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++; 726 #endif 727 fs->rx_packets += nb_rx; 728 rx_bad_ip_csum = 0; 729 rx_bad_l4_csum = 0; 730 rx_bad_outer_l4_csum = 0; 731 gro_enable = gro_ports[fs->rx_port].enable; 732 733 txp = &ports[fs->tx_port]; 734 tx_offloads = txp->dev_conf.txmode.offloads; 735 memset(&info, 0, sizeof(info)); 736 info.tso_segsz = txp->tso_segsz; 737 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 738 if (gso_ports[fs->tx_port].enable) 739 info.gso_enable = 1; 740 741 for (i = 0; i < nb_rx; i++) { 742 if (likely(i < nb_rx - 1)) 743 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 744 void *)); 745 746 m = pkts_burst[i]; 747 info.is_tunnel = 0; 748 info.pkt_len = rte_pktmbuf_pkt_len(m); 749 tx_ol_flags = m->ol_flags & 750 (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF); 751 rx_ol_flags = m->ol_flags; 752 753 /* Update the L3/L4 checksum error packet statistics */ 754 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD) 755 rx_bad_ip_csum += 1; 756 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD) 757 rx_bad_l4_csum += 1; 758 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD) 759 rx_bad_outer_l4_csum += 1; 760 761 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 762 * and inner headers */ 763 764 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *); 765 ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 766 ð_hdr->d_addr); 767 ether_addr_copy(&ports[fs->tx_port].eth_addr, 768 ð_hdr->s_addr); 769 parse_ethernet(eth_hdr, &info); 770 l3_hdr = (char *)eth_hdr + info.l2_len; 771 772 /* check if it's a supported tunnel */ 773 if (txp->parse_tunnel) { 774 if (info.l4_proto == IPPROTO_UDP) { 775 struct udp_hdr *udp_hdr; 776 777 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + 778 info.l3_len); 779 parse_vxlan_gpe(udp_hdr, &info); 780 if (info.is_tunnel) { 781 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE; 782 } else { 783 parse_vxlan(udp_hdr, &info, 784 m->packet_type); 785 if (info.is_tunnel) 786 tx_ol_flags |= 787 PKT_TX_TUNNEL_VXLAN; 788 } 789 } else if (info.l4_proto == IPPROTO_GRE) { 790 struct simple_gre_hdr *gre_hdr; 791 792 gre_hdr = (struct simple_gre_hdr *) 793 ((char *)l3_hdr + info.l3_len); 794 parse_gre(gre_hdr, &info); 795 if (info.is_tunnel) 796 tx_ol_flags |= PKT_TX_TUNNEL_GRE; 797 } else if (info.l4_proto == IPPROTO_IPIP) { 798 void *encap_ip_hdr; 799 800 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 801 parse_encap_ip(encap_ip_hdr, &info); 802 if (info.is_tunnel) 803 tx_ol_flags |= PKT_TX_TUNNEL_IPIP; 804 } 805 } 806 807 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 808 if (info.is_tunnel) { 809 outer_l3_hdr = l3_hdr; 810 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 811 } 812 813 /* step 2: depending on user command line configuration, 814 * recompute checksum either in software or flag the 815 * mbuf to offload the calculation to the NIC. If TSO 816 * is configured, prepare the mbuf for TCP segmentation. */ 817 818 /* process checksums of inner headers first */ 819 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 820 tx_offloads); 821 822 /* Then process outer headers if any. Note that the software 823 * checksum will be wrong if one of the inner checksums is 824 * processed in hardware. */ 825 if (info.is_tunnel == 1) { 826 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 827 tx_offloads, 828 !!(tx_ol_flags & PKT_TX_TCP_SEG)); 829 } 830 831 /* step 3: fill the mbuf meta data (flags and header lengths) */ 832 833 m->tx_offload = 0; 834 if (info.is_tunnel == 1) { 835 if (info.tunnel_tso_segsz || 836 (tx_offloads & 837 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 838 (tx_offloads & 839 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) || 840 (tx_ol_flags & PKT_TX_OUTER_IPV6)) { 841 m->outer_l2_len = info.outer_l2_len; 842 m->outer_l3_len = info.outer_l3_len; 843 m->l2_len = info.l2_len; 844 m->l3_len = info.l3_len; 845 m->l4_len = info.l4_len; 846 m->tso_segsz = info.tunnel_tso_segsz; 847 } 848 else { 849 /* if there is a outer UDP cksum 850 processed in sw and the inner in hw, 851 the outer checksum will be wrong as 852 the payload will be modified by the 853 hardware */ 854 m->l2_len = info.outer_l2_len + 855 info.outer_l3_len + info.l2_len; 856 m->l3_len = info.l3_len; 857 m->l4_len = info.l4_len; 858 } 859 } else { 860 /* this is only useful if an offload flag is 861 * set, but it does not hurt to fill it in any 862 * case */ 863 m->l2_len = info.l2_len; 864 m->l3_len = info.l3_len; 865 m->l4_len = info.l4_len; 866 m->tso_segsz = info.tso_segsz; 867 } 868 m->ol_flags = tx_ol_flags; 869 870 /* Do split & copy for the packet. */ 871 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 872 p = pkt_copy_split(m); 873 if (p != NULL) { 874 rte_pktmbuf_free(m); 875 m = p; 876 pkts_burst[i] = m; 877 } 878 } 879 880 /* if verbose mode is enabled, dump debug info */ 881 if (verbose_level > 0) { 882 char buf[256]; 883 884 printf("-----------------\n"); 885 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 886 fs->rx_port, m, m->pkt_len, m->nb_segs); 887 /* dump rx parsed packet info */ 888 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 889 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 890 "l4_proto=%d l4_len=%d flags=%s\n", 891 info.l2_len, rte_be_to_cpu_16(info.ethertype), 892 info.l3_len, info.l4_proto, info.l4_len, buf); 893 if (rx_ol_flags & PKT_RX_LRO) 894 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 895 if (info.is_tunnel == 1) 896 printf("rx: outer_l2_len=%d outer_ethertype=%x " 897 "outer_l3_len=%d\n", info.outer_l2_len, 898 rte_be_to_cpu_16(info.outer_ethertype), 899 info.outer_l3_len); 900 /* dump tx packet info */ 901 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM | 902 DEV_TX_OFFLOAD_UDP_CKSUM | 903 DEV_TX_OFFLOAD_TCP_CKSUM | 904 DEV_TX_OFFLOAD_SCTP_CKSUM)) || 905 info.tso_segsz != 0) 906 printf("tx: m->l2_len=%d m->l3_len=%d " 907 "m->l4_len=%d\n", 908 m->l2_len, m->l3_len, m->l4_len); 909 if (info.is_tunnel == 1) { 910 if ((tx_offloads & 911 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 912 (tx_offloads & 913 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) || 914 (tx_ol_flags & PKT_TX_OUTER_IPV6)) 915 printf("tx: m->outer_l2_len=%d " 916 "m->outer_l3_len=%d\n", 917 m->outer_l2_len, 918 m->outer_l3_len); 919 if (info.tunnel_tso_segsz != 0 && 920 (m->ol_flags & PKT_TX_TCP_SEG)) 921 printf("tx: m->tso_segsz=%d\n", 922 m->tso_segsz); 923 } else if (info.tso_segsz != 0 && 924 (m->ol_flags & PKT_TX_TCP_SEG)) 925 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 926 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 927 printf("tx: flags=%s", buf); 928 printf("\n"); 929 } 930 } 931 932 if (unlikely(gro_enable)) { 933 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 934 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 935 &(gro_ports[fs->rx_port].param)); 936 } else { 937 gro_ctx = current_fwd_lcore()->gro_ctx; 938 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 939 940 if (++fs->gro_times >= gro_flush_cycles) { 941 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 942 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 943 gro_pkts_num = MAX_PKT_BURST - nb_rx; 944 945 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 946 RTE_GRO_TCP_IPV4, 947 &pkts_burst[nb_rx], 948 gro_pkts_num); 949 fs->gro_times = 0; 950 } 951 } 952 } 953 954 if (gso_ports[fs->tx_port].enable == 0) 955 tx_pkts_burst = pkts_burst; 956 else { 957 gso_ctx = &(current_fwd_lcore()->gso_ctx); 958 gso_ctx->gso_size = gso_max_segment_size; 959 for (i = 0; i < nb_rx; i++) { 960 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 961 &gso_segments[nb_segments], 962 GSO_MAX_PKT_BURST - nb_segments); 963 if (ret >= 0) 964 nb_segments += ret; 965 else { 966 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 967 rte_pktmbuf_free(pkts_burst[i]); 968 } 969 } 970 971 tx_pkts_burst = gso_segments; 972 nb_rx = nb_segments; 973 } 974 975 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 976 tx_pkts_burst, nb_rx); 977 if (nb_prep != nb_rx) 978 printf("Preparing packet burst to transmit failed: %s\n", 979 rte_strerror(rte_errno)); 980 981 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 982 nb_prep); 983 984 /* 985 * Retry if necessary 986 */ 987 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 988 retry = 0; 989 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 990 rte_delay_us(burst_tx_delay_time); 991 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 992 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 993 } 994 } 995 fs->tx_packets += nb_tx; 996 fs->rx_bad_ip_csum += rx_bad_ip_csum; 997 fs->rx_bad_l4_csum += rx_bad_l4_csum; 998 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 999 1000 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS 1001 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++; 1002 #endif 1003 if (unlikely(nb_tx < nb_rx)) { 1004 fs->fwd_dropped += (nb_rx - nb_tx); 1005 do { 1006 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 1007 } while (++nb_tx < nb_rx); 1008 } 1009 1010 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES 1011 end_tsc = rte_rdtsc(); 1012 core_cycles = (end_tsc - start_tsc); 1013 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles); 1014 #endif 1015 } 1016 1017 struct fwd_engine csum_fwd_engine = { 1018 .fwd_mode_name = "csum", 1019 .port_fwd_begin = NULL, 1020 .port_fwd_end = NULL, 1021 .packet_fwd = pkt_burst_checksum_forward, 1022 }; 1023