1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2010-2014 Intel Corporation. 3 * Copyright 2014 6WIND S.A. 4 */ 5 6 #include <stdarg.h> 7 #include <stdio.h> 8 #include <errno.h> 9 #include <stdint.h> 10 #include <unistd.h> 11 #include <inttypes.h> 12 13 #include <sys/queue.h> 14 #include <sys/stat.h> 15 16 #include <rte_common.h> 17 #include <rte_byteorder.h> 18 #include <rte_log.h> 19 #include <rte_debug.h> 20 #include <rte_cycles.h> 21 #include <rte_memory.h> 22 #include <rte_memcpy.h> 23 #include <rte_launch.h> 24 #include <rte_eal.h> 25 #include <rte_per_lcore.h> 26 #include <rte_lcore.h> 27 #include <rte_branch_prediction.h> 28 #include <rte_mempool.h> 29 #include <rte_mbuf.h> 30 #include <rte_interrupts.h> 31 #include <rte_ether.h> 32 #include <rte_ethdev.h> 33 #include <rte_ip.h> 34 #include <rte_tcp.h> 35 #include <rte_udp.h> 36 #include <rte_vxlan.h> 37 #include <rte_sctp.h> 38 #include <rte_gtp.h> 39 #include <rte_prefetch.h> 40 #include <rte_string_fns.h> 41 #include <rte_flow.h> 42 #ifdef RTE_LIB_GRO 43 #include <rte_gro.h> 44 #endif 45 #ifdef RTE_LIB_GSO 46 #include <rte_gso.h> 47 #endif 48 #include <rte_geneve.h> 49 50 #include "testpmd.h" 51 52 #define IP_DEFTTL 64 /* from RFC 1340. */ 53 54 #define GRE_CHECKSUM_PRESENT 0x8000 55 #define GRE_KEY_PRESENT 0x2000 56 #define GRE_SEQUENCE_PRESENT 0x1000 57 #define GRE_EXT_LEN 4 58 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\ 59 GRE_SEQUENCE_PRESENT) 60 61 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */ 62 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN 63 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8))) 64 #else 65 #define _htons(x) (x) 66 #endif 67 68 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT; 69 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT; 70 71 /* structure that caches offload info for the current packet */ 72 struct testpmd_offload_info { 73 uint16_t ethertype; 74 #ifdef RTE_LIB_GSO 75 uint8_t gso_enable; 76 #endif 77 uint16_t l2_len; 78 uint16_t l3_len; 79 uint16_t l4_len; 80 uint8_t l4_proto; 81 uint8_t is_tunnel; 82 uint16_t outer_ethertype; 83 uint16_t outer_l2_len; 84 uint16_t outer_l3_len; 85 uint8_t outer_l4_proto; 86 uint16_t tso_segsz; 87 uint16_t tunnel_tso_segsz; 88 uint32_t pkt_len; 89 }; 90 91 /* simplified GRE header */ 92 struct simple_gre_hdr { 93 uint16_t flags; 94 uint16_t proto; 95 } __rte_packed; 96 97 static uint16_t 98 get_udptcp_checksum(struct rte_mbuf *m, void *l3_hdr, uint16_t l4_off, 99 uint16_t ethertype) 100 { 101 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 102 return rte_ipv4_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 103 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */ 104 return rte_ipv6_udptcp_cksum_mbuf(m, l3_hdr, l4_off); 105 } 106 107 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */ 108 static void 109 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info) 110 { 111 struct rte_tcp_hdr *tcp_hdr; 112 113 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr); 114 info->l4_proto = ipv4_hdr->next_proto_id; 115 116 /* only fill l4_len for TCP, it's useful for TSO */ 117 if (info->l4_proto == IPPROTO_TCP) { 118 tcp_hdr = (struct rte_tcp_hdr *) 119 ((char *)ipv4_hdr + info->l3_len); 120 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 121 } else if (info->l4_proto == IPPROTO_UDP) 122 info->l4_len = sizeof(struct rte_udp_hdr); 123 else 124 info->l4_len = 0; 125 } 126 127 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */ 128 static void 129 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info) 130 { 131 struct rte_tcp_hdr *tcp_hdr; 132 133 info->l3_len = sizeof(struct rte_ipv6_hdr); 134 info->l4_proto = ipv6_hdr->proto; 135 136 /* only fill l4_len for TCP, it's useful for TSO */ 137 if (info->l4_proto == IPPROTO_TCP) { 138 tcp_hdr = (struct rte_tcp_hdr *) 139 ((char *)ipv6_hdr + info->l3_len); 140 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2; 141 } else if (info->l4_proto == IPPROTO_UDP) 142 info->l4_len = sizeof(struct rte_udp_hdr); 143 else 144 info->l4_len = 0; 145 } 146 147 /* 148 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and 149 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN 150 * headers. The l4_len argument is only set in case of TCP (useful for TSO). 151 */ 152 static void 153 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info) 154 { 155 struct rte_ipv4_hdr *ipv4_hdr; 156 struct rte_ipv6_hdr *ipv6_hdr; 157 struct rte_vlan_hdr *vlan_hdr; 158 159 info->l2_len = sizeof(struct rte_ether_hdr); 160 info->ethertype = eth_hdr->ether_type; 161 162 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) || 163 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) { 164 vlan_hdr = (struct rte_vlan_hdr *) 165 ((char *)eth_hdr + info->l2_len); 166 info->l2_len += sizeof(struct rte_vlan_hdr); 167 info->ethertype = vlan_hdr->eth_proto; 168 } 169 170 switch (info->ethertype) { 171 case _htons(RTE_ETHER_TYPE_IPV4): 172 ipv4_hdr = (struct rte_ipv4_hdr *) 173 ((char *)eth_hdr + info->l2_len); 174 parse_ipv4(ipv4_hdr, info); 175 break; 176 case _htons(RTE_ETHER_TYPE_IPV6): 177 ipv6_hdr = (struct rte_ipv6_hdr *) 178 ((char *)eth_hdr + info->l2_len); 179 parse_ipv6(ipv6_hdr, info); 180 break; 181 default: 182 info->l4_len = 0; 183 info->l3_len = 0; 184 info->l4_proto = 0; 185 break; 186 } 187 } 188 189 /* Fill in outer layers length */ 190 static void 191 update_tunnel_outer(struct testpmd_offload_info *info) 192 { 193 info->is_tunnel = 1; 194 info->outer_ethertype = info->ethertype; 195 info->outer_l2_len = info->l2_len; 196 info->outer_l3_len = info->l3_len; 197 info->outer_l4_proto = info->l4_proto; 198 } 199 200 /* 201 * Parse a GTP protocol header. 202 * No optional fields and next extension header type. 203 */ 204 static void 205 parse_gtp(struct rte_udp_hdr *udp_hdr, 206 struct testpmd_offload_info *info) 207 { 208 struct rte_ipv4_hdr *ipv4_hdr; 209 struct rte_ipv6_hdr *ipv6_hdr; 210 struct rte_gtp_hdr *gtp_hdr; 211 uint8_t gtp_len = sizeof(*gtp_hdr); 212 uint8_t ip_ver; 213 214 /* Check udp destination port. */ 215 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) && 216 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) && 217 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT)) 218 return; 219 220 update_tunnel_outer(info); 221 info->l2_len = 0; 222 223 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr + 224 sizeof(struct rte_udp_hdr)); 225 if (gtp_hdr->e || gtp_hdr->s || gtp_hdr->pn) 226 gtp_len += sizeof(struct rte_gtp_hdr_ext_word); 227 /* 228 * Check message type. If message type is 0xff, it is 229 * a GTP data packet. If not, it is a GTP control packet 230 */ 231 if (gtp_hdr->msg_type == 0xff) { 232 ip_ver = *(uint8_t *)((char *)gtp_hdr + gtp_len); 233 ip_ver = (ip_ver) & 0xf0; 234 235 if (ip_ver == RTE_GTP_TYPE_IPV4) { 236 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr + 237 gtp_len); 238 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 239 parse_ipv4(ipv4_hdr, info); 240 } else if (ip_ver == RTE_GTP_TYPE_IPV6) { 241 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr + 242 gtp_len); 243 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 244 parse_ipv6(ipv6_hdr, info); 245 } 246 } else { 247 info->ethertype = 0; 248 info->l4_len = 0; 249 info->l3_len = 0; 250 info->l4_proto = 0; 251 } 252 253 info->l2_len += RTE_ETHER_GTP_HLEN; 254 } 255 256 /* Parse a vxlan header */ 257 static void 258 parse_vxlan(struct rte_udp_hdr *udp_hdr, 259 struct testpmd_offload_info *info) 260 { 261 struct rte_ether_hdr *eth_hdr; 262 263 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the 264 * default vxlan port (rfc7348) or that the rx offload flag is set 265 * (i40e only currently) 266 */ 267 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT)) 268 return; 269 270 update_tunnel_outer(info); 271 272 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr + 273 sizeof(struct rte_udp_hdr) + 274 sizeof(struct rte_vxlan_hdr)); 275 276 parse_ethernet(eth_hdr, info); 277 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */ 278 } 279 280 /* Parse a vxlan-gpe header */ 281 static void 282 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr, 283 struct testpmd_offload_info *info) 284 { 285 struct rte_ether_hdr *eth_hdr; 286 struct rte_ipv4_hdr *ipv4_hdr; 287 struct rte_ipv6_hdr *ipv6_hdr; 288 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr; 289 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr); 290 291 /* Check udp destination port. */ 292 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port)) 293 return; 294 295 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr + 296 sizeof(struct rte_udp_hdr)); 297 298 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto == 299 RTE_VXLAN_GPE_TYPE_IPV4) { 300 update_tunnel_outer(info); 301 302 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr + 303 vxlan_gpe_len); 304 305 parse_ipv4(ipv4_hdr, info); 306 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 307 info->l2_len = 0; 308 309 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) { 310 update_tunnel_outer(info); 311 312 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr + 313 vxlan_gpe_len); 314 315 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 316 parse_ipv6(ipv6_hdr, info); 317 info->l2_len = 0; 318 319 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) { 320 update_tunnel_outer(info); 321 322 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr + 323 vxlan_gpe_len); 324 325 parse_ethernet(eth_hdr, info); 326 } else 327 return; 328 329 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN; 330 } 331 332 /* Parse a geneve header */ 333 static void 334 parse_geneve(struct rte_udp_hdr *udp_hdr, 335 struct testpmd_offload_info *info) 336 { 337 struct rte_ether_hdr *eth_hdr; 338 struct rte_ipv4_hdr *ipv4_hdr; 339 struct rte_ipv6_hdr *ipv6_hdr; 340 struct rte_geneve_hdr *geneve_hdr; 341 uint16_t geneve_len; 342 343 /* Check udp destination port. */ 344 if (udp_hdr->dst_port != _htons(geneve_udp_port)) 345 return; 346 347 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr + 348 sizeof(struct rte_udp_hdr)); 349 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4; 350 if (!geneve_hdr->proto || geneve_hdr->proto == 351 _htons(RTE_ETHER_TYPE_IPV4)) { 352 update_tunnel_outer(info); 353 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr + 354 geneve_len); 355 parse_ipv4(ipv4_hdr, info); 356 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 357 info->l2_len = 0; 358 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 359 update_tunnel_outer(info); 360 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr + 361 geneve_len); 362 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 363 parse_ipv6(ipv6_hdr, info); 364 info->l2_len = 0; 365 366 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) { 367 update_tunnel_outer(info); 368 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr + 369 geneve_len); 370 parse_ethernet(eth_hdr, info); 371 } else 372 return; 373 374 info->l2_len += 375 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) + 376 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4); 377 } 378 379 /* Parse a gre header */ 380 static void 381 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info) 382 { 383 struct rte_ether_hdr *eth_hdr; 384 struct rte_ipv4_hdr *ipv4_hdr; 385 struct rte_ipv6_hdr *ipv6_hdr; 386 uint8_t gre_len = 0; 387 388 gre_len += sizeof(struct simple_gre_hdr); 389 390 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT)) 391 gre_len += GRE_EXT_LEN; 392 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT)) 393 gre_len += GRE_EXT_LEN; 394 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT)) 395 gre_len += GRE_EXT_LEN; 396 397 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) { 398 update_tunnel_outer(info); 399 400 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len); 401 402 parse_ipv4(ipv4_hdr, info); 403 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 404 info->l2_len = 0; 405 406 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) { 407 update_tunnel_outer(info); 408 409 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len); 410 411 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 412 parse_ipv6(ipv6_hdr, info); 413 info->l2_len = 0; 414 415 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) { 416 update_tunnel_outer(info); 417 418 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len); 419 420 parse_ethernet(eth_hdr, info); 421 } else 422 return; 423 424 info->l2_len += gre_len; 425 } 426 427 428 /* Parse an encapsulated ip or ipv6 header */ 429 static void 430 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info) 431 { 432 struct rte_ipv4_hdr *ipv4_hdr = encap_ip; 433 struct rte_ipv6_hdr *ipv6_hdr = encap_ip; 434 uint8_t ip_version; 435 436 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4; 437 438 if (ip_version != 4 && ip_version != 6) 439 return; 440 441 info->is_tunnel = 1; 442 info->outer_ethertype = info->ethertype; 443 info->outer_l2_len = info->l2_len; 444 info->outer_l3_len = info->l3_len; 445 446 if (ip_version == 4) { 447 parse_ipv4(ipv4_hdr, info); 448 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4); 449 } else { 450 parse_ipv6(ipv6_hdr, info); 451 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6); 452 } 453 info->l2_len = 0; 454 } 455 456 /* if possible, calculate the checksum of a packet in hw or sw, 457 * depending on the testpmd command line configuration */ 458 static uint64_t 459 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info, 460 uint64_t tx_offloads, struct rte_mbuf *m) 461 { 462 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr; 463 struct rte_udp_hdr *udp_hdr; 464 struct rte_tcp_hdr *tcp_hdr; 465 struct rte_sctp_hdr *sctp_hdr; 466 uint64_t ol_flags = 0; 467 uint32_t max_pkt_len, tso_segsz = 0; 468 uint16_t l4_off; 469 470 /* ensure packet is large enough to require tso */ 471 if (!info->is_tunnel) { 472 max_pkt_len = info->l2_len + info->l3_len + info->l4_len + 473 info->tso_segsz; 474 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len) 475 tso_segsz = info->tso_segsz; 476 } else { 477 max_pkt_len = info->outer_l2_len + info->outer_l3_len + 478 info->l2_len + info->l3_len + info->l4_len + 479 info->tunnel_tso_segsz; 480 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len) 481 tso_segsz = info->tunnel_tso_segsz; 482 } 483 484 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 485 ipv4_hdr = l3_hdr; 486 487 ol_flags |= RTE_MBUF_F_TX_IPV4; 488 if (info->l4_proto == IPPROTO_TCP && tso_segsz) { 489 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 490 } else { 491 if (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) { 492 ol_flags |= RTE_MBUF_F_TX_IP_CKSUM; 493 } else { 494 ipv4_hdr->hdr_checksum = 0; 495 ipv4_hdr->hdr_checksum = 496 rte_ipv4_cksum(ipv4_hdr); 497 } 498 } 499 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6)) 500 ol_flags |= RTE_MBUF_F_TX_IPV6; 501 else 502 return 0; /* packet type not supported, nothing to do */ 503 504 if (info->l4_proto == IPPROTO_UDP) { 505 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len); 506 /* do not recalculate udp cksum if it was 0 */ 507 if (udp_hdr->dgram_cksum != 0) { 508 if (tx_offloads & RTE_ETH_TX_OFFLOAD_UDP_CKSUM) { 509 ol_flags |= RTE_MBUF_F_TX_UDP_CKSUM; 510 } else { 511 if (info->is_tunnel) 512 l4_off = info->outer_l2_len + 513 info->outer_l3_len + 514 info->l2_len + info->l3_len; 515 else 516 l4_off = info->l2_len + info->l3_len; 517 udp_hdr->dgram_cksum = 0; 518 udp_hdr->dgram_cksum = 519 get_udptcp_checksum(m, l3_hdr, l4_off, 520 info->ethertype); 521 } 522 } 523 #ifdef RTE_LIB_GSO 524 if (info->gso_enable) 525 ol_flags |= RTE_MBUF_F_TX_UDP_SEG; 526 #endif 527 } else if (info->l4_proto == IPPROTO_TCP) { 528 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len); 529 if (tso_segsz) 530 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 531 else if (tx_offloads & RTE_ETH_TX_OFFLOAD_TCP_CKSUM) { 532 ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM; 533 } else { 534 if (info->is_tunnel) 535 l4_off = info->outer_l2_len + info->outer_l3_len + 536 info->l2_len + info->l3_len; 537 else 538 l4_off = info->l2_len + info->l3_len; 539 tcp_hdr->cksum = 0; 540 tcp_hdr->cksum = 541 get_udptcp_checksum(m, l3_hdr, l4_off, 542 info->ethertype); 543 } 544 #ifdef RTE_LIB_GSO 545 if (info->gso_enable) 546 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 547 #endif 548 } else if (info->l4_proto == IPPROTO_SCTP) { 549 sctp_hdr = (struct rte_sctp_hdr *) 550 ((char *)l3_hdr + info->l3_len); 551 /* sctp payload must be a multiple of 4 to be 552 * offloaded */ 553 if ((tx_offloads & RTE_ETH_TX_OFFLOAD_SCTP_CKSUM) && 554 ((ipv4_hdr->total_length & 0x3) == 0)) { 555 ol_flags |= RTE_MBUF_F_TX_SCTP_CKSUM; 556 } else { 557 sctp_hdr->cksum = 0; 558 /* XXX implement CRC32c, example available in 559 * RFC3309 */ 560 } 561 } 562 563 return ol_flags; 564 } 565 566 /* Calculate the checksum of outer header */ 567 static uint64_t 568 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info, 569 uint64_t tx_offloads, int tso_enabled, struct rte_mbuf *m) 570 { 571 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr; 572 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr; 573 struct rte_udp_hdr *udp_hdr; 574 uint64_t ol_flags = 0; 575 576 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) { 577 ipv4_hdr->hdr_checksum = 0; 578 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV4; 579 580 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) 581 ol_flags |= RTE_MBUF_F_TX_OUTER_IP_CKSUM; 582 else 583 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 584 } else 585 ol_flags |= RTE_MBUF_F_TX_OUTER_IPV6; 586 587 if (info->outer_l4_proto != IPPROTO_UDP) 588 return ol_flags; 589 590 udp_hdr = (struct rte_udp_hdr *) 591 ((char *)outer_l3_hdr + info->outer_l3_len); 592 593 if (tso_enabled) 594 ol_flags |= RTE_MBUF_F_TX_TCP_SEG; 595 596 /* Skip SW outer UDP checksum generation if HW supports it */ 597 if (tx_offloads & RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) { 598 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) 599 udp_hdr->dgram_cksum 600 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags); 601 else 602 udp_hdr->dgram_cksum 603 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags); 604 605 ol_flags |= RTE_MBUF_F_TX_OUTER_UDP_CKSUM; 606 return ol_flags; 607 } 608 609 /* outer UDP checksum is done in software. In the other side, for 610 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be 611 * set to zero. 612 * 613 * If a packet will be TSOed into small packets by NIC, we cannot 614 * set/calculate a non-zero checksum, because it will be a wrong 615 * value after the packet be split into several small packets. 616 */ 617 if (tso_enabled) 618 udp_hdr->dgram_cksum = 0; 619 620 /* do not recalculate udp cksum if it was 0 */ 621 if (udp_hdr->dgram_cksum != 0) { 622 udp_hdr->dgram_cksum = 0; 623 udp_hdr->dgram_cksum = get_udptcp_checksum(m, outer_l3_hdr, 624 info->outer_l2_len + info->outer_l3_len, 625 info->outer_ethertype); 626 } 627 628 return ol_flags; 629 } 630 631 /* 632 * Helper function. 633 * Performs actual copying. 634 * Returns number of segments in the destination mbuf on success, 635 * or negative error code on failure. 636 */ 637 static int 638 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[], 639 uint16_t seglen[], uint8_t nb_seg) 640 { 641 uint32_t dlen, slen, tlen; 642 uint32_t i, len; 643 const struct rte_mbuf *m; 644 const uint8_t *src; 645 uint8_t *dst; 646 647 dlen = 0; 648 slen = 0; 649 tlen = 0; 650 651 dst = NULL; 652 src = NULL; 653 654 m = ms; 655 i = 0; 656 while (ms != NULL && i != nb_seg) { 657 658 if (slen == 0) { 659 slen = rte_pktmbuf_data_len(ms); 660 src = rte_pktmbuf_mtod(ms, const uint8_t *); 661 } 662 663 if (dlen == 0) { 664 dlen = RTE_MIN(seglen[i], slen); 665 md[i]->data_len = dlen; 666 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1]; 667 dst = rte_pktmbuf_mtod(md[i], uint8_t *); 668 } 669 670 len = RTE_MIN(slen, dlen); 671 memcpy(dst, src, len); 672 tlen += len; 673 slen -= len; 674 dlen -= len; 675 src += len; 676 dst += len; 677 678 if (slen == 0) 679 ms = ms->next; 680 if (dlen == 0) 681 i++; 682 } 683 684 if (ms != NULL) 685 return -ENOBUFS; 686 else if (tlen != m->pkt_len) 687 return -EINVAL; 688 689 md[0]->nb_segs = nb_seg; 690 md[0]->pkt_len = tlen; 691 md[0]->vlan_tci = m->vlan_tci; 692 md[0]->vlan_tci_outer = m->vlan_tci_outer; 693 md[0]->ol_flags = m->ol_flags; 694 md[0]->tx_offload = m->tx_offload; 695 696 return nb_seg; 697 } 698 699 /* 700 * Allocate a new mbuf with up to tx_pkt_nb_segs segments. 701 * Copy packet contents and offload information into the new segmented mbuf. 702 */ 703 static struct rte_mbuf * 704 pkt_copy_split(const struct rte_mbuf *pkt) 705 { 706 int32_t n, rc; 707 uint32_t i, len, nb_seg; 708 struct rte_mempool *mp; 709 uint16_t seglen[RTE_MAX_SEGS_PER_PKT]; 710 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT]; 711 712 mp = current_fwd_lcore()->mbp; 713 714 if (tx_pkt_split == TX_PKT_SPLIT_RND) 715 nb_seg = rte_rand() % tx_pkt_nb_segs + 1; 716 else 717 nb_seg = tx_pkt_nb_segs; 718 719 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0])); 720 721 /* calculate number of segments to use and their length. */ 722 len = 0; 723 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) { 724 len += seglen[i]; 725 md[i] = NULL; 726 } 727 728 n = pkt->pkt_len - len; 729 730 /* update size of the last segment to fit rest of the packet */ 731 if (n >= 0) { 732 seglen[i - 1] += n; 733 len += n; 734 } 735 736 nb_seg = i; 737 while (i != 0) { 738 p = rte_pktmbuf_alloc(mp); 739 if (p == NULL) { 740 TESTPMD_LOG(ERR, 741 "failed to allocate %u-th of %u mbuf " 742 "from mempool: %s\n", 743 nb_seg - i, nb_seg, mp->name); 744 break; 745 } 746 747 md[--i] = p; 748 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) { 749 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: " 750 "expected seglen: %u, " 751 "actual mbuf tailroom: %u\n", 752 mp->name, i, seglen[i], 753 rte_pktmbuf_tailroom(md[i])); 754 break; 755 } 756 } 757 758 /* all mbufs successfully allocated, do copy */ 759 if (i == 0) { 760 rc = mbuf_copy_split(pkt, md, seglen, nb_seg); 761 if (rc < 0) 762 TESTPMD_LOG(ERR, 763 "mbuf_copy_split for %p(len=%u, nb_seg=%u) " 764 "into %u segments failed with error code: %d\n", 765 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc); 766 767 /* figure out how many mbufs to free. */ 768 i = RTE_MAX(rc, 0); 769 } 770 771 /* free unused mbufs */ 772 for (; i != nb_seg; i++) { 773 rte_pktmbuf_free_seg(md[i]); 774 md[i] = NULL; 775 } 776 777 return md[0]; 778 } 779 780 #if defined(RTE_LIB_GRO) || defined(RTE_LIB_GSO) 781 /* 782 * Re-calculate IP checksum for merged/fragmented packets. 783 */ 784 static void 785 pkts_ip_csum_recalc(struct rte_mbuf **pkts_burst, const uint16_t nb_pkts, uint64_t tx_offloads) 786 { 787 int i; 788 struct rte_ipv4_hdr *ipv4_hdr; 789 for (i = 0; i < nb_pkts; i++) { 790 if ((pkts_burst[i]->ol_flags & RTE_MBUF_F_TX_IPV4) && 791 (tx_offloads & RTE_ETH_TX_OFFLOAD_IPV4_CKSUM) == 0) { 792 ipv4_hdr = rte_pktmbuf_mtod_offset(pkts_burst[i], 793 struct rte_ipv4_hdr *, 794 pkts_burst[i]->l2_len); 795 ipv4_hdr->hdr_checksum = 0; 796 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr); 797 } 798 } 799 } 800 #endif 801 802 /* 803 * Receive a burst of packets, and for each packet: 804 * - parse packet, and try to recognize a supported packet type (1) 805 * - if it's not a supported packet type, don't touch the packet, else: 806 * - reprocess the checksum of all supported layers. This is done in SW 807 * or HW, depending on testpmd command line configuration 808 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP 809 * segmentation offload (this implies HW TCP checksum) 810 * Then transmit packets on the output port. 811 * 812 * (1) Supported packets are: 813 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP . 814 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 / 815 * UDP|TCP|SCTP 816 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 / 817 * UDP|TCP|SCTP 818 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 / 819 * UDP|TCP|SCTP 820 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP 821 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP 822 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP 823 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP 824 * 825 * The testpmd command line for this forward engine sets the flags 826 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control 827 * whether a checksum must be calculated in software or in hardware. The 828 * IP, UDP, TCP and SCTP flags always concern the inner layer. The 829 * OUTER_IP is only useful for tunnel packets. 830 */ 831 static void 832 pkt_burst_checksum_forward(struct fwd_stream *fs) 833 { 834 struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; 835 #ifdef RTE_LIB_GSO 836 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST]; 837 struct rte_gso_ctx *gso_ctx; 838 #endif 839 struct rte_mbuf **tx_pkts_burst; 840 struct rte_port *txp; 841 struct rte_mbuf *m, *p; 842 struct rte_ether_hdr *eth_hdr; 843 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */ 844 #ifdef RTE_LIB_GRO 845 void **gro_ctx; 846 uint16_t gro_pkts_num; 847 uint8_t gro_enable; 848 #endif 849 uint16_t nb_rx; 850 uint16_t nb_tx; 851 uint16_t nb_prep; 852 uint16_t i; 853 uint64_t rx_ol_flags, tx_ol_flags; 854 uint64_t tx_offloads; 855 uint32_t retry; 856 uint32_t rx_bad_ip_csum; 857 uint32_t rx_bad_l4_csum; 858 uint32_t rx_bad_outer_l4_csum; 859 uint32_t rx_bad_outer_ip_csum; 860 struct testpmd_offload_info info; 861 862 uint64_t start_tsc = 0; 863 864 get_start_cycles(&start_tsc); 865 866 /* receive a burst of packet */ 867 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst, 868 nb_pkt_per_burst); 869 inc_rx_burst_stats(fs, nb_rx); 870 if (unlikely(nb_rx == 0)) 871 return; 872 873 fs->rx_packets += nb_rx; 874 rx_bad_ip_csum = 0; 875 rx_bad_l4_csum = 0; 876 rx_bad_outer_l4_csum = 0; 877 rx_bad_outer_ip_csum = 0; 878 #ifdef RTE_LIB_GRO 879 gro_enable = gro_ports[fs->rx_port].enable; 880 #endif 881 882 txp = &ports[fs->tx_port]; 883 tx_offloads = txp->dev_conf.txmode.offloads; 884 memset(&info, 0, sizeof(info)); 885 info.tso_segsz = txp->tso_segsz; 886 info.tunnel_tso_segsz = txp->tunnel_tso_segsz; 887 #ifdef RTE_LIB_GSO 888 if (gso_ports[fs->tx_port].enable) 889 info.gso_enable = 1; 890 #endif 891 892 for (i = 0; i < nb_rx; i++) { 893 if (likely(i < nb_rx - 1)) 894 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1], 895 void *)); 896 897 m = pkts_burst[i]; 898 info.is_tunnel = 0; 899 info.pkt_len = rte_pktmbuf_pkt_len(m); 900 tx_ol_flags = m->ol_flags & 901 (RTE_MBUF_F_INDIRECT | RTE_MBUF_F_EXTERNAL); 902 rx_ol_flags = m->ol_flags; 903 904 /* Update the L3/L4 checksum error packet statistics */ 905 if ((rx_ol_flags & RTE_MBUF_F_RX_IP_CKSUM_MASK) == RTE_MBUF_F_RX_IP_CKSUM_BAD) 906 rx_bad_ip_csum += 1; 907 if ((rx_ol_flags & RTE_MBUF_F_RX_L4_CKSUM_MASK) == RTE_MBUF_F_RX_L4_CKSUM_BAD) 908 rx_bad_l4_csum += 1; 909 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD) 910 rx_bad_outer_l4_csum += 1; 911 if (rx_ol_flags & RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD) 912 rx_bad_outer_ip_csum += 1; 913 914 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan 915 * and inner headers */ 916 917 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *); 918 if (ports[fs->tx_port].fwd_mac_swap) { 919 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr], 920 ð_hdr->dst_addr); 921 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr, 922 ð_hdr->src_addr); 923 } 924 parse_ethernet(eth_hdr, &info); 925 l3_hdr = (char *)eth_hdr + info.l2_len; 926 927 /* check if it's a supported tunnel */ 928 if (txp->parse_tunnel) { 929 if (info.l4_proto == IPPROTO_UDP) { 930 struct rte_udp_hdr *udp_hdr; 931 932 udp_hdr = (struct rte_udp_hdr *) 933 ((char *)l3_hdr + info.l3_len); 934 parse_gtp(udp_hdr, &info); 935 if (info.is_tunnel) { 936 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GTP; 937 goto tunnel_update; 938 } 939 parse_vxlan_gpe(udp_hdr, &info); 940 if (info.is_tunnel) { 941 tx_ol_flags |= 942 RTE_MBUF_F_TX_TUNNEL_VXLAN_GPE; 943 goto tunnel_update; 944 } 945 parse_vxlan(udp_hdr, &info); 946 if (info.is_tunnel) { 947 tx_ol_flags |= 948 RTE_MBUF_F_TX_TUNNEL_VXLAN; 949 goto tunnel_update; 950 } 951 parse_geneve(udp_hdr, &info); 952 if (info.is_tunnel) { 953 tx_ol_flags |= 954 RTE_MBUF_F_TX_TUNNEL_GENEVE; 955 goto tunnel_update; 956 } 957 /* Always keep last. */ 958 if (unlikely(RTE_ETH_IS_TUNNEL_PKT( 959 m->packet_type) != 0)) { 960 TESTPMD_LOG(DEBUG, "Unknown tunnel packet. UDP dst port: %hu", 961 udp_hdr->dst_port); 962 } 963 } else if (info.l4_proto == IPPROTO_GRE) { 964 struct simple_gre_hdr *gre_hdr; 965 966 gre_hdr = (struct simple_gre_hdr *) 967 ((char *)l3_hdr + info.l3_len); 968 parse_gre(gre_hdr, &info); 969 if (info.is_tunnel) 970 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_GRE; 971 } else if (info.l4_proto == IPPROTO_IPIP) { 972 void *encap_ip_hdr; 973 974 encap_ip_hdr = (char *)l3_hdr + info.l3_len; 975 parse_encap_ip(encap_ip_hdr, &info); 976 if (info.is_tunnel) 977 tx_ol_flags |= RTE_MBUF_F_TX_TUNNEL_IPIP; 978 } 979 } 980 981 tunnel_update: 982 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */ 983 if (info.is_tunnel) { 984 outer_l3_hdr = l3_hdr; 985 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len; 986 } 987 988 /* step 2: depending on user command line configuration, 989 * recompute checksum either in software or flag the 990 * mbuf to offload the calculation to the NIC. If TSO 991 * is configured, prepare the mbuf for TCP segmentation. */ 992 993 /* process checksums of inner headers first */ 994 tx_ol_flags |= process_inner_cksums(l3_hdr, &info, 995 tx_offloads, m); 996 997 /* Then process outer headers if any. Note that the software 998 * checksum will be wrong if one of the inner checksums is 999 * processed in hardware. */ 1000 if (info.is_tunnel == 1) { 1001 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info, 1002 tx_offloads, 1003 !!(tx_ol_flags & RTE_MBUF_F_TX_TCP_SEG), 1004 m); 1005 } 1006 1007 /* step 3: fill the mbuf meta data (flags and header lengths) */ 1008 1009 m->tx_offload = 0; 1010 if (info.is_tunnel == 1) { 1011 if (info.tunnel_tso_segsz || 1012 (tx_offloads & 1013 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1014 (tx_offloads & 1015 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM)) { 1016 m->outer_l2_len = info.outer_l2_len; 1017 m->outer_l3_len = info.outer_l3_len; 1018 m->l2_len = info.l2_len; 1019 m->l3_len = info.l3_len; 1020 m->l4_len = info.l4_len; 1021 m->tso_segsz = info.tunnel_tso_segsz; 1022 } 1023 else { 1024 /* if there is a outer UDP cksum 1025 processed in sw and the inner in hw, 1026 the outer checksum will be wrong as 1027 the payload will be modified by the 1028 hardware */ 1029 m->l2_len = info.outer_l2_len + 1030 info.outer_l3_len + info.l2_len; 1031 m->l3_len = info.l3_len; 1032 m->l4_len = info.l4_len; 1033 } 1034 } else { 1035 /* this is only useful if an offload flag is 1036 * set, but it does not hurt to fill it in any 1037 * case */ 1038 m->l2_len = info.l2_len; 1039 m->l3_len = info.l3_len; 1040 m->l4_len = info.l4_len; 1041 m->tso_segsz = info.tso_segsz; 1042 } 1043 m->ol_flags = tx_ol_flags; 1044 1045 /* Do split & copy for the packet. */ 1046 if (tx_pkt_split != TX_PKT_SPLIT_OFF) { 1047 p = pkt_copy_split(m); 1048 if (p != NULL) { 1049 rte_pktmbuf_free(m); 1050 m = p; 1051 pkts_burst[i] = m; 1052 } 1053 } 1054 1055 /* if verbose mode is enabled, dump debug info */ 1056 if (verbose_level > 0) { 1057 char buf[256]; 1058 1059 printf("-----------------\n"); 1060 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n", 1061 fs->rx_port, m, m->pkt_len, m->nb_segs); 1062 /* dump rx parsed packet info */ 1063 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf)); 1064 printf("rx: l2_len=%d ethertype=%x l3_len=%d " 1065 "l4_proto=%d l4_len=%d flags=%s\n", 1066 info.l2_len, rte_be_to_cpu_16(info.ethertype), 1067 info.l3_len, info.l4_proto, info.l4_len, buf); 1068 if (rx_ol_flags & RTE_MBUF_F_RX_LRO) 1069 printf("rx: m->lro_segsz=%u\n", m->tso_segsz); 1070 if (info.is_tunnel == 1) 1071 printf("rx: outer_l2_len=%d outer_ethertype=%x " 1072 "outer_l3_len=%d\n", info.outer_l2_len, 1073 rte_be_to_cpu_16(info.outer_ethertype), 1074 info.outer_l3_len); 1075 /* dump tx packet info */ 1076 if ((tx_offloads & (RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | 1077 RTE_ETH_TX_OFFLOAD_UDP_CKSUM | 1078 RTE_ETH_TX_OFFLOAD_TCP_CKSUM | 1079 RTE_ETH_TX_OFFLOAD_SCTP_CKSUM)) || 1080 info.tso_segsz != 0) 1081 printf("tx: m->l2_len=%d m->l3_len=%d " 1082 "m->l4_len=%d\n", 1083 m->l2_len, m->l3_len, m->l4_len); 1084 if (info.is_tunnel == 1) { 1085 if ((tx_offloads & 1086 RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM) || 1087 (tx_offloads & 1088 RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM) || 1089 (tx_ol_flags & RTE_MBUF_F_TX_OUTER_IPV6)) 1090 printf("tx: m->outer_l2_len=%d " 1091 "m->outer_l3_len=%d\n", 1092 m->outer_l2_len, 1093 m->outer_l3_len); 1094 if (info.tunnel_tso_segsz != 0 && 1095 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1096 printf("tx: m->tso_segsz=%d\n", 1097 m->tso_segsz); 1098 } else if (info.tso_segsz != 0 && 1099 (m->ol_flags & RTE_MBUF_F_TX_TCP_SEG)) 1100 printf("tx: m->tso_segsz=%d\n", m->tso_segsz); 1101 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf)); 1102 printf("tx: flags=%s", buf); 1103 printf("\n"); 1104 } 1105 } 1106 1107 #ifdef RTE_LIB_GRO 1108 if (unlikely(gro_enable)) { 1109 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) { 1110 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx, 1111 &(gro_ports[fs->rx_port].param)); 1112 } else { 1113 gro_ctx = current_fwd_lcore()->gro_ctx; 1114 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx); 1115 1116 if (++fs->gro_times >= gro_flush_cycles) { 1117 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx); 1118 if (gro_pkts_num > MAX_PKT_BURST - nb_rx) 1119 gro_pkts_num = MAX_PKT_BURST - nb_rx; 1120 1121 nb_rx += rte_gro_timeout_flush(gro_ctx, 0, 1122 RTE_GRO_TCP_IPV4, 1123 &pkts_burst[nb_rx], 1124 gro_pkts_num); 1125 fs->gro_times = 0; 1126 } 1127 } 1128 1129 pkts_ip_csum_recalc(pkts_burst, nb_rx, tx_offloads); 1130 } 1131 #endif 1132 1133 #ifdef RTE_LIB_GSO 1134 if (gso_ports[fs->tx_port].enable != 0) { 1135 uint16_t nb_segments = 0; 1136 1137 gso_ctx = &(current_fwd_lcore()->gso_ctx); 1138 gso_ctx->gso_size = gso_max_segment_size; 1139 for (i = 0; i < nb_rx; i++) { 1140 int ret; 1141 1142 ret = rte_gso_segment(pkts_burst[i], gso_ctx, 1143 &gso_segments[nb_segments], 1144 GSO_MAX_PKT_BURST - nb_segments); 1145 if (ret >= 1) { 1146 /* pkts_burst[i] can be freed safely here. */ 1147 rte_pktmbuf_free(pkts_burst[i]); 1148 nb_segments += ret; 1149 } else if (ret == 0) { 1150 /* 0 means it can be transmitted directly 1151 * without gso. 1152 */ 1153 gso_segments[nb_segments] = pkts_burst[i]; 1154 nb_segments += 1; 1155 } else { 1156 TESTPMD_LOG(DEBUG, "Unable to segment packet"); 1157 rte_pktmbuf_free(pkts_burst[i]); 1158 } 1159 } 1160 1161 tx_pkts_burst = gso_segments; 1162 nb_rx = nb_segments; 1163 1164 pkts_ip_csum_recalc(tx_pkts_burst, nb_rx, tx_offloads); 1165 } else 1166 #endif 1167 tx_pkts_burst = pkts_burst; 1168 1169 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue, 1170 tx_pkts_burst, nb_rx); 1171 if (nb_prep != nb_rx) 1172 fprintf(stderr, 1173 "Preparing packet burst to transmit failed: %s\n", 1174 rte_strerror(rte_errno)); 1175 1176 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst, 1177 nb_prep); 1178 1179 /* 1180 * Retry if necessary 1181 */ 1182 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) { 1183 retry = 0; 1184 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) { 1185 rte_delay_us(burst_tx_delay_time); 1186 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue, 1187 &tx_pkts_burst[nb_tx], nb_rx - nb_tx); 1188 } 1189 } 1190 fs->tx_packets += nb_tx; 1191 fs->rx_bad_ip_csum += rx_bad_ip_csum; 1192 fs->rx_bad_l4_csum += rx_bad_l4_csum; 1193 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum; 1194 fs->rx_bad_outer_ip_csum += rx_bad_outer_ip_csum; 1195 1196 inc_tx_burst_stats(fs, nb_tx); 1197 if (unlikely(nb_tx < nb_rx)) { 1198 fs->fwd_dropped += (nb_rx - nb_tx); 1199 do { 1200 rte_pktmbuf_free(tx_pkts_burst[nb_tx]); 1201 } while (++nb_tx < nb_rx); 1202 } 1203 1204 get_end_cycles(fs, start_tsc); 1205 } 1206 1207 static void 1208 stream_init_checksum_forward(struct fwd_stream *fs) 1209 { 1210 bool rx_stopped, tx_stopped; 1211 1212 rx_stopped = ports[fs->rx_port].rxq[fs->rx_queue].state == 1213 RTE_ETH_QUEUE_STATE_STOPPED; 1214 tx_stopped = ports[fs->tx_port].txq[fs->tx_queue].state == 1215 RTE_ETH_QUEUE_STATE_STOPPED; 1216 fs->disabled = rx_stopped || tx_stopped; 1217 } 1218 1219 struct fwd_engine csum_fwd_engine = { 1220 .fwd_mode_name = "csum", 1221 .port_fwd_begin = NULL, 1222 .port_fwd_end = NULL, 1223 .stream_init = stream_init_checksum_forward, 1224 .packet_fwd = pkt_burst_checksum_forward, 1225 }; 1226